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Problematique

Develop a theory and algorithms
for eliminating latent variables
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Introduction

First principles model � auxiliary, latent variables

e.g.

interconnection variables

‘theoretical’ latent variables:
momenta, potentials, driving noise, � � �

state variables� � �
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Given the behavioral eq’ns for the components,
how do those of the interconnected system look like?
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Recall the definitions:

A dynamical system with latent variables =

��� � ��	� � 
� �� � � �

� �

, the time-axis

(= the set of relevant time instances).

, the signal space

(= the variables that the model aims at).




, the latent variable space

(= auxiliary modeling variables).

�� � � � � 
 � �
: the full behavior

(= the pairs
that the model declares possible).
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The manifest behavior

Call the elements of ‘manifest’ variables ,

those of




‘latent’ variables .

The latent variable system

� � � �� � � 
� �� � � �
induces

the manifest system

� � ��	� � �� with manifest behavior

� � � � � �� �� � 

such that

� � � � ��� � � � � �

In convenient equations for , the latent variables are ‘eliminated’.
But how do these equations look like, and how are they obtained?
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Given mathematical structure for �� � � ,
what mathematical structure for emerges?
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Examples

1. The projection of a linear subspace is again a linear subspace.

2. The projection of an algebraic variety is, in general, not an
algebraic variety:

3. How about the projection of (the sol’n set of) a smooth
differential equation?

4. How about the projection of a constant coefficient linear
differential equation?
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4. How about the projection of a constant coefficient linear
differential equation?
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Examples

1. The projection of a linear subspace is again a linear subspace.

2. The projection of an algebraic variety is, in general, not an
algebraic variety:

3. How about the projection of (the sol’n set of) a smooth
differential equation?

4. How about the projection of a constant coefficient linear
differential equation?

) � &&' � � � � &&' � �

¿¿ Again a constant coefficient linear differential eq’n ??
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Elimination

First principle models � latent variables.
For systems described by linear constant coefficient ODE’s: �

) � &&' � � � � &&' � �
with

)� � � * + * ,- .

.

This is the natural model class to start a study of finite dimensional
linear time-invariant systems! Much more so than
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Is it(s manifest behavior) also a differential system ??

Consider

) � 556 � � � � 556 � � �

Full behavior:

belongs to , by definition.

Its manifest behavior equals

such that
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Is it(s manifest behavior) also a differential system ??

Consider

) � 556 � � � � 556 � � �

Full behavior:

�� � � � � �� � � � � 7 8 � �(� � 9 : ; � �=< < < � �

belongs to

> 9 : ;( , by definition.

Its manifest behavior equals

� � � � 7 8 � �(� � 9 � � � �

such that< < < � �
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Does belong to

> 9

?

Theorem: It does!

Proof: The ‘fundamental principle’.

The fundamental principle (for PDE’s) states that

is solvable for iff
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Does belong to

> 9

?

Theorem: It does!

Proof: The ‘fundamental principle’.

The fundamental principle (for PDE’s) states that

? @ AACBD E F F F E AACBHG I BJ K

?L MGN OGP QRD E F F F E RG S E K L T U @ MG E MGN I
is solvable for B L T U @ MG E VGP I

iff

WL MGN QRD E F F F E RG SX W Y ?J Z [ W Y @ AACBD E F F F E AACBCG I KJ Z�\
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Example: Consider once again our electrical RLC - circuit:

I

+

−

V

R
L

C
R

C

L

systemenvironment

!! Model the relation between manifest

]

and

^

!!
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The circuit graph

Introduce the latent variables:
the voltage across and the current in each branch:]`_ba � ^ _ba � ]dc� ^ c� ]`_fe � ^ _e � ]�� ^� �
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System equations

Constitutive equations (CE):

]�_ba � ) c ^ _ba � ]�_fe � )� ^ _fe � 4 &&' ]gc � ^ c� h &&' ^� � ]�

Kirchhoff’s voltage laws (KVL):] � ]�_ia � ]gc� ] � ]� � ]�_je � ]�_a � ]gc � ]� � ]�_je

Kirchhoff’s current laws (KCL):^ � ^ _ja � ^�� ^ _ja � ^ c� ^� � ^ _ke � ^ c � ^ _ke � ^

Lecture 3 The ELIMINATION Problem – p.14/22



After elimination, we obtain the following explicit differential
equation the between

]

and

^

:

Case 1:

l Va mJ nVe .

@ Va Ve o @p o Va Ve I l Va qqr o l Va nVe q sqr s It

J @p o l Va qqr I @p o nVe qqr I Va u\

Case 2: .

These are the exact relations between and !
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First principles modeling (

v� CE’s, KVL, & KCL)� 15 behavioral equations.
Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear

constant coefficient differential equations.
2. The elimination theorem .

Why is there exactly one equation? Passivity!
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First principles modeling (

v� CE’s, KVL, & KCL)� 15 behavioral equations.
Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear

constant coefficient differential equations.
2. The elimination theorem

w
.

Why is there exactly one equation? Passivity!

x

capacitor

y Da{z , inductor

y n}| , series, parallel, may give erroneous results
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Remarks:~

Number of equations after elimination (constant coeff. lin. ODE’s)
number of variables.

Elimination fewer, higher order equations.

effective computer algebra/Gröbner bases type algorithms
for elimination

Depends on sol’n smoothness!

Not generalizable to smooth nonlinear systems.

Generalizable to linear constant coefficient PDE’s.
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effective computer algebra/Gröbner bases type algorithms
for elimination~

Depends on sol’n smoothness!�

elimination theorem on

� 7 8
with compact support):&&' � � $ � : 8

�8 � � ' � &' � #

Not generalizable to smooth nonlinear systems.
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Remarks:~

Number of equations after elimination (constant coeff. lin. ODE’s)
number of variables.~ �

effective computer algebra/Gröbner bases type algorithms
for elimination~

Depends on sol’n smoothness!~

Not generalizable to smooth nonlinear systems.
Why are differential equations models so prevalent?

Generalizable to linear constant coefficient PDE’s.
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Example: Maxwell’s equations

� F ��� J p�� � E�� ��� J � AA r ��� E� F � � J Z E� s � � � � J p�� �� o AA r ���\

(time and space),

(electric field, magnetic field, current density, charge density),
,

set of solutions to these PDE’s.

Note: 10 variables, 8 equations! free variables.
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Which PDE’s describe ( �� ��� ��

) in Maxwell’s equations ?

Eliminate from Maxwell’s equations

Elimination theorem
this exercise is exact & successful (+ gives algorithm).
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It follows from all this that

> *

has very nice properties. It is closed
under:

Intersection:

� �� �� > 9 � � � � �� > 9 �
.

Addition:

� �� �� > 9 � � � � �� > 9 �

.

Projection:

� � > 9D : 9 s � �� �D � > 9D �

.

Action of a linear differential operator:� � > 9D �  � � 9 s + 9D ,- . ��   � 55 6 � � > 9 s � �

Inverse image of a linear differential operator:� � > 9 s�  � � 9 s + 9D ,- . ��   � 55 6 � � �� � > 9D � �
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The elimination theorem (and the related algorithms) is one of the
nice, important, new problems that have emerged from the
behavioral theory.

Equally important as elimination is introducing convenient latent
variables:

state models, first order equations

image representations and controllability
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End of Lecture 3
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