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Part 1:

Controllability
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Example

Two inver ted pendula mounted on a char t. Length of the pendula:
, respectivel y.

�

�

force

�

�

�

�

�

�

Defines a system with behavior

satisfies Newton’ s laws
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By physical reasoning: if , then does not
depend on the external force : if for ,
then also for , regar dless of the external
force .

Hence: there is no with while at

the same time .

No trajector y with can be

’steered’ to a future trajector y with .
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Assume now that the lengths of the pendula are unequal:

It turns out (more difficult to prove) that in that case it is possib le to
connect any past trajector y with any future trajector y:

Given , there exists and suc h that
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Controllability

�

is called contr ollab le if for all there exists
and suc h that

concatenating
trajectory

time
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Controllability in terms of kernel representations

Suppose

�

is represented in kernel representation by

.

How to decide whether is contr ollab le?

Theorem: Let , and let be suc h that

is a kernel representation of . Then is
contr ollab le if and onl y if

for all

equiv alentl y, if and onl y if is the same for all .

Note: is the rank of as a matrix of pol ynomials.
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Examples

1. represented by ,

(single input/single output system). Here, , .
is contr ollab le if and onl y if

for all

equiv alentl y, the pol ynomials are coprime .

2. represented by .
Obviousl y, this is a kernel representation, with

.
is contr ollab le if and onl y if

for all

(Hautus test).
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Controllability and image representations

Let

�

and let

� 	

. If

there exists suc h that

then we call an image representation of .

is then the image of the mapping

Question: Whic h ’s in have an image representation?

Theorem: Let . has an image representation if and onl y
if is contr ollab le.

Note: Relation with the notion of flat system.
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Part 2

Observability
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Example

Consider a point mass with position vector , moving under

influence of a force vector . This defines a system ,
represented by

For a given , many ’s will satisfy the system equation: the actual

will of cour se depend on and .

In other words: does not determine uniquel y. This is expressed
by saying that

in , is not obser vable from .
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Observability

Let

�

, and be a par tition of the manif est
variab le . We will say that

in , the component is obser vable from the component if

is uniquel y determined by , i.e., if

�

to-be-deduced

�

observed
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Example

Let , .

1. Let be represented by ,

. Clearl y, in , is obser vable from : for

given , is given by .

2. Let be represented by ,

. This time , in , is not obser vable from :

determines onl y , so up to a constant .
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Observability in terms of kernel representations

Suppose

�

is represented in kernel representation by

, with

�

. Partition .

Accor dingl y, par tition , so that is represented by

.

How do we check whether , in , is obser vable from ?

Theorem: in , is obser vable from if and onl y if

for all

i.e., has full column rank for all .

In that case , there exists suc h that (i.e.
a pol ynomial left inverse of ), and we have
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Example

Consider the system , with , represented by

Under what conditions is obser vable from ?

Clearl y, the equations can be re-written as

Hence: obser vable from full column

rank for all . (Hautus test)

Lecture 4: Controllability and observability – p.15/9



Example

Consider the system , with , represented by

Under what conditions is obser vable from ?
Clearl y, the equations can be re-written as

Hence: obser vable from full column

rank for all . (Hautus test)

Lecture 4: Controllability and observability – p.15/9



Example

Consider the system , with , represented by

Under what conditions is obser vable from ?
Clearl y, the equations can be re-written as

Hence: obser vable from full column

rank for all . (Hautus test)

Lecture 4: Controllability and observability – p.15/9



Part 3:

Stabilizability and detectability
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Stabilizability

�

is called stabilizab le if for all there exists

suc h that

for ,

.

time
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Stabilizability in terms of kernel representations

Suppose

�

is represented in kernel representation by

.

How to decide whether is stabilizab le?

Theorem: Let , and let be suc h that

is a kernel representation of . Then is
stabilizab le if and onl y if

for all

equiv alentl y, if and onl y if is the same for all

( ).
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Detectability

Let

�

, and be a par tition of the manif est
variab le . We will say that

in , the component is detectab le from the component if

If is detectab le from , then determines
asymptoticall y.

�

to-be-deduced

�

observed
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Detectability in terms of kernel representation
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Summarizing

A system is contr ollab le if the past and the future of any two
trajectories in can be concatenated to obtain a trajector y in

.

Contr ollability is a proper ty of the system. Given a kernel
representation of the system, contr ollability can be effectivel y
tested.

Given a system and a par tition , is called
obser vable from if the condition
determines uniquel y.

Obser vability is a proper ty of the system and a par tition of its
variab les. Given a kernel representation of the system,
obser vability can be effectivel y tested.
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A system is stabilizab le if the past of any trajector y in
can be concatenated with the future of a trajector y in that
converges to zero, to obtain a trajector y in .

Given a system and a par tition , is called
detectab le from if the condition
determines asymptoticall y as .
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