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Theme

A dissipative system absorbs supply, ‘globally’, over time (+ space).
¿¿ Can this be expressed ‘locally’, as

rate of change in storage (+ spatial flux)

�
supply rate

STORAGE

FLUX

SUPPLY

DISSIPATION

rate of change in storage (+ spatial flux)
= supply rate + (non-negative) dissipation rate ??
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The subject in its historical context ...
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Lyapunov functions

Consider the classical dynamical system, the ‘flow’��� ��� � � � 	 � 

with � � � �  �

, the state space, and

�� � �
.

Denote the set of solutions ��  �
by , the ‘behavior’.

is said to be a Lyapunov function for if along

Equivalently, if
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Typical Lyapunov ‘theorem’:
V

X

� 	 � 
 � �
and

� � � 	 � 
 � �
for

� � � � � �

� � � � there holds � 	�� 
 �

for

� � ‘global stability’
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Lyapunov functions play a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov’s ‘second method’ in his Ph.D. thesis (1899).
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‘Open’ systems are a much more appropriate starting point for the
study of dynamics.

For example,

outputSYSTEMinput

the ‘dynamical system’

: input, output, state.

Behavior all sol’ns
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‘Open’ systems are a much more appropriate starting point for the
study of dynamics. For example,

outputSYSTEMinput

� the ‘dynamical system’�� ��� � � � 	 � �  
 � ! � " 	 � �  
 �

 � # �  $ � ! � % �  & � � � � �  �

: input, output, state.

Behavior � all sol’ns

	  � ! � � 
 �  #(' %(' ��
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Dissipative systems: the classical i/s/o setting

Let )� #(' % 

be a function, called the supply rate.�

is said to be dissipative w.r.t. the supply rate ) if

*

�� �  �
called the storage function, such that

��� � 	 � 	�� 
 
 ) 	  	�� 
 � ! 	�� 
 


along input/output/state trajectories (

� 	  	�� 
 � ! 	�� 
 � � 	�� 
 
 � 


.

This inequality is called the dissipation inequality.
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Equivalent to� � � 	 � �  
 � � � 	 � 
 � � 	 � �  
 ) 	  � " 	 � �  
 

for all

	  � � 
 � #(' �
.

If equality holds: ‘conservative’ system.
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) 	  � ! 
 models something like the power delivered to the system
when the input value is  and output value is !.

supply

input

output

SYSTEM

� 	 � 
 then models the internally stored energy.

Dissipativity �
rate of increase of internal energy power delivered.
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Special case: ‘closed’ system: ) � �

then

dissipativeness

�

is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closed systems Dissipativity for open systems.
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The construction of storage functions

Basic question:

Given (a representation of )

�

, the dynamics,

and given ), the supply rate,

is the system dissipative w.r.t. ), i.e.,

does there exist a storage function

�
such that

the dissipation inequality holds?

supply

input

output

SYSTEM

Assume ‘power’, known dynamics, what is the internal stored energy?
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The construction of storage f’ns is very well understood,
particularly for linear i/s/o systems and quadratic supply rates.

Leads to the KYP-lemma,
LMI’s, ARIneq, ARE, semi-definite programming, spectral
factorization, Lyapunov functions, and robust control, positive
and bounded real functions, electrical circuit synthesis, stochastic
realization theory.
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Dissipative systems play a remarkably central role in the field.
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The behavioral point of view
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Physical examples

Electrical circuit:

(potential, current)

Dissipative w.r.t.

� -.0/ 1 � . 2 . (electrical power).

Lecture 7 DISSIPATIVE SYSTEMS – p.16/36



Physical examples

System Supply Storage

Electrical
circuit

� 3 2�� voltage2 � current

energy in
capacitors &
inductors
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Physical examples

Mechanical device:

(position, force, angle, torque)

Dissipative w.r.t.
� -.0/ 1 	 	 ��� 4 . 
 365 . 7 	 ��� 8 . 
 3:9 . 
 (mech. power).
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Physical examples

System Supply Storage

Electrical
circuit

� 3 2�� voltage2 � current

energy in
capacitors &
inductors

Mechanical
system

5 3<; 7 	 ��� 8 
 395 � force, ; � velocity8

: angle,

9 � torque

potential +
kinetic energy
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Physical examples

Thermodynamic system:

(work)

(heatflow, temperature)

Conservative w.r.t.

� -.0/ 1 . 7 � - =.0/ 1 . ,

Dissipative w.r.t. > � -.0/ 1 .9 ? �
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Physical examples

System Supply Storage

Electrical
circuit

� 3 2�� voltage2 � current

energy in
capacitors &
inductors

Mechanical
system

5 3<; 7 	 ��� 8 
 395 � force, ; � velocity8

: angle,

9 � torque

potential +
kinetic energy

Thermodynamic
system

7� heat, � work
internal
energy

Thermodynamic
system

> @9� heat,

9 � temp.
entropy

etc. etc. etc.
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As can be seen from these examples, the classical setting has a
number of serious drawbacks:

the separation between inputs and outputs is very unnatural

the requirement that the storage function is a state function:
this should be a result, not an assumption

the non-uniqueness of state representations and the relevance
of non-minimal state representations, makes it difficult to
decide what the ‘domain’ of the storage function really is.

Behavioral systems!

We will only treat linear time-inv. diff. systems and quadratic
differential forms (QDF’s) as supply rates and storage functions.
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QDF’s

The quadratic map acting on A �  B

and its derivatives,
defined by

AC DFE . 	 G DG� D A 
 3IH D E . 	 G .G� . A 

is called quadratic differential form (QDF) on

J , 	  � B 


.H D E . � B K B�L

WLOG: .

Introduce the -variable polynomial matrix

Denote the QDF as . QDF’s are parametrized by
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is called quadratic differential form (QDF) on

J , 	  � B 


.H D E . � B K B�L WLOG:

H D E . � H 3.E D .
Introduce the

M

-variable polynomial matrix

H

H 	N � O 
 � DFE . H D E .N D O .�

Denote the QDF as P . QDF’s are parametrized by
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Dissipative behavioral systems

Definition:

� S B

is said to be dissipative
w.r.t. the supply rate P with storage function T if the
dissipation inequality

��� T 	 ? 
 P 	 A 

for all

	 A � ? 
 � UWV X X , a latent variable representation of . If
equality holds: ‘conservative’.

If the storage function acts on , i.e.,

for all , then we call the storage function observable.
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Theorem: Let

� S B

, controllable, P a QDF, the supply rate.
The following are equivalent:

1.

2. Dissipativity

3. Dissipativity with an observable storage function

4.

for all

5. Other representations, adapted conditions...
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Non-negative storage functions

Theorem: Let

� S B

, controllable, P a QDF, the supply rate.
The following are equivalent:

1. ‘half-line dissipativity’

2. Dissipativity with non-negative storage function

3. Dissipativity with a non-negative observable storage function

4. A Pick matrix condition on

5. Other representations, adapted conditions...
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Remarks:

1. The condition: Given

` 	 ��� 
 A � �

and

H
,

*[
such thatGG� T 	 A 
 P 	 A 


is actually an LMI.

2. It can be shown that every observable storage function is a
memoryless state function!
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3. The set of observable storage functions is
convex, compact, and attains its maximum and minimum:

Tbac a de a f ehg 	 A 
 T 	 A 
 Tji gkl di g m 	 A 

for all A �

, with

Tnac a de a f ehg 	 A 
 	 � 
 � � opq r st p t u > ,
^ P 	v A 
 G� w

T i gk l di g m 	 A 
 	 � 
 � � xIy z t p t u > ^
Z, P 	 v A 
 G� w

with the sup and inf over all

v A such that the concatenations,v A { ^ A � A { ^ v A � �
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The need for introducing non-observable storage f’ns is very real:

1. Theoretical example with behavior consisting of the signals	 A 1 � A}| 


, with A 1 free and A}| governed byGG� A}| � ~ A| �
and supply rate A 1 A}| .

�

an observable storage f’n, but the
(unobservable) latent variable representationGG� � � > ~ � 7 A 1

� the storage f’n � A}| . We call this system dissipative!
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2. Our favorite RLC circuit

I

+

−

V

R
L

C
R

C

L

systemenvironment

2. Our favorite RLC circuit with supply rate has the energy

as physically natural storage function.

When , this storage f’n is observable,

but when , it is not observable!

There are many such examples.

3. For PDE’s an observable storage function may not exist at all!
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2. Our favorite RLC circuit with supply rate

� 2

has the energy� M � � |� 7 � M � 2|�
as physically natural storage function.
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Maxwell’s equations

Example: Maxwell’s eq’ns:

dissipative (in fact, conservative) w.r.t. the QDF > ��� � ���
.

In other words, if is of compact support and satisfies

then
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Maxwell’s equations

Example: Maxwell’s eq’ns:

dissipative (in fact, conservative) w.r.t. the QDF > ��� � ���
.

In other words, if

�� � ��

is of compact support and satisfies

�� ��� ��� ���� ��� �W� � ����� � ��� � ���� �� � � �� �� ���� ��� �W� � ���

then

� 	 �   	 > �� � �� 
 G � G ! G�¡ 
 G� � ���
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The stored energy density,

¢

, and

the energy flux density (the Poynting vector ),
�5

,

¢ 	 �� � �¤£ 
 � � ¥ ^M �� � �� 7 ¥ ^ ¦|M �¤£ � � £ �

�5 	 �� � �§£ 
 � � ¥ ^ ¦| ��' � £�

lead to the local conservation law:

Involves unobservable from the energy variables and .
An observable stored energy does not exist al all!
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Outline of the proof

Using controllability and image representations, we assume,
WLOG:

� J , 	  � B 
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Outline of the proof

� P 	 A 
 �

for all A �
(Parseval)H 	 > \ ] � \ ] 
 �

for all ] � 

Lecture 7 DISSIPATIVE SYSTEMS – p.28/36



Outline of the proof
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 	 _ 
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(easy)*[ � 	N 7 O 
[ 	N � O 
 � H 	N � O 
 > 3 	N 
 	 O 
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Outline of the proof

*[ � 	N 7 O 
[ 	N � O 
 � H 	N � O 
 > 3 	N 
 	 O 

(clearly)

*[ � GG� T 	 A 
 P 	 A 

for all A � J ,
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Assuming factorizability:

Global dissipation :

�© P 	 A 
 �

for all A � 	  �  B 


*[ � GG� T 	 A 
 P 	 A 

for all A � J , 	  � B 


� Local dissipation
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The proof thus completely hinges on the factorization eq’n.H 	 > \ ] � \ ] 
 �

for all ] � 
(Factorization equation)

* � H 	 > _ � _ 
 � 3 	 > _ 
 	 _ 


This is a classical problem. We sketch the proof also for polynomial
matrices in many variables (since it is relevant in the PDE case).
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The factorization equation

Consider 3 	 > _ 
 	 _ 
 � ª 	 _ 

with

ª �  � K � Q _ R

given, and the unknown. Solvable??

with given, and the unknown.

Under what conditions on does there exist a solution ?

Scalar case: !! write the real polynomial as a sum of squares
.
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as a sum of squaresª � � | 1 7 � || 7 � � � 7 � |¬ .
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 	 _ 
 	 _ 
 � ª 	 _ 


ª

is a given polynomial matrix; is the unknown.

For , and under this obvious symmetry and positivity
requirement,

for all

this equation can nevertheless in general not be solved over the
polynomial matrices, for , but it can be solved over
the matrices of rational functions, i.e., for .
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ª

is a given polynomial matrix; is the unknown.

For ® � �

, and under this obvious symmetry and positivity
requirement, ª 	 ~ 
 � ª 3 	 ~ 
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polynomial matrices, for

�  � K � Q _ R
, but it can be solved over

the matrices of rational functions, i.e., for

�  � K � 	 _ 
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This factorizability is a simple consequence of Hilbert’s 17-th pbm!

!! Solve ¯ � ¯| 1 7 ¯|| 7 � � � 7 ¯|¬ � ¯ given

But a rational function (and hence a polynomial)
with for all

, can be expressed as a sum of squares of
( ) rational functions, with the ’s .
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!! Solve ¯ � ¯| 1 7 ¯|| 7 � � � 7 ¯|¬ � ¯ given
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 �

for all

	 ~ 1 � � � � � ~ � 
 �  �
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sum of squares of polynomials, with the ¯±° ’s
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This factorizability is a simple consequence of Hilbert’s 17-th pbm!

!! Solve ¯ � ¯| 1 7 ¯|| 7 � � � 7 ¯|¬ � ¯ given

But a rational function (and hence a polynomial)¯ �  	 _ 1 � � � � � _ � 
 � with ¯ 	 ~ 1 � � � � � ~ � 
 � � for all	 ~ 1 � � � � � ~ � 
 �  �
, can be expressed as a sum of squares of

(

² � M �

) rational functions, with the ¯° ’s

�  	 _ 1 � � � � � _ � 
 .
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solvability of the factorization eq’nH 	 > \ ] � \ ] 
 �

for all ] �  �
(Factorization equation)

* � H 	 > _ � _ 
 � 3 	 > _ 
 	 _ 


over the rational functions, i.e., with a matrix with elements in 	 _ 1 � � � � � _ � 
 �

The need to introduce rational functions in this factorization and an
image representation of (to reduce the pbm to ) are the
causes of the unavoidable presence of (possibly unobservable, i.e.,
‘hidden’) latent variables in the local dissipation law for PDE’s.
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Recapitulation

A dissipative system involves the system dynamics, the supply
rate, and the storage f’n, related through the dissipation
inequality. A storage f’n may involve unobservable latent
variables.

A dissipative system is a natural generalization to open
systems of a Lyapunov function.

The theory of dissipative systems centers around

conditions for dissipativity in terms of system repr.

the construction of the storage function
( the factorization eq’n)

Allowing unobservable storage functions is important

Neither controllability nor observability are good generic
system theoretic assumptions for physical models
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End of Lecture 7
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