Lecture 7

DISSIPATIVE SYSTEMS

Jan C. Willems

University of Leuven, Belgium

Minicourse ECC 2003

Cambridge, UK, September 2, 2003

Lecture 7 DISSIPATIVE SYSTEMS – p.1/36

Theme

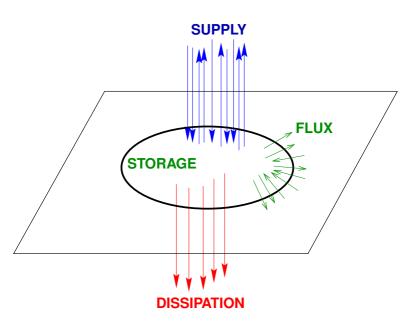
A dissipative system absorbs supply, 'globally', over time (+ space). ¿¿ Can this be expressed 'locally', as

rate of change in storage (+ spatial flux) \leq supply rate

Theme

A dissipative system absorbs supply, 'globally', over time (+ space). ¿¿ Can this be expressed 'locally', as

rate of change in storage (+ spatial flux) \leq supply rate



rate of change in storage (+ spatial flux) = supply rate + (non-negative) dissipation rate ??

The subject in its historical context ...

Lyapunov functions

Consider the classical dynamical system, the *'flow'*

$$\Sigma: \quad rac{d}{dt}x = f(x)$$

with $x \in \mathbb{X} = \mathbb{R}^n$, the state space, and $f : \mathbb{X} \to \mathbb{X}$.

Denote the set of solutions $x : \mathbb{R} \to \mathbb{X}$ by \mathfrak{B} , the *'behavior'*.

Lyapunov functions

Consider the classical dynamical system, the *'flow'*

$$\Sigma: \quad rac{d}{dt}x = f(x)$$

with $x \in \mathbb{X} = \mathbb{R}^n$, the *state space,* and $f : \mathbb{X} \to \mathbb{X}$.

Denote the set of solutions $x: \mathbb{R} \to \mathbb{X}$ by \mathfrak{B} , the *'behavior'*.

$$V:\mathbb{X}
ightarrow\mathbb{R}$$

$$rac{d}{dt}\,V(x(\cdot))\leq 0$$

Lyapunov functions

Consider the classical dynamical system, the *'flow'*

$$\Sigma: \quad rac{d}{dt}x = f(x)$$

with $x \in \mathbb{X} = \mathbb{R}^n$, the *state space,* and $f : \mathbb{X} \to \mathbb{X}$.

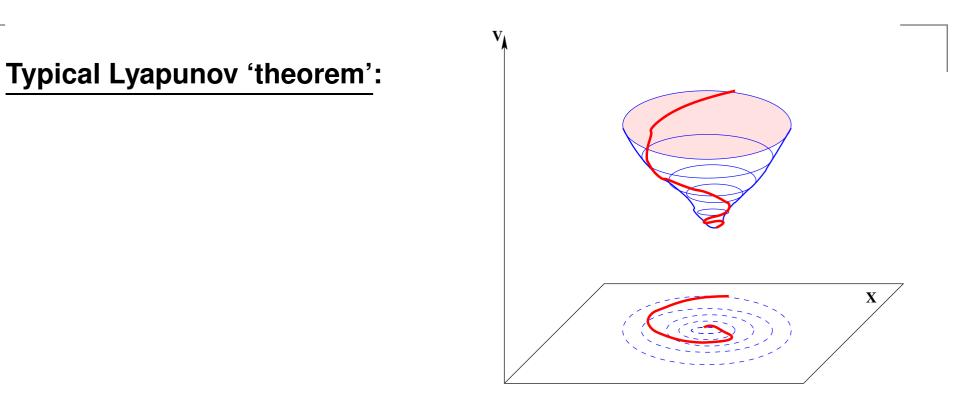
Denote the set of solutions $x: \mathbb{R} \to \mathbb{X}$ by \mathfrak{B} , the *'behavior'*.

$$V:\mathbb{X}
ightarrow\mathbb{R}$$

$$rac{d}{dt}\,V(x(\cdot))\leq 0$$

Equivalently, if

$$V^{\Sigma} :=
abla V \cdot f \leq 0.$$



$$V(x)>0$$
 and $\overset{ullet}{V}^{\Sigma}(x)<0$ for $0
eq x\in\mathbb{X}$ \Rightarrow $x\in\mathfrak{B},$ there holds $x(t) o 0$ for $t o\infty$ 'global stability

Lyapunov functions play a remarkably central role in the field.

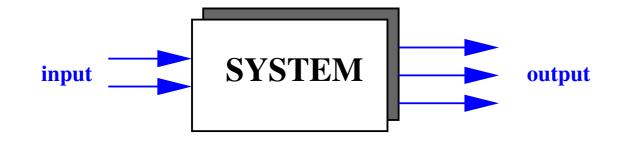
Lyapunov functions play a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

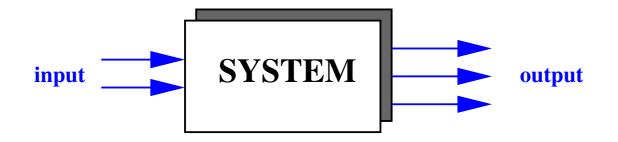
Introduced Lyapunov's 'second method' in his Ph.D. thesis (1899).

'Open' systems are a much more appropriate starting point for the study of dynamics.

'Open' systems are a much more appropriate starting point for the study of dynamics. For example,



'Open' systems are a much more appropriate starting point for the study of dynamics. For example,



 \rightarrow the 'dynamical system'

$$\Sigma: \quad rac{d}{dt}\,x=f(x,u), \quad y=h(x,u).$$

 $u \in \mathbb{U} = \mathbb{R}^{\mathtt{m}}, y \in \mathbb{Y} = \mathbb{R}^{\mathtt{p}}, x \in \mathbb{X} = \mathbb{R}^{\mathtt{n}}$: input, output, state.

Behavior $\mathfrak{B}=$ all sol'ns $(u,y,x):\mathbb{R} o\mathbb{U} imes\mathbb{Y} imes\mathbb{X}.$

Dissipative systems: the classical i/s/o setting

Let $s: \mathbb{U} \times \mathbb{Y} \to \mathbb{R}$ be a function, called the *supply rate*.

 Σ is said to be *dissipative* w.r.t. the supply rate s if \exists

$$V:\mathbb{X}
ightarrow\mathbb{R},$$

called the *storage function*, such that

$$rac{d}{dt}\,V(x(\cdot))\leq s(u(\cdot),y(\cdot))$$

along input/output/state trajectories ($orall \; (u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}$).

Dissipative systems: the classical i/s/o setting

Let $s: \mathbb{U} \times \mathbb{Y} \to \mathbb{R}$ be a function, called the *supply rate*.

 Σ is said to be *dissipative* w.r.t. the supply rate s if \exists

$$V:\mathbb{X}
ightarrow\mathbb{R},$$

called the *storage function*, such that

$$rac{d}{dt}\,V(x(\cdot))\leq s(u(\cdot),y(\cdot))$$

along input/output/state trajectories ($orall \; (u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}$).

This inequality is called the *dissipation inequality*.

Equivalent to

-

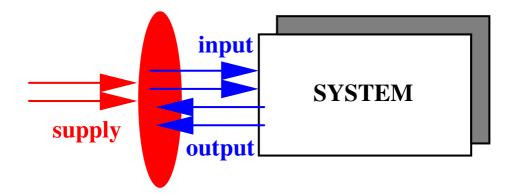
$$\mathbf{V}^{\Sigma}(x,u):=
abla V(x)\cdot f(x,u)\leq s(u,h(x,u))$$
for all $(u,x)\in\mathbb{U} imes\mathbb{X}.$

Equivalent to

$$\mathbf{V}^{\mathbf{\Sigma}}(x,u):=
abla V(x)\cdot f(x,u)\leq s(u,h(x,u))$$
for all $(u,x)\in\mathbb{U} imes\mathbb{X}.$

If equality holds: 'conservative' system.

s(u, y) models something like the power delivered to the system when the input value is u and output value is y.



V(x) then models the internally stored energy.

 Special case: 'closed' system: s = 0 then

dissipativeness $\leftrightarrow V$ is a Lyapunov function.

Dissipativity is the natural generalization to open systems of Lyapunov theory.

Special case: 'closed' system: s = 0 then

dissipativeness $\leftrightarrow V$ is a Lyapunov function.

Dissipativity is the natural generalization to open systems of Lyapunov theory.

Stability for closed systems \simeq Dissipativity for open systems.

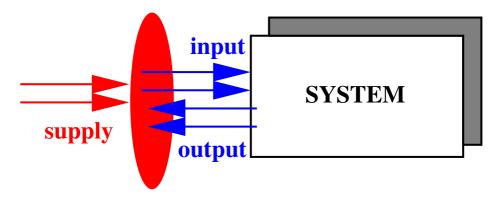
The construction of storage functions

Basic question:

Given (a representation of) Σ , the dynamics, and given s, the supply rate, is the system dissipative w.r.t. s, i.e., does there exist a storage function V such that the dissipation inequality holds?

The construction of storage functions

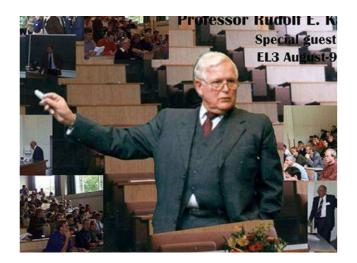
Basic question: Given (a representation of) Σ , the dynamics, and given s, the supply rate, is the system dissipative w.r.t. s, i.e., does there exist a storage function V such that the dissipation inequality holds?



Assume *s* 'power', known dynamics, what is the internal stored energy?

The construction of storage f'ns is very well understood, particularly for linear i/s/o systems and quadratic supply rates.

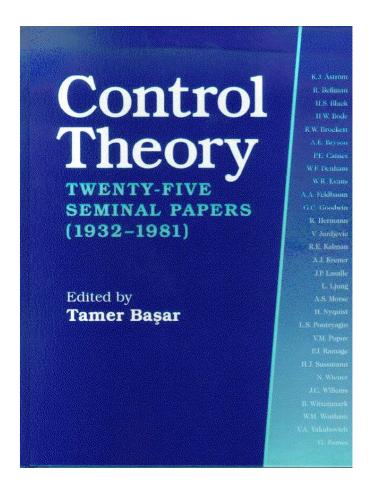
The construction of storage f'ns is very well understood, particularly for linear i/s/o systems and quadratic supply rates.



Leads to the KYP-lemma,

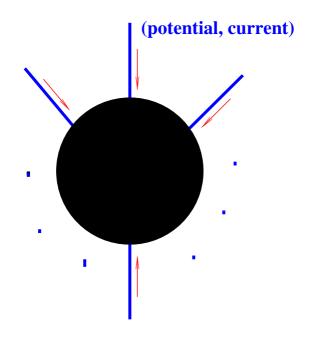
LMI's, ARIneq, ARE, semi-definite programming, spectral factorization, Lyapunov functions, \mathcal{H}_{∞} and robust control, positive and bounded real functions, electrical circuit synthesis, stochastic realization theory.

Dissipative systems play a remarkably central role in the field.



The behavioral point of view

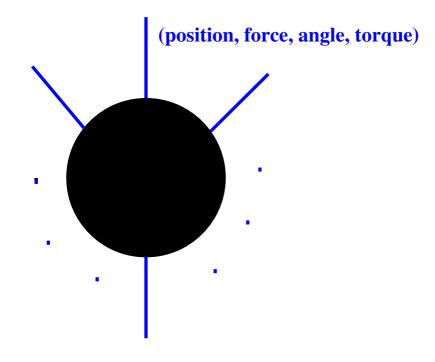
Electrical circuit:



Dissipative w.r.t. $\Sigma_{\ell=1}^{\mathbb{N}} V_{\ell} I_{\ell}$ (electrical power).

System	Supply	Storage
Electrical circuit	$V^{ op}I$ V: voltage I: current	energy in capacitors & inductors

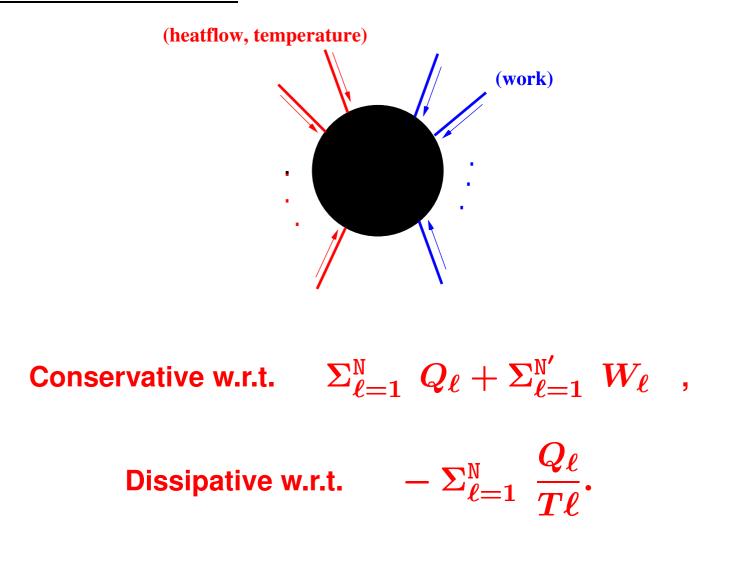
Mechanical device:



Dissipative w.r.t. $\Sigma_{\ell=1}^{\mathbb{N}}((\frac{d}{dt}q_{\ell})^{\top}F_{\ell}+(\frac{d}{dt}\theta_{\ell})^{\top}T_{\ell})$ (mech. power).

System	Supply	Storage
Electrical circuit	$V^{ op}I$ V:voltage I:current	energy in capacitors & inductors
Mechanical system	$F^{ op}v + (rac{d}{dt} heta)^{ op}T$ F: force, $v:$ velocity heta: angle, $T:$ torque	potential + kinetic energy

Thermodynamic system:



System	Supply	Storage
Electrical circuit	$V^{ op}I$ V: voltage I: current	energy in capacitors & inductors
Mechanical system	$F^{ op}v + (\frac{d}{dt}\theta)^{ op}T$ $F:$ force, $v:$ velocity $\theta:$ angle, $T:$ torque	potential + kinetic energy
Thermodynamic system	$egin{array}{c} Q+W \ Q:$ heat, $W:$ work	internal energy
Thermodynamic system	-Q/T Q:heat, T:temp.	entropy
etc.	etc.	etc.

the separation between inputs and outputs is very unnatural

- the separation between inputs and outputs is very unnatural
- the requirement that the storage function is a state function: this should be a result, not an assumption

- the separation between inputs and outputs is very unnatural
- Ithe requirement that the storage function is a state function: this should be a result, not an assumption
- Ithe non-uniqueness of state representations and the relevance of non-minimal state representations, makes it difficult to decide what the 'domain' of the storage function really is.

- the separation between inputs and outputs is very unnatural
- Ithe requirement that the storage function is a state function: this should be a result, not an assumption
- Ithe non-uniqueness of state representations and the relevance of non-minimal state representations, makes it difficult to decide what the 'domain' of the storage function really is.

Behavioral systems!

We will only treat linear time-inv. diff. systems and quadratic differential forms (QDF's) as supply rates and storage functions.

QDF's

The quadratic map acting on $w:\mathbb{R}\to\mathbb{R}^{w}$ and its derivatives, defined by

$$w\mapsto \sum_{k,\ell} (rac{d^k}{dt^k}w)^ op \Phi_{k,\ell}(rac{d^\ell}{dt^\ell}w)$$

is called *quadratic differential form* (QDF) on $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W})$. $\Phi_{k,\ell} \in \mathbb{R}^{W \times W}$;

QDF's

The quadratic map acting on $w: \mathbb{R} \to \mathbb{R}^{w}$ and its derivatives, defined by

$$w\mapsto \sum_{k,\ell} (rac{d^k}{dt^k}w)^ op \Phi_{k,\ell}(rac{d^\ell}{dt^\ell}w)$$

is called *quadratic differential form* (QDF) on $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W})$. $\Phi_{k,\ell} \in \mathbb{R}^{W \times W}$; WLOG: $\Phi_{k,\ell} = \Phi_{\ell,k}^{\top}$.

QDF's

The quadratic map acting on $w: \mathbb{R} \to \mathbb{R}^{w}$ and its derivatives, defined by

$$w\mapsto \sum_{k,\ell} (rac{d^k}{dt^k}w)^ op \Phi_{k,\ell}(rac{d^\ell}{dt^\ell}w)$$

is called *quadratic differential form* (QDF) on $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W})$. $\Phi_{k,\ell} \in \mathbb{R}^{W \times W}$; WLOG: $\Phi_{k,\ell} = \Phi_{\ell,k}^{\top}$.

Introduce the 2-variable polynomial matrix Φ

$$\Phi(\zeta,\eta) = \sum_{k,\ell} \Phi_{k,\ell} \zeta^k \eta^\ell.$$

Denote the QDF as Q_{Φ} . QDF's are parametrized by $\mathbb{R}^{\bullet \times \bullet}[\zeta, \eta]$.

Dissipative behavioral systems

<u>Definition</u>: $\mathfrak{B} \in \mathfrak{L}^{w}$ is said to be dissipative w.r.t. the supply rate Q_{Φ} with storage function Q_{Ψ} if the dissipation inequality

$$rac{d}{dt}Q_\Psi(\ell)\leq Q_\Phi(w)$$

for all $(w, \ell) \in \mathfrak{B}_{full}$, a latent variable representation of \mathfrak{B} . If equality holds: 'conservative'.

Dissipative behavioral systems

<u>Definition</u>: $\mathfrak{B} \in \mathfrak{L}^{w}$ is said to be dissipative w.r.t. the supply rate Q_{Φ} with storage function Q_{Ψ} if the dissipation inequality

$$rac{d}{dt}Q_\Psi(\ell)\leq Q_\Phi(w)$$

for all $(w, \ell) \in \mathfrak{B}_{full}$, a latent variable representation of \mathfrak{B} . If equality holds: 'conservative'.

If the storage function acts on w, i.e.,

$$rac{d}{dt}Q_\Psi(w)\leq Q_\Phi(w)$$

for all $w \in \mathfrak{B}$, then we call the storage function observable.

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent: <u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) \ dt \geq 0$$

for all $w \in \mathfrak{B}$ of compact support.

1.

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{W}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) \ dt \geq 0$$

2. Dissipativity : $\exists \Psi$ such that

1.

$$rac{d}{dt}Q_\Psi(\ell)\leq Q_\Phi(w)$$

for all $(w,\ell)\in\mathfrak{B}_{\mathrm{full}}$, a latent variable representation of \mathfrak{B}

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{W}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) \ dt \geq 0$$

2. Dissipativity

1.

- 3. Dissipativity with an observable storage function :
 - $\exists \Psi$ such that

$$rac{d}{dt}Q_{\Psi}(w)\leq Q_{\Phi}(w)$$

for all $w \in \mathfrak{B}$.

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) \ dt \geq 0$$

- 2. Dissipativity
- 3. Dissipativity with an observable storage function

4.

1.

$$M^ op(-i\omega)\Phi(-i\omega,\omega)M(i\omega)\geq 0$$

for all $\omega \in \mathbb{R}, \,$ with $w = M(rac{d}{dt})\ell$ any image repr. of $\mathfrak{B}.$

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) \ dt \geq 0$$

- 2. Dissipativity
- 3. Dissipativity with an observable storage function

4.

1.

$$M^ op(-i\omega)\Phi(-i\omega,\omega)M(i\omega)\geq 0$$

for all $\omega \in \mathbb{R}$,

5. Other representations, adapted conditions...

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

1. 'half-line dissipativity'

$$\int_{-\infty}^0 Q_\Phi(w) \ dt \geq 0$$

for all $w \in \mathfrak{B}$ of compact support.

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

- 1. 'half-line dissipativity'
- 2 Dissipativity with non-negative storage function
 - $\exists \Psi$ such that

$$Q_\Psi(\ell) \geq 0$$
 and $rac{d}{dt}Q_\Psi(\ell) \leq Q_\Phi(w)$

for all $(w,\ell)\in\mathfrak{B}_{\mathrm{full}}$, a latent variable representation of \mathfrak{B}

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

- 1. 'half-line dissipativity'
- 2. Dissipativity with non-negative storage function
- 3. Dissipativity with a non-negative observable storage function $\exists \Psi$ such that

$$Q_\Psi(w) \geq 0$$
 and $rac{d}{dt}Q_\Psi(w) \leq Q_\Phi(w) \geq 0$

for all $w \in \mathfrak{B}$.

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

- 1. 'half-line dissipativity'
- 2. Dissipativity with non-negative storage function
- 3. Dissipativity with a non-negative observable storage function
- 4. A Pick matrix condition on $M^{\top}(-\xi)\Phi(-\xi,\xi)M(\xi)$, with $w = M(\frac{d}{dt})\ell$ any image representation of \mathfrak{B} .

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, controllable, Q_{Φ} a QDF, the supply rate. The following are equivalent:

- 1. 'half-line dissipativity'
- 2. Dissipativity with non-negative storage function
- 3. Dissipativity with a non-negative observable storage function
- 4. A Pick matrix condition on $M^{\top}(-\xi)\Phi(-\xi,\xi)M(\xi)$,
- 5. Other representations, adapted conditions...

Remarks:

1. The condition: Given $R(rac{d}{dt})w=0$ and $\Phi, \exists \ \Psi$ such that

$$rac{d}{dt}Q_{\Psi}(w)\leq Q_{\Phi}(w)$$

is actually an LMI.

Remarks:

1. The condition: Given $R(rac{d}{dt})w=0$ and $\Phi, \exists \ \Psi$ such that

$$rac{d}{dt}Q_{\Psi}(w)\leq Q_{\Phi}(w)$$

is actually an LMI.

2. It can be shown that every observable storage function is a **memoryless state function**!

3. The set of observable storage functions is convex, compact, and attains its maximum and minimum:

$$Q_{\Psi_{ ext{available}}}(w) \leq Q_{\Psi}(w) \leq Q_{\Psi_{ ext{required}}}(w)$$

for all $w\in\mathfrak{B},$ with

$$Q_{\Psi_{ ext{available}}}(w)(0):= ext{supremum}\{-\int_0^\infty Q_{\Phi}(\hat{w})\,dt\}$$

$$Q_{\Psi_{ ext{required}}}(w)(0):= ext{infimum}\{-\int_{-\infty}^{0}Q_{\Phi}(\hat{w})\,dt\}$$

with the sup and inf over all \hat{w} such that the concatenations,

 $\hat{w} \wedge_0 w, w \wedge_0 \hat{w} \in \mathfrak{B}.$

The need for introducing **non-observable** storage f'ns is very real:

1. Theoretical example with behavior consisting of the signals (w_1, w_2) , with w_1 free and w_2 governed by

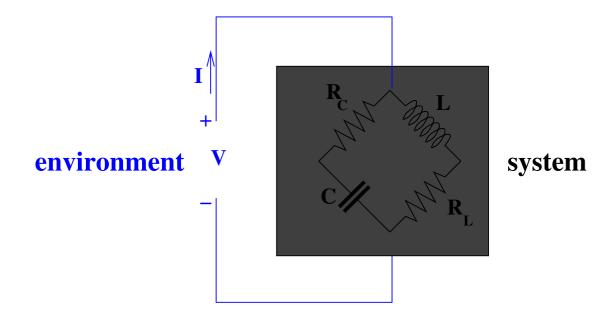
$$rac{d}{dt}w_2=lpha w_2,$$

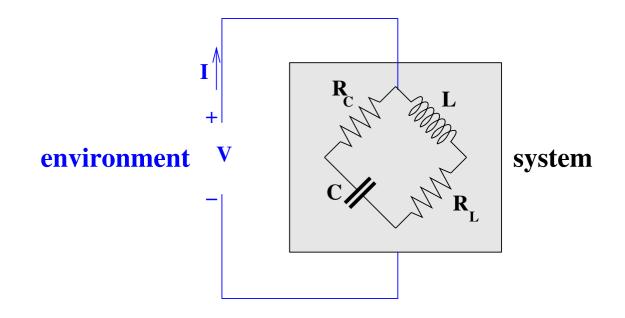
and supply rate w_1w_2 . \nexists an observable storage f'n, but the (unobservable) latent variable representation

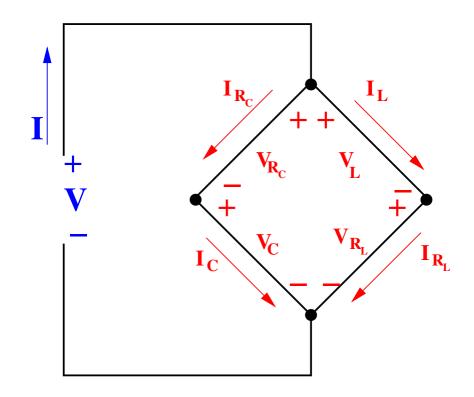
$$rac{d}{dt}x=-lpha x+w_1$$

 \rightsquigarrow the storage f'n $\boxed{xw_2}$. We call this system dissipative!

2. Our favorite RLC circuit







2. Our favorite RLC circuit with supply rate VI has the energy

$$rac{1}{2}CV_C^2+rac{1}{2}LI_L^2$$

as physically natural storage function.

2. Our favorite RLC circuit with supply rate VI has the energy

$$rac{1}{2}CV_C^2+rac{1}{2}LI_L^2$$

as physically natural storage function.

When $CR_C \neq \frac{L}{R_L}$, this storage f'n is observable, but when $CR_C = \frac{L}{R_L}$, it is not observable!

There are many such examples.

2. Our favorite RLC circuit with supply rate VI has the energy

$$rac{1}{2}CV_C^2+rac{1}{2}LI_L^2$$

as physically natural storage function.

When $CR_C \neq \frac{L}{R_L}$, this storage f'n is observable, but when $CR_C = \frac{L}{R_L}$, it is not observable!

There are many such examples.

3. For PDE's an observable storage function may not exist at all!

Maxwell's equations

Example: Maxwell's eq'ns:

dissipative (in fact, conservative) w.r.t. the QDF $-\vec{E}\cdot\vec{j}$.

Maxwell's equations

Example: Maxwell's eq'ns: dissipative (in fact, conservative) w.r.t. the QDF $-\vec{E}\cdot\vec{j}$. In other words, if \vec{E}, \vec{j} is of compact support and satisfies $arepsilon_0 rac{\partial}{\partial t} abla \cdot ec{E} \,+\, abla \cdot ec{j} \,=\, 0,$ $\varepsilon_0 \frac{\partial^2}{\partial t^2} \vec{E} + \varepsilon_0 c^2 \nabla \times \nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{j} = 0,$ then $\int_{\mathbb{T}} (\int_{\mathbb{T}^3} (-ec{E}\cdotec{j}) \ dxdydz) \ dt = 0.$

The stored energy density, S, and the energy flux density (the Poynting vector), \vec{F} ,

$$egin{aligned} S(ec{E},ec{B}) &:= rac{arepsilon_0}{2}ec{E}\cdotec{E} + rac{arepsilon_0 c^2}{2}ec{B}\cdotec{B}, \ ec{B}, \ ec{F}(ec{E},ec{B}) &:= arepsilon_0 c^2ec{E} imesec{B}. \end{aligned}$$

The stored energy density, S, and the energy flux density (the Poynting vector), \vec{F} ,

$$egin{aligned} S(ec{E},ec{B}) &:= rac{arepsilon_0}{2}ec{E}\cdotec{E} + rac{arepsilon_0 c^2}{2}ec{B}\cdotec{B}, \ ec{B}, ec{B}) &:= arepsilon_0 c^2ec{E} imesec{B}. \end{aligned}$$

0

lead to the local conservation law:

$$\left| rac{\partial}{\partial t} S(ec{E},ec{B}) +
abla \cdot ec{F}(ec{E},ec{B}) = -ec{E} \cdot ec{j}.
ight.$$

The stored energy density, S, and the energy flux density (the Poynting vector), \vec{F} ,

$$egin{aligned} S(ec{E},ec{B}) &:= rac{arepsilon_0}{2}ec{E}\cdotec{E} + rac{arepsilon_0 c^2}{2}ec{B}\cdotec{B}, \ ec{B}, \ ec{F}(ec{E},ec{B}) &:= arepsilon_0 c^2ec{E} imesec{B}. \end{aligned}$$

0

lead to the local conservation law:

$$\left| rac{\partial}{\partial t} S(ec{E},ec{B}) +
abla \cdot ec{F}(ec{E},ec{B}) = -ec{E} \cdot ec{j}.
ight.$$

Involves \vec{B} , unobservable from the energy variables \vec{E} and \vec{j} . An observable stored energy does not exist al all!

Using controllability and image representations, we assume, WLOG:

 $\mathfrak{B} = \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{W}})$

$$egin{aligned} &\int_{\mathbb{R}} oldsymbol{Q}_{\Phi}(w) \geq 0 ext{ for all } w \in \mathfrak{D} \ & 1 \$$

 $\exists D: \Phi(-\xi,\xi) = D^{ op}(-\xi)D(\xi)$ (easy)

 $\exists \ \Psi: \ \ (\zeta+\eta)\Psi(\zeta,\eta)=\Phi(\zeta,\eta)-D^{ op}(\zeta)D(\eta)$

Outline of the proof

$$\exists \ \Psi: \ \ (\zeta+\eta)\Psi(\zeta,\eta)=\Phi(\zeta,\eta)-D^ op(\zeta)D(\eta)$$
 $\ \ (ext{clearly})$

 $\exists \ \Psi: \ \ rac{\omega}{dt} Q_\Psi(w) \leq Q_\Phi(w) ext{ for all } w \in \mathfrak{C}^\infty$

Assuming factorizability:

```
Global dissipation :⇔
```

⇔: Local dissipation

The proof thus completely hinges on the factorization eq'n.

$\Phi(-i\omega,i\omega)\geq 0$ for all $\omega\in\mathbb{R}$

(Factorization equation)

 $\exists \ D: \quad \Phi(-\xi,\xi) = D^{ op}(-\xi)D(\xi)$

The proof thus completely hinges on the factorization eq'n.

 $\Phi(-i\omega,i\omega)\geq 0$ for all $\omega\in\mathbb{R}$.

(Factorization equation)

 $\exists D: \Phi(-\xi,\xi) = D^{\top}(-\xi)D(\xi)$

This is a classical problem. We sketch the proof also for polynomial matrices in many variables (since it is relevant in the PDE case).

The factorization equation

Consider

$$X^{ op}(-\xi)X(\xi) = Y(\xi)$$

with $Y \in \mathbb{R}^{\bullet imes \bullet}[\xi]$ given, and X the unknown. Solvable??

The factorization equation

Consider

$$X^{ op}(-\xi)X(\xi) = Y(\xi)$$

with $Y \in \mathbb{R}^{\bullet imes \bullet}[\xi]$ given, and X the unknown. Solvable??

 \geq

$$X^{ op}(\xi)X(\xi) = Y(\xi)$$

with $Y \in \mathbb{R}^{\bullet imes \bullet}[\xi]$ given, and X the unknown.

Under what conditions on \underline{Y} does there exist a solution \underline{X} ?

The factorization equation

Consider

$$X^{ op}(-\xi)X(\xi) = Y(\xi)$$

with $Y \in \mathbb{R}^{\bullet imes \bullet}[\xi]$ given, and X the unknown. Solvable??

 \geq

$$X^ op({m\xi})X({m\xi})=Y({m\xi})$$

with $Y \in \mathbb{R}^{ullet imes ullet}$ [ξ] given, and X the unknown.

Under what conditions on \underline{Y} does there exist a solution \underline{X} ?

<u>Scalar case</u>: !! write the real polynomial Y as a sum of squares $Y = x_1^2 + x_2^2 + \dots + x_k^2$.

 $X^ op(\xi)X(\xi)=Y(\xi)$

 \boldsymbol{Y} is a given polynomial matrix; \boldsymbol{X} is the unknown.

 $X^{ op}(\xi)X(\xi) = Y(\xi)$

 \mathbf{Y} is a given polynomial matrix; \mathbf{X} is the unknown.

For n=1 and $Y\in \mathbb{R}[\xi]$, solvable (for $X\in \mathbb{R}^2[\xi]$) iff $Y(lpha)\geq 0$ for all $lpha\in \mathbb{R}.$

 $X^{ op}(\xi)X(\xi) = Y(\xi)$

 \mathbf{Y} is a given polynomial matrix; \mathbf{X} is the unknown.

For n = 1, and $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, it is well-known (but non-trivial) that this factorization equation is solvable (with $X \in \mathbb{R}^{\bullet \times \bullet}[\xi]$!) iff

 $Y(lpha) = Y^ op (lpha) \geq 0$ for all $lpha \in \mathbb{R}$.

 $X^ op(\xi)X(\xi)=Y(\xi)$

Y is a given polynomial matrix; X is the unknown.

For n > 1, and under this obvious symmetry and positivity requirement,

 $Y(lpha) = \ Y^ op(lpha) \geq 0 \qquad ext{for all } lpha \in \mathbb{R}^n,$

this equation can nevertheless in general <u>not</u> be solved over the polynomial matrices, for $X \in \mathbb{R}^{\bullet \times \bullet}[\xi]$,

 $X^ op(\xi)X(\xi)=Y(\xi)$

Y is a given polynomial matrix; X is the unknown.

For n > 1, and under this obvious symmetry and positivity requirement,

 $Y(lpha) = \ Y^ op(lpha) \geq 0 \qquad ext{for all } lpha \in \mathbb{R}^n,$

this equation can nevertheless in general <u>not</u> be solved over the polynomial matrices, for $X \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, but it can be solved over the matrices of rational functions, i.e., for $X \in \mathbb{R}^{\bullet \times \bullet}(\xi)$.

This factorizability is a simple consequence of Hilbert's 17-th pbm!

!! Solve
$$p=p_1^2+p_2^2+\cdots+p_k^2,\ p$$
 given

This factorizability is a simple consequence of Hilbert's 17-th pbm!

!! Solve
$$p=p_1^2+p_2^2+\cdots+p_k^2,\ p$$
 given

A polynomial $p \in \mathbb{R}[\xi_1, \dots, \xi_n]$, with $p(\alpha_1, \dots, \alpha_n) \ge 0$ for all $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ can in general <u>not</u> be expressed as a sum of squares of polynomials, with the p_i 's $\in \mathbb{R}[\xi_1, \dots, \xi_n]$.

This factorizability is a simple consequence of Hilbert's 17-th pbm!

!! Solve
$$p=p_1^2+p_2^2+\cdots+p_k^2,\ p$$
 given

But a rational function (and hence a polynomial) $p \in \mathbb{R}(\xi_1, \dots, \xi_n)$, with $p(\alpha_1, \dots, \alpha_n) \ge 0$, for all $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, can be expressed as a sum of squares of $(k = 2^n)$ rational functions, with the p_i 's $\in \mathbb{R}(\xi_1, \dots, \xi_n)$. \Rightarrow solvability of the factorization eq'n

 $\Phi(-i\omega,i\omega)\geq 0$ for all $\omega\in\mathbb{R}^n$.

(Factorization equation)

 $\exists \ D: \quad \Phi(-\xi,\xi) = D^{ op}(-\xi)D(\xi)$

over the rational functions, i.e., with D a matrix with elements in $\mathbb{R}(\xi_1, \dots, \xi_n)$.

 \Rightarrow solvability of the factorization eq'n

 $\Phi(-i\omega,i\omega)\geq 0$ for all $\omega\in\mathbb{R}^n$.

(Factorization equation)

 $\exists D: \Phi(-\xi,\xi) = D^{\top}(-\xi)D(\xi)$

€

over the rational functions, i.e., with D a matrix with elements in $\mathbb{R}(\xi_1, \dots, \xi_n)$.

The need to introduce rational functions in this factorization and an image representation of \mathfrak{B} (to reduce the pbm to \mathfrak{C}^{∞}) are the causes of the unavoidable presence of (possibly unobservable, i.e., 'hidden') latent variables in the local dissipation law for PDE's.

A dissipative system involves the system dynamics, the supply rate, and the storage f'n, related through the dissipation inequality. A storage f'n may involve unobservable latent variables.

- A dissipative system involves the system dynamics, the supply rate, and the storage f'n, related through the dissipation inequality. A storage f'n may involve unobservable latent variables.
- A dissipative system is a natural generalization to open systems of a Lyapunov function.

- A dissipative system involves the system dynamics, the supply rate, and the storage f'n, related through the dissipation inequality. A storage f'n may involve unobservable latent variables.
- A dissipative system is a natural generalization to open systems of a Lyapunov function.
- The theory of dissipative systems centers around
 - conditions for dissipativity in terms of system repr.
 - the construction of the storage function (≅ the factorization eq'n)

- A dissipative system involves the system dynamics, the supply rate, and the storage f'n, related through the dissipation inequality. A storage f'n may involve unobservable latent variables.
- A dissipative system is a natural generalization to open systems of a Lyapunov function.
- The theory of dissipative systems centers around
 - conditions for dissipativity in terms of system repr.
 - It the construction of the storage function (≅ the factorization eq'n)
- Allowing unobservable storage functions is important

- A dissipative system involves the system dynamics, the supply rate, and the storage f'n, related through the dissipation inequality. A storage f'n may involve unobservable latent variables.
- A dissipative system is a natural generalization to open systems of a Lyapunov function.
- The theory of dissipative systems centers around
 - conditions for dissipativity in terms of system repr.
 - the construction of the storage function (≅ the factorization eq'n)
- Allowing unobservable storage functions is important
- Neither controllability nor observability are good generic system theoretic assumptions for physical models

End of Lecture 7