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Problematique

Develop a theory and algorithms
for eliminating latent variables

|
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Introduction

-

First principles model ~~» auxiliary, latent variables

°

interconnection variables

°

‘theoretical’ latent variables:
momenta, potentials, driving noise, . ..

°

state variables

°

o |
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- -
i

Given the behavioral eq’ns for the components,
how do those of the interconnected system look like?

o |

Lecture 3 The ELIMINATION Problem —p.4/22




-

Recall the definitions:

A dynamical system with latent variables =

2L — (Ta Wa La %full)

T C R, the time-axis
W, the signal space
L, the latent variable space

Berann € (W X ]L)T : the full behavior

o |
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-

Recall the definitions:

A dynamical system with latent variables =

2L — (Ta Wa La %full)

T C R, the time-axis (= the set of relevant time instances).
W, the signal space (= the variables that the model aims at).
IL, the latent variable space (= auxiliary modeling variables).

Berann € (W X IL,)T : the full behavior

(= the pairs (w,£) : T — W X LL
that the model declares possible).

o |
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The manifest behavior

Call the elements of W

those of L

‘manifest’ variables

‘latent’ variables |.

The latent variable system X7 = (T, W, L, B¢,11) induces
the manifest system > = (T, W, 28), with manifest behavior

B={w: T—>W|3 £:T — L suchthat (w,£) € B}

|
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The manifest behavior

Call the elements of W

those of L

‘manifest’ variables

‘latent’ variables |.

The latent variable system X7 = (T, W, L, B¢,11) induces
the manifest system > = (T, W, 28), with manifest behavior

B={w: T—>W|3 £:T — L suchthat (w,£) € B}

In convenient equations for 23, the latent variables are ‘eliminated’.
But how do these equations look like, and how are they obtained?

|
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\\
o I
Given mathematical structure for 5S¢,
L what mathematical structure for 25 emerges? J
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Examples

o N

1. The projection of a linear subspace is again a linear subspace.

o |
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Examples

-

1. The projection of a linear subspace is again a linear subspace.

2. The projection of an algebraic variety is, in general, not an
algebraic variety:

9
w%—l—wg—l—ﬁzzl ~> w%—l—w§<1

wx¥l =1 ~~» ’UJ#O

o |
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Examples

-

1. The projection of a linear subspace is again a linear subspace.

2. The projection of an algebraic variety is, in general, not an
algebraic variety:

3. How about the projection of (the sol’n set of) a smooth
differential equation?

£ d @, d, dne)_o
w,dtw,...,dtnw, ,dt ,...,dtn —

Again a differential eq’n ??

o |
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Examples

-

ft The projection of a linear subspace is again a linear subspace.

2. The projection of an algebraic variety is, in general, not an
algebraic variety:

3. How about the projection of (the sol’n set of) a smooth
differential equation?

4. How about the projection of a constant coefficient linear
differential equation?

R(—w_ M(— )e

¢¢ Agdain a constant coefficient linear differential eq’'n ??

o |
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Elimination

o N

First principle models ~~» latent variables.
For systems described by linear constant coefficient ODE’s: ~~»

d d
R(a)w = M(a)e

with R, M € R®**®[£].

o |
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Elimination

-

|7First principle models ~~» latent variables.
For systems described by linear constant coefficient ODE’s: ~~»

d d
R(a)w = M(a)e

with R, M € R®**®[£].

This is the natural model class to start a study of finite dimensional
linear time-invariant systems! Much more so than

d
aw:Aa}+Bu, y = Cx + Du.

o |
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o N

Is it(s manifest behavior) also a differential system ??

Consider R(%)w = M(%)E.

o |
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Is it(s manifest behavior) also a differential system ??

Consider R(%)w = M(%)E.

Full behavior:

Beun = {(wa e) c Q:OO(anRW—I_e) | vt }

Y .
belongs to £§+ , by definition.

Its manifest behavior equals

B ={w € €°(R",RY) | I £suchthat ---}.

|
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Does ‘B belong to £" ?

|
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o N

Does B belong to £" ?

Theorem: It does!

Proof: The ‘fundamental principle’.

o |
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Does B belong to £" ?

Theorem: It does!

Proof: The ‘fundamental principle’.

The fundamental principle (for PDE’s) states that

o o
F —_— e o o
(8331’ ’ Oz,

) =1y

F € R Xn2 [617 ce 7€n]7 Yy € € (Rnanl) is solvable for x € €° (Rna an) iff

N 0 0
nER1[€17'°'7€n]/\nTF:O = nT(a—wla"'aaw )y = 0.

o |
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o N

Example: Consider once again our electrical RLC - circuit:

f

environment V system
— C

Il Model the relation between manifest V and 1 !!

o |
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d

+

environment V system

|
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J
RC L
+
environment V system
_ C R
L

|
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| < +

The circuit graph

Introduce the latent variables:
the voltage across and the current in each branch:

L VRchRca VC’aICa VRLaIRLa VLaIL°
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System equations

o N

d d
Ve.= Rclr., VrR,= RiIR,, Cd Ve = I, LdtIL = Vi

Constitutive equations (CE):

Kirchhoff’s voltage laws (KVL):

V:VRC_I_VC, V:VL_I_VRL’ VRC_I_VC:VL_I_VRL

Kirchhoff’s current laws (KCL):
I=1Ig,+1I, Ig, =Ic, It =1Ig,, Ic+Ig, =1

o |
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-

After elimination, we obtain the following explicit differential
equation the between V and I:

Case 1: CJ'RO;&Ri
L
(—+(1+—)CR <+ CRo 4
C C’RLd2
L d
(1-|-CRC—)( + 7o g Rel.

o |
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-

After elimination, we obtain the following explicit differential
equation the between V and I:

Case 1: CRC#RL
L
(R 4 (14 T2)ORe 3 + CRo g o
C C’RLd2
L d
—(1+C’Rc—)( + 7o g Rel.

L
Case2: CRg = —.
Ry

( -I-C'RC—)V— (1+CRC—)RCI

LThese are the exact relations between V and I ! J
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-

First principles modeling (= CE’s, KVL, & KCL)
~» 15 behavioral equations.
Include both the port and the branch voltages and currents.

o |
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-

First principles modeling (= CE’s, KVL, & KCL)
~» 15 behavioral equations.
Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

o |
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o N

First principles modeling (= CE’s, KVL, & KCL)
~» 15 behavioral equations.
Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear
constant coefficient differential equations.

2. The elimination theoremT.

T capacitor — é, inductor — L s, series, parallel, may give erroneous results

o |
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fFirst principles modeling (= CE’s, KVL, & KCL) T
~» 15 behavioral equations.
Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear
constant coefficient differential equations.

2. The elimination theoremT.

Why is there exactly one equation? Passivity!

o |
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fFlemarks: T

» Number of equations after elimination (constant coeff. lin. ODE’s)
< number of variables.
Elimination = fewer, higher order equations.

o |
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-

Remarks: T

» Number of equations after elimination (constant coeff. lin. ODE’s)
< number of variables.

» - effective computer algebra/Grobner bases type algorithms
for elimination

(R,M) — R’

|
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fRemarks: T

» Number of equations after elimination (constant coeff. lin. ODE’s)
< number of variables.

» - effective computer algebra/Grobner bases type algorithms
for elimination

» Depends on sol’n smoothness!
7 elimination theorem on D (€°° with compact support):

d

+0o0
aw:f ~> /_OO w(t)dt =0

o |
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fRemarks: T

» Number of equations after elimination (constant coeff. lin. ODE’s)
< number of variables.

» - effective computer algebra/Grobner bases type algorithms
for elimination

» Depends on sol’n smoothness!

» Not generalizable to smooth nonlinear systems.
Why are differential equations models so prevalent?

o |
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-

Remarks: T

» Number of equations after elimination (constant coeff. lin. ODE’s)
< number of variables.

» - effective computer algebra/Grobner bases type algorithms
for elimination

» Depends on sol’n smoothness!
» Not generalizable to smooth nonlinear systems.

» Generalizable to linear constant coefficient PDE’s.

|
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Example: Maxwell’s equations

- 1
V-E = — P
€0
— 8—»
VXE = ——
ot "’
V'E —_ 0,
2 .
c‘VXB = — —
Eog+3t

|
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Example: Maxwell’s equations

V-E = ip,
€0
— a—»
VXE = — 5 B
V.-B = o0,
2vxB = ~j+25
€0 ot

T = R x R3 (time and space),
w = (FE,B,j,p)
(electric field, magnetic field, current density, charge density),
W =R3 x R3 x R x R,
'8 — set of solutions to these PDE’s.

|

Lecture 3 The ELIMINATION Problem —p.18/22



Example: Maxwell’s equations

V-E = ipa
€0
— 8—»
VXE = — 5 B
V.-B = o,
2vxB = L1;+9258
€0 ot

T = R x R3 (time and space),
w = (FE,B,j,p)
(electric field, magnetic field, current density, charge density),
W =R3 x R3 x R x R,
'8 — set of solutions to these PDE’s.

Note: 10 variables, 8 equations! = - free variables.

o |
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—

Which PDE’s describe (p, F,

7) in Maxwell’s equations ?

—

|
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— —

Which PDE’s describe (p, E/, 7) in Maxwell’s equations ?

Eliminate B from Maxwell’s equations

|
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— —

Which PDE’s describe (p, E/, 7) in Maxwell’s equations ?

Eliminate B from Maxwell’s equations ~~»

— ]_
V-E = —p,
€0
a — =2
eoaV-E—I—V-] = 0,
co—F + €9gc®V X V X E — = 0.
0z T €0 TS

|
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— —

Which PDE’s describe (p, E/, 7) in Maxwell’s equations ?

Eliminate B from Maxwell’s equations ~~»

- 1
V-E = —p,
€0
BV E+V.j 0
6_ ° ° p—
Oat J ’
32E+ 2V X VX E + 0 - 0
En—— encC — = .
0 5¢2 0 at’

Elimination theorem =
L this exercise is exact & successful (+ gives algorithm). J
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o N

It follows from all this that £° has very nice properties. It is closed
under:

® Intersection: (2B1,Bs € £¥) = (B1 N B, € L£Y).
® Addition: (%1, Bo € ,QW) = (%1 + B, € /QW).
® Projection: (B € £"11V2) = (II,,B € £"1).
® Action of a linear differential operator:
(2B € £71, P € R"2X"[£])
= (P(4)B € £%).
® Inverse image of a linear differential operator:
(53 E £W2’P E RWzXWl [S])
= (P(Z))71:8 € £m).

o |
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o N

The elimination theorem (and the related algorithms) is one of the
hice, important, new problems that have emerged from the
behavioral theory.

o |
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-

The elimination theorem (and the related algorithms) is one of the T

nice, important, new problems that have emerged from the
behavioral theory.

Equally important as elimination is introducing convenient latent
variables:

® state models, first order equations

® image representations and controllability
9

o |
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End of Lecture 3

|
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