Lecture 3

The ELIMINATION Problem

Jan C. Willems

University of Leuven, Belgium

Problematique

Develop a theory and algorithms for eliminating latent variables

Introduction

First principles model \leadsto auxiliary, latent variables
e.g.

- interconnection variables
- 'theoretical' latent variables: momenta, potentials, driving noise, . . .
- state variables

Given the behavioral eq'ns for the components, how do those of the interconnected system look like?

Recall the definitions:

A dynamical system with latent variables =

$$
\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)
$$

$\mathbb{T} \subseteq \mathbb{R}$, the time-axis
\mathbb{W}, the signal space
\mathbb{L}, the latent variable space

$$
\mathfrak{B}_{\text {full }} \subseteq(\mathbb{W} \times \mathbb{L})^{\mathbb{T}}: \text { the full behavior }
$$

Recall the definitions:

A dynamical system with latent variables =

$$
\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)
$$

$\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the set of relevant time instances).
\mathbb{W}, the signal space (= the variables that the model aims at).
\mathbb{L}, the latent variable space (= auxiliary modeling variables).

$$
\mathfrak{B}_{\text {full }} \subseteq(\mathbb{W} \times \mathbb{L})^{\mathbb{T}}: \text { the full behavior }
$$

(= the pairs $(w, \ell): \mathbb{T} \rightarrow \mathbb{W} \times \mathbb{L}$
that the model declares possible).

The manifest behavior

Call the elements of \mathbb{W} 'manifest' variables,

The latent variable system $\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$ induces the manifest system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with manifest behavior

$$
\mathfrak{B}=\left\{w: \mathbb{T} \rightarrow \mathbb{W} \mid \exists \ell: \mathbb{T} \rightarrow \mathbb{L} \text { such that }(w, \ell) \in \mathfrak{B}_{\text {full }}\right\}
$$

The manifest behavior

Call the elements of \mathbb{W} 'manifest' variables, those of \mathbb{L} 'latent' variables.

The latent variable system $\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$ induces the manifest system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with manifest behavior

$$
\mathfrak{B}=\left\{w: \mathbb{T} \rightarrow \mathbb{W} \mid \exists \ell: \mathbb{T} \rightarrow \mathbb{L} \text { such that }(w, \ell) \in \mathfrak{B}_{\text {full }}\right\}
$$

In convenient equations for \mathfrak{B}, the latent variables are 'eliminated'. But how do these equations look like, and how are they obtained?

Given mathematical structure for $\mathfrak{B}_{\text {full }}$, what mathematical structure for \mathfrak{B} emerges?

Examples

1. The projection of a linear subspace is again a linear subspace.

Examples

1. The projection of a linear subspace is again a linear subspace.
2. The projection of an algebraic variety is, in general, not an algebraic variety:

-

$$
w_{1}^{2}+w_{2}^{2}+\ell^{2}=1 \leadsto w_{1}^{2}+w_{2}^{2} \leq 1
$$

$$
w * \ell=1 \leadsto w \neq 0
$$

Examples

1. The projection of a linear subspace is again a linear subspace.
2. The projection of an algebraic variety is, in general, not an algebraic variety:
3. How about the projection of (the sol'n set of) a smooth differential equation?

$$
f\left(w, \frac{d}{d t} w, \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w, \ell, \frac{d}{d t} \ell, \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} \ell\right)=0
$$

Again a differential eq'n ??

Examples

1. The projection of a linear subspace is again a linear subspace.
2. The projection of an algebraic variety is, in general, not an algebraic variety:
3. How about the projection of (the sol'n set of) a smooth differential equation?
4. How about the projection of a constant coefficient linear differential equation?

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

¿¿ Again a constant coefficient linear differential eq'n ??

Elimination

First principle models \sim latent variables.
For systems described by linear constant coefficient ODE's:

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

with $\boldsymbol{R}, M \in \mathbb{R}^{\bullet \times \bullet}[\boldsymbol{\xi}]$.

Elimination

First principle models \sim latent variables.
For systems described by linear constant coefficient ODE's:

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

with $\boldsymbol{R}, M \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.
This is the natural model class to start a study of finite dimensional linear time-invariant systems! Much more so than

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u
$$

Is it(s manifest behavior) also a differential system ??
Consider $R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell$.

Is it(s manifest behavior) also a differential system ??

Consider $R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell$.
Full behavior:

$$
\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}+\ell}\right) \mid \cdots\right\}
$$

belongs to $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}+\ell$, by definition.
Its manifest behavior equals

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid \exists \ell \text { such that } \cdots\right\}
$$

Does \mathfrak{B} belong to $\mathfrak{L}^{\mathrm{W}}$?

Does \mathfrak{B} belong to $\mathfrak{L}^{\mathrm{W}}$?

Theorem: It does!

Proof: The 'fundamental principle'.

Does \mathfrak{B} belong to $\mathfrak{L}^{\mathrm{w}}$?

Theorem: It does!

Proof: The 'fundamental principle'.

The fundamental principle (for PDE's) states that

$$
F\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) x=y
$$

$\boldsymbol{F} \in \mathbb{R}^{\mathrm{n}_{1}} \times \mathrm{n}_{2}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right], \boldsymbol{y} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{1}}\right)$ is solvable for $\boldsymbol{x} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \boldsymbol{R}^{\mathrm{n}_{2}}\right)$ iff

$$
n \in \mathbb{R}^{n_{1}}\left[\xi_{1}, \cdots, \xi_{n}\right] \wedge n^{\top} F=0 \Rightarrow n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) y=0
$$

Example: Consider once again our electrical RLC - circuit:

!! Model the relation between manifest V and I !!

The circuit graph

Introduce the latent variables:
the voltage across and the current in each branch:

$$
V_{R_{C}}, I_{R_{C}}, V_{C}, I_{C}, V_{R_{L}}, I_{R_{L}}, V_{L}, I_{L}
$$

System equations

Constitutive equations (CE):

$V_{R_{C}}=R_{C} I_{R_{C}}, V_{R_{L}}=R_{L} I_{R_{L}}, C \frac{d}{d t} V_{C}=I_{C}, L \frac{d}{d t} I_{L}=V_{L}$
Kirchhoff's voltage laws (KVL):
$V=V_{R_{C}}+V_{C}, V=V_{L}+V_{R_{L}}, \quad V_{R_{C}}+V_{C}=V_{L}+V_{R_{L}}$

Kirchhoff's current laws (KCL):

$$
I=I_{R_{C}}+I_{L}, \quad I_{R_{C}}=I_{C}, \quad I_{L}=I_{R_{L}}, \quad I_{C}+I_{R_{L}}=I
$$

After elimination, we obtain the following explicit differential equation the between V and I :

Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+(1+\right. & \left.\left.\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I .
\end{aligned}
$$

After elimination, we obtain the following explicit differential equation the between V and I :

Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+(1+\right. & \left.\left.\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$.

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

These are the exact relations between V and I !

First principles modeling (\cong CE's, KVL, \& KCL)
$\leadsto 15$ behavioral equations.
Include both the port and the branch voltages and currents.

First principles modeling (\cong CE's, KVL, \& KCL)
$~ 15$ behavioral equations.
Include both the port and the branch voltages and currents.
Why can the port behavior be described by a system of linear constant coefficient differential equations?

First principles modeling (\cong CE's, KVL, \& KCL)
$~ 15$ behavioral equations.
Include both the port and the branch voltages and currents.
Why can the port behavior be described by a system of linear constant coefficient differential equations?

Because:

1. The CE's, KVL, \& KCL are all linear constant coefficient differential equations.
2. The elimination theorem ${ }^{\dagger}$.
\dagger capacitor $\rightarrow \frac{1}{C s}$, inductor $\rightarrow L s$, series, parallel, may give erroneous results

First principles modeling (\cong CE's, KVL, \& KCL)
$\longrightarrow 15$ behavioral equations.
Include both the port and the branch voltages and currents.
Why can the port behavior be described by a system of linear constant coefficient differential equations?

Because:

1. The CE's, KVL, \& KCL are all linear constant coefficient differential equations.
2. The elimination theorem ${ }^{\dagger}$.

Why is there exactly one equation? Passivity!

Remarks:

Number of equations after elimination (constant coeff. lin. ODE's)
\leq number of variables.
Elimination \Rightarrow fewer, higher order equations.

Remarks:

Number of equations after elimination (constant coeff. lin. ODE's) \leq number of variables.

- \exists effective computer algebra/Gröbner bases type algorithms for elimination

$$
(R, M) \mapsto R^{\prime}
$$

Remarks:

Number of equations after elimination (constant coeff. lin. ODE's) \leq number of variables.

- \exists effective computer algebra/Gröbner bases type algorithms for elimination
- Depends on sol'n smoothness!
\nexists elimination theorem on $\mathfrak{D}\left(\mathfrak{C}^{\infty}\right.$ with compact support):

$$
\frac{d}{d t} w=f \leadsto \int_{-\infty}^{+\infty} w(t) d t=0
$$

Remarks:

- Number of equations after elimination (constant coeff. lin. ODE's) \leq number of variables.
- \exists effective computer algebra/Gröbner bases type algorithms for elimination
- Depends on sol'n smoothness!
- Not generalizable to smooth nonlinear systems.

Why are differential equations models so prevalent?

Remarks:

- Number of equations after elimination (constant coeff. lin. ODE's) \leq number of variables.
- \exists effective computer algebra/Gröbner bases type algorithms for elimination
- Depends on sol'n smoothness!
- Not generalizable to smooth nonlinear systems.
- Generalizable to linear constant coefficient PDE's.

Example: Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B} \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E}
\end{aligned}
$$

Example: Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0, \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

$\mathbb{T}=\mathbb{R} \times \mathbb{R}^{\mathbf{3}}$ (time and space),
$\boldsymbol{w}=(\overrightarrow{\boldsymbol{E}}, \vec{B}, \vec{j}, \rho)$
(electric field, magnetic field, current density, charge density), $\mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$, $\mathfrak{B}=$ set of solutions to these PDE's.

Example: Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0, \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

$\mathbb{T}=\mathbb{R} \times \mathbb{R}^{\mathbf{3}}$ (time and space),
$w=(\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{B}}, \vec{j}, \rho)$
(electric field, magnetic field, current density, charge density), $\mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$, $\mathfrak{B}=$ set of solutions to these PDE's.

Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

Which PDE's describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations ?

Which PDE's describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations ?

Eliminate \vec{B} from Maxwell's equations

Which PDE's describe ($\rho, \overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{j}}$) in Maxwell's equations ?

Eliminate \vec{B} from Maxwell's equations \leadsto

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0, \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

Which PDE's describe ($\rho, \overrightarrow{\boldsymbol{E}}, \vec{j}$) in Maxwell's equations ?

Eliminate \vec{B} from Maxwell's equations \leadsto

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0, \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

Elimination theorem \Rightarrow this exercise is exact $\&$ successful (+ gives algorithm).

It follows from all this that $\mathfrak{L}^{\boldsymbol{\bullet}}$ has very nice properties. It is closed under:

- Intersection: $\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}^{\mathrm{W}}\right) \Rightarrow\left(\mathfrak{B}_{1} \cap \mathfrak{B}_{2} \in \mathfrak{L}^{\mathrm{W}}\right)$.
- Addition: $\quad\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}^{\mathrm{w}}\right) \Rightarrow\left(\mathfrak{B}_{1}+\mathfrak{B}_{2} \in \mathfrak{L}^{\mathrm{w}}\right)$.
- Projection: $\quad\left(\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}_{1}+\mathrm{w}_{2}}\right) \Rightarrow\left(\boldsymbol{\Pi}_{w_{1}} \mathfrak{B} \in \mathfrak{L}^{\mathrm{w}_{1}}\right)$.
- Action of a linear differential operator:
$\left(\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}_{1}}, \boldsymbol{P} \in \mathbb{R}^{\mathrm{w}_{2} \times \mathrm{w}_{1}}[\boldsymbol{\xi}]\right)$

$$
\Rightarrow\left(\boldsymbol{P}\left(\frac{d}{d t}\right) \mathfrak{B} \in \mathfrak{L}^{\mathrm{W}_{2}}\right)
$$

- Inverse image of a linear differential operator:

$$
\begin{aligned}
\left(\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}_{2}}\right. & \left., P \in \mathbb{R}^{\mathrm{w}_{2} \times{ }^{W_{1}}}[\boldsymbol{\xi}]\right) \\
& \left.\Rightarrow\left(\boldsymbol{P}\left(\frac{d}{d t}\right)\right)^{-1} \mathfrak{B} \in \mathfrak{L}^{\mathrm{W}_{1}}\right) .
\end{aligned}
$$

The elimination theorem (and the related algorithms) is one of the nice, important, new problems that have emerged from the behavioral theory.

The elimination theorem (and the related algorithms) is one of the nice, important, new problems that have emerged from the behavioral theory.

Equally important as elimination is introducing convenient latent variables:

- state models, first order equations
- image representations and controllability

End of Lecture 3

