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Theme

fA dissipative system absorbs supply, ‘globally’, over time (+ space)j
¢¢ Can this be expressed ‘locally’, as

rate of change in storage (+ spatial flux) < supply rate

o |
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Theme

fA dissipative system absorbs supply, ‘globally’, over time (+ space)j
¢¢ Can this be expressed ‘locally’, as

rate of change in storage (+ spatial flux) < supply rate
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rate of change in storage (+ spatial flux)
L = supply rate + (non-negative) dissipation rate ??J
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The subject in its historical context ...

|
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Lyapunov functions

-

Consider the classical dynamical system, the Tflow’

3 —:L'—f(a:)

withx € X = R", the state space,and f : X — X,

Denote the set of solutions o : R — X by ‘B, the ‘behavior’.

o |
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Lyapunov functions

-

Consider the classical dynamical system, the Tflow’

3 —:L'—f(a:)

withx € X = R", the state space,and f : X — X,

Denote the set of solutions o : R — X by ‘B, the ‘behavior’.

V:X—=R

is saidtobea Lyapunov function for > ifalongx € B

& V(z()) <o

o |
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Lyapunov functions

-

Consider the classical dynamical system, the Tflow’

DI —:1:— f(x)

withx € X = R", the state space,and f : X — X,

Denote the set of solutions o : R — X by ‘B, the ‘behavior’.

V:X—=R

is saidtobea Lyapunov function for > ifalongx € B

& V(z()) <o

\—Equivalently, if vV :=VV.f<o. J
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n B

Typical Lyapunov ‘theorem’:

V(x) > Oand‘;’z(a:) <0for0 #x €X

=

V x € B, there holds x(t) — 0 fort — oo ‘global stability’
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o N

Lyapunov functions play a remarkably central role in the field.
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o N

Lyapunov functions play a remarkably central role in the field.
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Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov’s ‘second method’ in his Ph.D. thesis (1899).
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o N

‘Open’ systems are a much more appropriate starting point for the
study of dynamics.

o |
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o N

‘Open’ systems are a much more appropriate starting point for the
study of dynamics. For example,

input SYSTEM output

o |
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o N

‘Open’ systems are a much more appropriate starting point for the
study of dynamics. For example,

input SYSTEM output

~»  the ‘dynamical system’

3 %wzf(az,u), y = h(x,u).

u€eU=R"y €Y =RP,z € X = R": input, output, state.

Behavior 8 = allsol'ns (u,y,xz) : R —>UX Y X X.

o |

Lecture 7 DISSIPATIVE SYSTEMS —p.7/36



Dissipative systems: the classical i/s/o setting

o N

Let |s: U X Y — R| be afunction, called the supply rate.

Y. is said to be dissipative w.r.t. the supply rate s if 4

Vi X =R,

called the storage function, such that

EV(x(9) < s(u(-),y(-))

along input/output/state trajectories (V (u(:),y(-), z(:)) € B).

o |
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Dissipative systems: the classical i/s/o setting

o N

Let |s: U X Y — R| be afunction, called the supply rate.

Y. is said to be dissipative w.r.t. the supply rate s if 4

Vi X =R,

called the storage function, such that

EV(x(9) < s(u(-),y(-))

along input/output/state trajectories (V (u(:),y(-), z(:)) € B).

This inequality is called the dissipation inequality.

o |

Lecture 7 DISSIPATIVE SYSTEMS —p.8/36



-

Equivalent to

V3(z,u) = VV(2) - f(z,u) < s(u, h(z,u))

forall (u,x) € U X X.

o |
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-

Equivalent to

V3(z,u) = VV(2) - f(z,u) < s(u, h(z,u))

forall (u,x) € U X X.

If equality holds: ‘conservative’ system.

o |
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-

s(u, y) models something like the power delivered to the system
when the input value is © and output value is y.

SYSTEM

—

supply

V () then models the internally stored energy.

Dissipativity :<
rate of increase of internal energy < power delivered.

|
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-

Special case: ‘closed’ system: s = 0 then

dissipativeness <> V is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theotry.

o |
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-

Special case: ‘closed’ system: s = 0 then

dissipativeness <> V is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theotry.

Stability for closed systems ~ Dissipativity for open systems.

o |
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The construction of storage functions

-

Basic question:

Given (a representation of ) 3., the dynamics,
and given s, the supply rate,
Is the system dissipative w.r.t. s, i.e.,
does there exist a storage function V' such that
the dissipation inequality holds?

o |
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The construction of storage functions

-

Basic question:

Given (a representation of ) 3., the dynamics,
and given s, the supply rate,
Is the system dissipative w.r.t. s, i.e.,
does there exist a storage function V' such that

the dissipation inequality holds?

input

SYSTEM

—

supply

output

LAssume s ‘power’, known dynamics, what is the internal stored energﬂ
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o N

The construction of storage f’'ns is very well understood,
particularly for linear i/s/o systems and quadratic supply rates.

o |
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-

fThe construction of storage f’'ns is very well understood,
particularly for linear i/s/o systems and quadratic supply rates.

g - Sp uest
¥ e EL3 A
]

Leads to the KYP-lemma, 07y
LMI’s, ARIneq, ARE, semi-definite programming, spectral
factorization, Lyapunov functions, H o, and robust control, positive
and bounded real functions, electrical circuit synthesis, stochastic

realization theory.

o |
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o N

Dissipative systems play a remarkably central role in the field.

Edited by
Tamer Basar

o |
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The behavioral point of view

|
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Physical examples

-

Electrical circuit:

(potential, current)

Dissipative w.rt. Xj_ V,I, (electrical power).

o |
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Physical examples

-

System Supply Storage

Electrical VT energy in

circuit V : voltage capacitors &
I : current inductors

|
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Physical examples

-

Mechanical device:

(position, force, angle, torque)

Dissipative w.r.t. 2221((%q£)TFg — (%HE)TTE) (mech. power).

o |
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Physical examples

System Supply Storage
Electrical VT energy in
circuit V : voltage capacitors &
I : current inductors
Mechanical Flo+ (Z0)'T potential +
system F :force, v :velocity kinetic energy

@: angle, T' : torque

|
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Physical examples

-

Thermodynamic system:

(heatflow, temperature)

Conservative w.rt. XJ_, Qp + 22':1 Wy

£
Dissipative w.r.t. — X} @

N o N
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Physical examples

System Supply Storage
Electrical VT energy in
circuit V : voltage capacitors &
I : current inductors
Mechanical Flo+ (Z0)'T potential +
system F :force, v :velocity kinetic energy
@: angle, T : torque
Thermodynamic | Q + W internal
system Q : heat, W :work energy
Thermodynamic | —Q /T entropy
system Q :heat, T :temp.
etc. etc. etc.

|
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o N

As can be seen from these examples, the classical setting has a
number of serious drawbacks:

® the separation between inputs and outputs is very unnatural
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o N

As can be seen from these examples, the classical setting has a
number of serious drawbacks:

® the separation between inputs and outputs is very unnatural

® the requirement that the storage function is a state function:
this should be a result, not an assumption
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o N

As can be seen from these examples, the classical setting has a
number of serious drawbacks:

® the separation between inputs and outputs is very unnatural

® the requirement that the storage function is a state function:
this should be a result, not an assumption

® the non-uniqueness of state representations and the relevance
of non-minimal state representations, makes it difficult to
decide what the ‘domain’ of the storage function really is.

o |
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-

-

As can be seen from these examples, the classical setting has a
number of serious drawbacks:

® the separation between inputs and outputs is very unnatural

® the requirement that the storage function is a state function:
this should be a result, not an assumption

® the non-uniqueness of state representations and the relevance
of non-minimal state representations, makes it difficult to
decide what the ‘domain’ of the storage function really is.

~»>  Behavioral systems!

We will only treat linear time-inv. diff. systems and quadratic
differential forms (QDF’s) as supply rates and storage functions.

|
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QDF’s

o N

The quadratic map acting on w : R — R" and its derivatives,
defined by

dk d*

-
W > Zk,e(@w) ‘I’k,e(w’w)

is called quadratic differential form (QDF) on €°° (R, R¥).
(I)k,e c RWXW;

o |
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QDF’s

o N

The quadratic map acting on w : R — R" and its derivatives,
defined by

dk d*

-
W > Zk,e(ﬁw) ‘I’k,ﬁ(ﬁ’w)

is called quadratic differential form (QDF) on €°° (R, R¥).
Dy € R¥X¥: WLOG: Dp o = (I)Zk.

o |
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QDF’s

-

defined by

The quadratic map acting on w : R — R" and its derivatives,

-

dé -
w — Zk,e(@w) P o

dﬁ

dtt

w)

is called quadratic differential form (QDF) on €°° (R, R¥).

Py o € RY*V; WLOG: $p o = @Zk.

Introduce the 2-variable polynomial matrix &

®(¢,m) =) Ppectnt
k.

LDenote the QDF as Q5. QDF’s are parametrized by R®***[(, n7]. J
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Dissipative behavioral systems

o N

Definition: B € £V is said to be dissipative
w.r.t. the supply rate Q& with storage function QQ if the
dissipation inequality

2Qu(¢) < Qa(w)

for all (w, E) € ‘Bryll, a latent variable representation of *B. If
equality holds: ‘conservative’.

o |
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Dissipative behavioral systems

o N

Definition: B € £V is said to be dissipative
w.r.t. the supply rate Q& with storage function QQ if the
dissipation inequality

2Qu(¢) < Qa(w)

for all (w, E) € ‘Bryll, a latent variable representation of *B. If
equality holds: ‘conservative’.

If the storage function acts on w, i.e.,

2 Qu(w) < Qa(w)

Lfor all w € *5, then we call the storage function observable. J
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o N

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

o |
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-

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.

The following are equivalent:

1.

“+ o0

— OO

Qe (w)dt >0

for all w € B of compact support.

-

|
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-

.

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.

The following are equivalent:

1.

“+ o0

— OO

Qe (w)dt >0

2. Dissipativity : 4 W such that

£ Qu(0) < Qa(w)

-

for all (w, £) € B, a latent variable representation of 253

|
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-

.

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.

The following are equivalent:

1.

2. Dissipativity

+ oo

— OO

Qe (w)dt >0

-

3. Dissipativity with an observable storage function :

3 W such that

for all w € B.

* Qe(w) < Qa(w)

|
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o N

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1.

+o0
Qe (w)dt >0

— OO

2. Dissipativity
3. Dissipativity with an observable storage function
4.

M (—iw)®(—iw,w)M (iw) > 0

forallw € R, withw = M(%)E any image repr. of 8.

o |
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-

The following are equivalent:

1.

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.

+ oo

— OO

Qe (w)dt >0

2. Dissipativity

-

3. Dissipativity with an observable storage function

4,

M (—iw)®(—iw,w)M (iw) > 0

forall w € R,

L 5. Other representations, adapted conditions...

|
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Non-negative storage functions

o N

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

o |
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Non-negative storage functions

o N

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1. ‘half-line dissipativity’

0
/ Qa(w)dt >0

for all w € B of compact support.

o |
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Non-negative storage functions

o N

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1. ‘half-line dissipativity’

2. Dissipativity with non-negative storage function :
3 W such that

d
Qu(f) >0 and EQ\IJ(E) < Qs (w)

for all (w, £) € *Brull, a latent variable representation of 5

o |
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Non-negative storage functions

o N

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1. ‘half-line dissipativity’
2. Dissipativity with non-negative storage function

3. Dissipativity with a non-negative observable storage function
a4 W such that

d
Qu(w) >0 and  — Qu(w) < Qa(w) >0

for all w € B.

o |
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Non-negative storage functions

o N

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1. ‘half-line dissipativity’
2. Dissipativity with non-negative storage function

3. Dissipativity with a non-negative observable storage function

4. A Pick matrix conditionon M ' (—&)®(—¢&, &) M (&),
withw = M (%)E any image representation of 3.

o |
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Non-negative storage functions

o N

Theorem: Let 3 € £¥, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1. ‘half-line dissipativity’

2. Dissipativity with non-negative storage function

3. Dissipativity with a non-negative observable storage function
4. A Pick matrix conditionon M ' (—£)®(—&, &) M (&),

5. Other representations, adapted conditions...

o |
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-

Remarks:

1. The condition: Given R(%)fw = 0 and ®, 3 ¥ such that

%Q\P(w) < Qa(w)

is actually an LMI.

o |
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-

Remarks:

1. The condition: Given R(%)fw = 0 and ®, 3 ¥ such that

d

— w) < w

dtQ\IJ( ) < Qa(w)
is actually an LMI.

2. It can be shown that every observable storage function is a
memoryless state function!

o |
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-

3. The set of observable storage functions is
convex, compact, and attains its maximum and minimum:

Q\I’available (w) S Q\I’(w) S Q\I’required (w)
for all w € B, with

Q..o () (0) := supremum{— /0 Qs (W) dt}

0
Q..o (w)(0) := infimum{— /_ Qu(w)dt)

with the sup and inf over all w such that the concatenations,

L WwAow, wAgw € *B. J
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o N

The need for introducing non-observable storage f’'ns is very real:

1. Theoretical example with behavior consisting of the signals
(w1, w2), with w; free and w2 governed by

d
— W9 = xXW
dt 2 29

and supply rate w;ws. 39 an observable storage f’'n, but the
(unobservable) latent variable representation

! +
—L = —OT w
dt !

~» the storage f'n| xwsy |. We call this system dissipative!

o |
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-

2. Our favorite RLC circuit

/|

+

environment V system

o |
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]
Rc L
+
environment V system
_ C R
L

|

Lecture 7 DISSIPATIVE SYSTEMS — p.25/36



Lecture 7 DISSIPATIVE SYSTEMS — p.25/36



o N

2. Our favorite RLC circuit with supply rate V' I has the energy
Loy + L
2 ¢ oL

as physically natural storage function.

o |
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o N

2. Our favorite RLC circuit with supply rate V' I has the energy
1Cvg + 1LI%
2 2
as physically natural storage function.
When CRc # RLL, this storage f'n is observable,
L

butwhen CRq- = 7. itis not observable!

There are many such examples.

o |
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o N

2. Our favorite RLC circuit with supply rate V' I has the energy
Loy + L
2 € oL

as physically natural storage function.

When CRc # RLL, this storage f'n is observable,

butwhen CRq- = RLL’ it is not observable!

There are many such examples.

3. For PDE’s an observable storage function may not exist at all!

o |
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Maxwell’s equations

o N

Example: Maxwell’s eq’ns:

dissipative (in fact, conservative) w.rt. the QDF — E - j .

o |
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Maxwell’s equations

-

Example: Maxwell’s eg’ns:

-

dissipative (in fact, conservative) w.rt. the QDF — E - j .

In other words, if E, 5 is of compact support and satisfies

8 — —
608—V'E —|— V'J = 0,
02 0 -
EOWE—FsOCzV X V X E + —tj = 0,

then
/( (—E - J) dxdydz) dt = 0.
R3

Lecture 7

|
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o N

The stored energy density, S, and
the energy flux density (the Poynting vector), F’,

2
S(E,B):= 2E-E+ "_B.B,
2 2
F(E,B) := ¢oc®E x B

o |
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-

The stored energy density, S, and
the energy flux density (the Poynting vector), F’,

2
- — EQ = — eEpC
S(E, B) := ?"E.E+ 02

B- B,

F(E,B) := eoc’*E x B.
lead to the local conservation law:

o |
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-

The stored energy density, S, and
the energy flux density (the Poynting vector), F’,

6002

B- B,

S(E, B) := ?E’.Eﬂu >

F(E,B) := eoc’*E x B.
lead to the local conservation law:

5%5K1§7£;)4“7'-F%1§9E;) Ii j;

Involves B , unobservable from the energy variables E and 5
An observable stored energy does not exist al all!

o |
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Outline of the proof

o N

Using controllability and image representations, we assume,
WLOG:

B = ¢°(R, R¥)

o |
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Outline of the proof

/ Qas(w) > Oforallw € D
R

{ (Parseval)

¢ (—itw,tw) > 0forallw € R

|
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Outline of the proof

b (—itw,tw) > 0forallw € R

{ |(Factorization equation)

3D: &(—£,¢) =D (—€)D(€)

|
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Outline of the proof

-

I3D: ®(—£,€) =D (—€)D()
§ (easy)

3¥: ((+n)¥(n) =2 n) — D' (¢)D(n)



Outline of the proof

o N

3¥: ((+n)T(n) =2 n) — D' (¢)D(n)
{ (clearly)

d
3 W d—tQ\p(w) < Qa(w) forallw € €°

o |
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Assuming factorizability:

Global dissipation : <=

Qs (w) > Oforallw € D(R, R")
Rn

)
3 W %Q@(’UJ) < Qs (w) forallw € €°°(R, R")

<: Local dissipation

o |
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o N

The proof thus completely hinges on the factorization eq’n.

b(—tw,tw) > 0forallw € R

{ | (Factorization equation)

I3D: &(—£,¢) =D (—€)D(€)

o |
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o N

The proof thus completely hinges on the factorization eq’n.

b(—tw,tw) > 0forallw € R

{ | (Factorization equation)

I3D: &(—£,¢) =D (—€)D(€)

This is a classical problem. We sketch the proof also for polynomial
matrices in many variables (since it is relevant in the PDE case).

o |
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The factorization equation

-

Consider

X' (=)X(&) =Y(¢)

with Y € R®**®[£] given, and X the unknown. Solvable??

o |
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The factorization equation

|7Consider T

X' (=)X(&) =Y(¢)

with Y € R®**®[£] given, and X the unknown. Solvable??

12

X' ()X (&) =Y (g

with Y € R®**®[£] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?

o |
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The factorization equation

Consider T

X' (=)X(&) =Y(¢)

-

with Y € R®**®[£] given, and X the unknown. Solvable??

12

X' ()X (&) =Y (g

with Y € R®**®[£] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?

Scalar case: !! write the real polynomial Y as a sum of squares
Y:m%—l—azg—l—---—I—mf{.

|

Lecture 7 DISSIPATIVE SYSTEMS - p.31/36



X' (§)X(E) =Y(¢)

-

Y is a given polynomial matrix; X is the unknown.

o |
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X' (§)X(E) =Y(¢)

-

Y is a given polynomial matrix; X is the unknown.

Forn = 1and Y € R[], solvable (for X € R?[£]) iff

Y(a) >0 foralla € R.

o |
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-

X' (§)X(E) =Y(¢)

-

Forn = 1,and Y € R®***[£], itis well-known (but non-trivial) that
this factorization equation is solvable (with X € R®*®[£] ) iff

Y is a given polynomial matrix; X is the unknown.

Y(a)=Y"'(a) >0 foralla € R.

|
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X' (§)X(E) =Y(¢)

-

Y is a given polynomial matrix; X is the unknown.

Forn > 1, and under this obvious symmetry and positivity
requirement,

Y(a)=Y ' (o) >0 foralla € R®,

this equation can nevertheless in general not be solved over the
polynomial matrices, for X € R®*®[£],

o |
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-

X' (§)X(E) =Y(¢)

Y is a given polynomial matrix; X is the unknown.

Forn > 1, and under this obvious symmetry and positivity
requirement,

Y(a)=Y ' (o) >0 foralla € R®,

this equation can nevertheless in general not be solved over the
polynomial matrices, for X € R®*®[£], but it can be solved over
the matrices of rational functions, i.e., for X € R®**®(¢).

|
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o N

This factorizability is a simple consequence of Hilbert’s 17-th pbm!

Il Solve p=p%—|—p§—|—---—|—p§, P given

o |
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o N

This factorizability is a simple consequence of Hilbert’s 17-th pbm!

Il Solve p=p%—|—p§—|—---—|—pf{, P given

A polynomial p € R[Sla Tt gn]a with p(ala ce v CVn) Z 0
forall (a1,...,ay,) € R® can in general not be expressed as a
sum of squares of polynomials, with the p;’s € R[&1, - , &)

o |
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o N

This factorizability is a simple consequence of Hilbert’s 17-th pbm!

Il Solve p:p%—l—p%—l—---—l—pf{, P given

But a rational function (and hence a polynomial)

D E R(‘Sla tte 9£n)a with p(ala c e an) > 0, forall
(a1y...,0,) € R®, can be expressed as a sum of squares of
(k = 2") rational functions, with the p;’s € R(&1,: -« ,&n).

o |
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-

—> solvability of the factorization eq’n

b(—tw,tw) > O0forallw € R”

{ | (Factorization equation)

I3D: &(—£,¢) =D (—€)D(€)

over the rational functions, i.e., with D a matrix with elements in

IR(éla e 7€n)-

o |
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-

—> solvability of the factorization eq’n T

b(—tw,tw) > O0forallw € R”

{ | (Factorization equation)

I3D: &(—£,¢) =D (—€)D(€)

over the rational functions, i.e., with D a matrix with elements in

IR(sla e 7€n)-

The need to introduce rational functions in this factorization and an

image representation of 5 (to reduce the pbm to €°°) are the

causes of the unavoidable presence of (possibly unobservable, i.e.,
L‘hidden’) latent variables in the local dissipation law for PDE’s. J

Lecture 7 DISSIPATIVE SYSTEMS — p.34/36



Recapitulation

o .

® A dissipative system involves the system dynamics, the supply
rate, and the storage f’n, related through the dissipation

inequality. A storage f’n may involve unobservable latent
variables.

o |
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Recapitulation

o .

® A dissipative system involves the system dynamics, the supply
rate, and the storage f’n, related through the dissipation
inequality. A storage f'n may involve unobservable latent
variables.

® A dissipative system is a natural generalization to open
systems of a Lyapunov function.

o |
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Recapitulation

o .

® A dissipative system involves the system dynamics, the supply
rate, and the storage f’n, related through the dissipation
inequality. A storage f'n may involve unobservable latent
variables.

® A dissipative system is a natural generalization to open
systems of a Lyapunov function.

® The theory of dissipative systems centers around
» conditions for dissipativity in terms of system repr.

» the construction of the storage function
(= the factorization eq’n)

o |
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Recapitulation

-

A dissipative system involves the system dynamics, the supply
rate, and the storage f’n, related through the dissipation
inequality. A storage f'n may involve unobservable latent
variables.

A dissipative system is a natural generalization to open
systems of a Lyapunov function.

The theory of dissipative systems centers around
» conditions for dissipativity in terms of system repr.

» the construction of the storage function
(= the factorization eq’n)

Allowing unobservable storage functions is important

|
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L

Recapitulation

-

A dissipative system involves the system dynamics, the supply
rate, and the storage f’n, related through the dissipation
inequality. A storage f'n may involve unobservable latent
variables.

A dissipative system is a natural generalization to open
systems of a Lyapunov function.

The theory of dissipative systems centers around
» conditions for dissipativity in terms of system repr.

» the construction of the storage function
(= the factorization eq’n)

Allowing unobservable storage functions is important

Neither controllability nor observability are good generic
system theoretic assumptions for physical models J
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End of Lecture 7

|
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