Lecture 4:

Controllability and observability

Part 1:

Controllability

Two inverted pendula mounted on a chart. Length of the pendula: L_1, L_2 , respectively.

Two inverted pendula mounted on a chart. Length of the pendula: L_1, L_2 , respectively.

Defines a system with behavior

$$\mathfrak{B} = \{(w = (w_1, w_2, w_3, w_4) \mid w ext{ satisfies Newton's laws}\}$$

By physical reasoning: if $L_1 = L_2$, then $w_1 - w_2$ does not depend on the external force w_3 : if $w_1(t) = w_2(t)$ for t < 0, then also $w_1(t) = w_2(t)$ for $t \ge 0$, regardless of the external force w_3 . By physical reasoning: if $L_1 = L_2$, then $w_1 - w_2$ does not depend on the external force w_3 : if $w_1(t) = w_2(t)$ for t < 0, then also $w_1(t) = w_2(t)$ for $t \ge 0$, regardless of the external force w_3 .

Hence: there is no $w \in \mathfrak{B}$ with $w_1|_{(-\infty,0)} = w_2|_{(-\infty,0)}$ while at the same time $w_1|_{[0,\infty)} \neq w_2|_{[0,\infty)}$.

No trajectory $w \in \mathfrak{B}$ with $w_1|_{(-\infty,0)} = w_2|_{(-\infty,0)}$ can be 'steered' to a future trajectory with $w_1|_{[0,\infty)} \neq w_2|_{[0,\infty)}$. Assume now that the lengths of the pendula are unequal:

 $L_1 \neq L_2$.

It turns out (more difficult to prove) that in that case it is possible to connect any past trajectory with any future trajectory:

Assume now that the lengths of the pendula are unequal:

 $L_1 \neq L_2$.

It turns out (more difficult to prove) that in that case it is possible to connect any past trajectory with any future trajectory:

Given $w', w'' \in \mathfrak{B}$, there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$egin{array}{rcl} w|_{(-\infty,0)}&=&w'|_{(-\infty,0)}\ w|_{[T,\infty)}&=&w''|_{[T,\infty)} \end{array}$$

Controllability

 $\mathfrak{B} \in \mathfrak{L}^{w}$ is called <u>controllable</u> if for all $w_1, w_2 \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$egin{aligned} w(t) &= \left\{ egin{aligned} w_1(t) & t < 0 \ w_2(t) & t \geq T \end{aligned}
ight. \end{aligned}$$

Controllability

 $\mathfrak{B} \in \mathfrak{L}^{w}$ is called <u>controllable</u> if for all $w_1, w_2 \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$m{w}(t) = \left\{egin{array}{cc} m{w}_1(t) & t < 0 \ m{w}_2(t) & t \geq T \end{array}
ight.$$

Controllability in terms of kernel representations

Suppose $\mathfrak{B}\in\mathfrak{L}^{ imes}$ is represented in kernel representation by $R(rac{d}{dt})m{w}=0.$

How to decide whether \mathfrak{B} is controllable?

Controllability in terms of kernel representations

Suppose $\mathfrak{B}\in\mathfrak{L}^{ imes}$ is represented in kernel representation by $R(rac{d}{dt})m{w}=0.$

How to decide whether \mathfrak{B} is controllable?

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{W}$, and let $R \in \mathbb{R}^{\bullet \times W}[\xi]$ be such that $R(\frac{d}{dt})w = 0$ is a kernel representation of \mathfrak{B} . Then \mathfrak{B} is controllable if and only if

 $\operatorname{rank}(R(\lambda)) = \operatorname{rank}(R)$ for all $\lambda \in \mathbb{C}$,

equivalently, if and only if $\mathrm{rank}(R(\lambda))$ is the same for all $\lambda \in \mathbb{C}$.

Note: rank(R) is the rank of R as a matrix of polynomials.

1. $\mathfrak{B} \in \mathfrak{L}^2$ represented by $p(\frac{d}{dt})\mathbf{y} = q(\frac{d}{dt})\mathbf{u}, \mathbf{w} = (\mathbf{y}, \mathbf{u})$ (single input/single output system). Here, $p, q \in \mathbb{R}[\xi], p, q \neq 0$. \mathfrak{B} is controllable if and only if

$$\mathrm{rank}([p(\lambda) \;\; q(\lambda)]) = 1 \;\; ext{for all} \; \lambda \in \mathbb{C},$$

equivalently, the polynomials p, q are coprime.

1. $\mathfrak{B} \in \mathfrak{L}^2$ represented by $p(\frac{d}{dt})\mathbf{y} = q(\frac{d}{dt})\mathbf{u}, \mathbf{w} = (\mathbf{y}, \mathbf{u})$ (single input/single output system). Here, $p, q \in \mathbb{R}[\xi], p, q \neq 0$. \mathfrak{B} is controllable if and only if

$$\mathrm{rank}([p(\lambda) \;\; q(\lambda)]) = 1 \;$$
 for all $\lambda \in \mathbb{C},$

equivalently, the polynomials p, q are coprime.

2. $\mathfrak{B} \in \mathfrak{L}^{n+m}$ represented by $\frac{d}{dt}\mathbf{x} = A\mathbf{x} + B\mathbf{u}, \mathbf{w} = (\mathbf{x}, \mathbf{u})$. Obviously, this is a kernel representation, with $R(\xi) = [\xi I - A \ B]$. \mathfrak{B} is controllable if and only if

$$\mathrm{rank}([\lambda I - A \;\; B]) = \mathrm{n} \;$$
 for all $\lambda \in \mathbb{C}$

(Hautus test).

 $\mathfrak{B} = \{ oldsymbol{w} \mid ext{ there exists } oldsymbol{\ell} ext{ such that } oldsymbol{w} = M(rac{d}{dt})oldsymbol{\ell} \}$

then we call $w = M(\frac{d}{dt})\ell$ an image representation of \mathfrak{B} .

Let $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle W}$ and let $M\in R^{\scriptscriptstyle W imes 1}[\xi].$ If

 $\mathfrak{B} = \{ oldsymbol{w} \mid ext{ there exists } oldsymbol{\ell} ext{ such that } oldsymbol{w} = M(rac{d}{dt})oldsymbol{\ell} \}$

then we call $w = M(\frac{d}{dt})\ell$ an image representation of \mathfrak{B} . \mathfrak{B} is then the image of the mapping

$$M(rac{d}{dt}):\mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^1)
ightarrow\mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{w}).$$

Let $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle W}$ and let $M\in R^{\scriptscriptstyle W imes 1}[\xi].$ If

 $\mathfrak{B} = \{ oldsymbol{w} \mid ext{ there exists } oldsymbol{\ell} ext{ such that } oldsymbol{w} = M(rac{d}{dt})oldsymbol{\ell} \}$

then we call $w = M(\frac{d}{dt})\ell$ an image representation of \mathfrak{B} . \mathfrak{B} is then the image of the mapping

$$M(rac{d}{dt}):\mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^1)
ightarrow\mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{w}).$$

Question: Which \mathfrak{B} 's in \mathfrak{L}^{W} have an image representation?

Let $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle W}$ and let $M\in R^{\scriptscriptstyle W imes 1}[\xi].$ If

 $\mathfrak{B} = \{ oldsymbol{w} \mid ext{ there exists } oldsymbol{\ell} ext{ such that } oldsymbol{w} = M(rac{d}{dt})oldsymbol{\ell} \}$

then we call $w = M(\frac{d}{dt})\ell$ an image representation of \mathfrak{B} . \mathfrak{B} is then the image of the mapping

$$M(rac{d}{dt}):\mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^1)
ightarrow\mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{w}).$$

Question: Which \mathfrak{B} 's in \mathfrak{L}^{W} have an image representation?

<u>Theorem:</u> Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$. \mathfrak{B} has an image representation if and only if \mathfrak{B} is controllable.

Note: Relation with the notion of flat system.

Part 2

Observability

Consider a point mass M with position vector q(t), moving under influence of a force vector F(t). This defines a system $\mathfrak{B} \in \mathfrak{L}^6$, represented by

$$Mrac{d^2q}{dt^2}=F, \ \ w=(q,F).$$

For a given F, many q's will satisfy the system equation: the actual q will of course depend on q(0) and $\frac{dq}{dt}(0)$.

Consider a point mass M with position vector q(t), moving under influence of a force vector F(t). This defines a system $\mathfrak{B} \in \mathfrak{L}^6$, represented by

$$Mrac{d^2q}{dt^2}=F, \ \ w=(q,F).$$

For a given F, many q's will satisfy the system equation: the actual q will of course depend on q(0) and $\frac{dq}{dt}(0)$.

In other words: \mathbf{F} does not determine \mathbf{q} uniquely. This is expressed by saying that

in \mathfrak{B} , q is not observable from F.

Observability

Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, and $w = (w_1, w_2)$ be a partition of the manifest variable w. We will say that

in \mathfrak{B} , the component w_2 is observable from the component w_1 if w_2 is uniquely determined by w_1 , i.e., if

 $(w_1,w_2'),(w_1,w_2'')\in\mathfrak{B} \ \Rightarrow \ w_2'=w_2''.$

Let $p\in \mathbb{R}[\xi]$, p
eq 0 .

1. Let $\mathfrak{B} \in \mathfrak{L}^2$ be represented by $p(\frac{d}{dt})w_1 + w_2 = 0$, $w = (w_1, w_2)$. Clearly, in \mathfrak{B}, w_2 is observable from w_1 : for given w_1, w_2 is given by $w_2 = -p(\frac{d}{dt})w_1$.

Let $p\in \mathbb{R}[\xi]$, p
eq 0 .

1. Let $\mathfrak{B} \in \mathfrak{L}^2$ be represented by $p(\frac{d}{dt})w_1 + w_2 = 0$, $w = (w_1, w_2)$. Clearly, in \mathfrak{B}, w_2 is observable from w_1 : for given w_1, w_2 is given by $w_2 = -p(\frac{d}{dt})w_1$.

2. Let $\mathfrak{B} \in \mathfrak{L}^2$ be represented by $p(\frac{d}{dt})w_1 + \frac{d}{dt}w_2 = 0$, $w = (w_1, w_2)$. This time, in \mathfrak{B}, w_2 is not observable from w_1 : w_1 determines only $\frac{d}{dt}w_2$, so w_2 up to a constant.

Observability in terms of kernel representations

Suppose $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$ is represented in kernel representation by $R(\frac{d}{dt})w = 0$, with $R \in \mathbb{R}^{\bullet imes \mathbb{W}}[\xi]$. Partition $w = (w_1, w_2)$. Accordingly, partition $R = [R_1 \ R_2]$, so that \mathfrak{B} is represented by $R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$.

How do we check whether, in \mathfrak{B}, w_2 is observable from w_1 ?

Observability in terms of kernel representations

Suppose $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$ is represented in kernel representation by $R(\frac{d}{dt})w = 0$, with $R \in \mathbb{R}^{\bullet imes \mathbb{W}}[\xi]$. Partition $w = (w_1, w_2)$. Accordingly, partition $R = [R_1 \ R_2]$, so that \mathfrak{B} is represented by $R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$.

How do we check whether, in \mathfrak{B} , w_2 is observable from w_1 ?

<u>Theorem</u>: in \mathfrak{B} , w_2 is observable from w_1 if and only if

 $\operatorname{rank}(R_2(\lambda)) = \mathtt{w}_2 \ \text{ for all } \lambda \in \mathbb{C},$

i.e., $R_2(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}.$

Observability in terms of kernel representations

Suppose $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$ is represented in kernel representation by $R(\frac{d}{dt})w = 0$, with $R \in \mathbb{R}^{\bullet imes \mathbb{W}}[\xi]$. Partition $w = (w_1, w_2)$. Accordingly, partition $R = [R_1 \ R_2]$, so that \mathfrak{B} is represented by $R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$.

How do we check whether, in \mathfrak{B}, w_2 is observable from w_1 ?

<u>Theorem</u>: in \mathfrak{B} , w_2 is observable from w_1 if and only if

 $\operatorname{rank}(R_2(\lambda)) = \mathtt{w}_2 \ \text{ for all } \lambda \in \mathbb{C},$

i.e., $R_2(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$. In that case, there exists $L \in \mathbb{R}^{\mathbb{W}_2 \times \bullet}[\xi]$ such that $LR_2 = I_{\mathbb{W}_2}$ (i.e. a polynomial left inverse of R_2), and we have

$$(w_1, w_2) \in \mathfrak{B} \ \ \Rightarrow \ \ w_2 = L(rac{d}{dt})R_1(rac{d}{dt})w_1.$$

Consider the system \mathfrak{B} , with w = (u, y, x), represented by

$$rac{d}{dt} oldsymbol{x} = Aoldsymbol{x} + Boldsymbol{u}$$

 $oldsymbol{y} = Coldsymbol{x} + Doldsymbol{u}.$

Under what conditions is x observable from (u, y)?

Consider the system \mathfrak{B} , with w = (u, y, x), represented by

$$\frac{d}{dt} \mathbf{x} = A\mathbf{x} + B\mathbf{u}$$
$$\mathbf{y} = C\mathbf{x} + D\mathbf{u}.$$

Under what conditions is x observable from (u, y)? Clearly, the equations can be re-written as

$$\begin{bmatrix} B & 0 \\ D & -I \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} + \begin{bmatrix} A - \frac{d}{dt}I \\ C \end{bmatrix} = 0$$

Consider the system \mathfrak{B} , with w = (u, y, x), represented by

$$\frac{d}{dt} \mathbf{x} = A\mathbf{x} + B\mathbf{u}$$
$$\mathbf{y} = C\mathbf{x} + D\mathbf{u}.$$

Under what conditions is x observable from (u, y)? Clearly, the equations can be re-written as

$$\begin{bmatrix} B & 0 \\ D & -I \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} + \begin{bmatrix} A - \frac{d}{dt}I \\ C \end{bmatrix} = 0$$

Hence: x observable from $(u, y) \Leftrightarrow \begin{vmatrix} A - \lambda I \\ C \end{vmatrix}$ full column

rank for all $\lambda \in \mathbb{C}$. (Hautus test)

Part 3:

Stabilizability and detectability

Stabilizability

 $\mathfrak{B}\in\mathfrak{L}^{w}$ is called stabilizable if for all $w\in\mathfrak{B}$ there exists $w'\in\mathfrak{B}$ such that

- w'(t) = w(t) for t < 0,
- $\ \ \, {\rm lim}_{t\to\infty}\,w'(t)=0.$

Stabilizability

 $\mathfrak{B}\in\mathfrak{L}^{w}$ is called stabilizable if for all $w\in\mathfrak{B}$ there exists $w'\in\mathfrak{B}$ such that

- w'(t) = w(t) for t < 0,

Stabilizability in terms of kernel representations

Suppose $\mathfrak{B}\in\mathfrak{L}^{ imes}$ is represented in kernel representation by $R(rac{d}{dt})m{w}=0.$

How to decide whether ${\mathfrak B}$ is stabilizable?

Stabilizability in terms of kernel representations

Suppose $\mathfrak{B}\in\mathfrak{L}^{w}$ is represented in kernel representation by $R(rac{d}{dt})m{w}=0.$

How to decide whether \mathfrak{B} is stabilizable?

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{W}$, and let $R \in \mathbb{R}^{\bullet \times W}[\xi]$ be such that $R(\frac{d}{dt})w = 0$ is a kernel representation of \mathfrak{B} . Then \mathfrak{B} is stabilizable if and only if

 $\operatorname{rank}(R(\lambda)) = \operatorname{rank}(R)$ for all $\lambda \in \mathbb{C}^+$,

equivalently, if and only if $\operatorname{rank}(R(\lambda))$ is the same for all $\lambda \in \mathbb{C}^+$ ($\mathbb{C}^+ := \{\lambda \in \mathbb{C} \mid \operatorname{Re}(\lambda) \geq 0\}$).

Detectability

Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{V}}$, and $w = (w_1, w_2)$ be a partition of the manifest variable w. We will say that

in \mathfrak{B} , the component w_2 is detectable from the component w_1 if

$$(w_1,w_2'),(w_1,w_2'')\in\mathfrak{B}\ \ \Rightarrow\ \ \lim_{t o\infty}\left(w_2'(t)-w_2''(t)
ight)=0.$$

If w_2 is detectable from w_1 , then w_1 determines w_2 asymptotically.

Detectability in terms of kernel representation

Suppose that $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$ is represented in kernel representation by $R(\frac{d}{dt})w = 0$, with $R \in \mathbb{R}^{\bullet imes \mathbb{W}}[\xi]$. Partition $w = (w_1, w_2)$. Accordingly, partition $R = [R_1 \ R_2]$, so that \mathfrak{B} is represented by $R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$.

How do we check whether, in \mathfrak{B} , w_2 is detectable from w_1 ?

Detectability in terms of kernel representation

Suppose that $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$ is represented in kernel representation by $R(\frac{d}{dt})w = 0$, with $R \in \mathbb{R}^{\bullet imes \mathbb{W}}[\xi]$. Partition $w = (w_1, w_2)$. Accordingly, partition $R = [R_1 \ R_2]$, so that \mathfrak{B} is represented by $R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$.

How do we check whether, in \mathfrak{B} , w_2 is detectable from w_1 ?

<u>Theorem</u>: in \mathfrak{B} , w_2 is detectable from w_1 if and only if

 $\operatorname{rank}(R_2(\lambda)) = \mathtt{w}_2 \ \text{ for all } \lambda \in \mathbb{C}^+,$

i.e., $R_2(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}^+$.

A system B is controllable if the past and the future of any two trajectories in B can be concatenated to obtain a trajectory in B.

- A system B is controllable if the past and the future of any two trajectories in B can be concatenated to obtain a trajectory in B.
- Controllability is a property of the system. Given a kernel representation of the system, controllability can be effectively tested.

- A system B is controllable if the past and the future of any two trajectories in B can be concatenated to obtain a trajectory in B.
- Controllability is a property of the system. Given a kernel representation of the system, controllability can be effectively tested.
- Given a system \mathfrak{B} and a partition $w = (w_1, w_2), w_2$ is called observable from w_1 if the condition $(w_1, w_2) \in \mathfrak{B}$ determines w_2 uniquely.

- A system B is controllable if the past and the future of any two trajectories in B can be concatenated to obtain a trajectory in B.
- Controllability is a property of the system. Given a kernel representation of the system, controllability can be effectively tested.
- Given a system \mathfrak{B} and a partition $w = (w_1, w_2), w_2$ is called observable from w_1 if the condition $(w_1, w_2) \in \mathfrak{B}$ determines w_2 uniquely.
- Observability is a property of the system and a partition of its variables. Given a kernel representation of the system, observability can be effectively tested.

A system B is stabilizable if the past of any trajectory in B can be concatenated with the future of a trajectory in B that converges to zero, to obtain a trajectory in B.

- A system B is stabilizable if the past of any trajectory in B can be concatenated with the future of a trajectory in B that converges to zero, to obtain a trajectory in B.
- Given a system \mathfrak{B} and a partition $w = (w_1, w_2), w_2$ is called detectable from w_1 if the condition $(w_1, w_2) \in \mathfrak{B}$ determines w_2 asymptotically as $t \to \infty$.