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Part 1: Generalities



Linear differ ential systems

-

We discuss the theory of dynamical systems

> = (R, RY, 5B)

that are

o |
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Linear differ ential systems

-

We discuss the theory of dynamical systems

> = (R,RY, B)

that are

1. |linear,

meaning
(w1, w2 € B) A (a, B € R)) = (awi + Bwz € B);
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Linear differ ential systems

-

We discuss the theory of dynamical systems

> = (R, RY, 5B)

that are

1. (linear,

meaning
(w1, w2 € B) A (a, B € R)) = (awi + Bwz € B);
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Linear differ ential systems

-

that are

1. |linear,
meaning

We discuss the theory of dynamical systems

> = (R,RY, B)

(w1, w2 € B) A (o, 8 € R)) = (awy + w2 € B);

2. |[time-invariant,

meaning

((w € B) A (t €R)) = (c'w € B)).
where o denotes the t—shift, ot f(t') := f(t' + t)

|
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-

Linear differ ential systems

We discuss the theory of dynamical systems

that are

1.

linear,
meaning

> = (R, RY, 5B)

(w1, w2 € B) A (o, 8 € R)) = (awy + w2 € B);

time-invariant,

meaning

((w € B) A (t €R)) = (c'w € B)).
where o denotes the t—shift, ot f(t') := f(t' + t)

differential,

|
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-

We discuss the theory of dynamical systems

Linear differ ential systems

that are

1.

linear,
meaning

> = (R,RY, B)

(w1, w2 € B) A (o, 8 € R)) = (awy + w2 € B);

time-invariant,

meaning

((w € B) A (t €R)) = (c'w € B)).
where o denotes the t—shift, ot f(t') := f(t' + t)

differential,| meaning

B3 consists of the solutions of a system of diff erential

equations.

|
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-

.

Linear constantcoefficientdiffer ential equations

Variables: wi, w2, ..

. Wy, Up to n times diff erentiated, g

equations.
EW 0 EW 1 W n dn _
_]_]_R]_,jw.j + j:lRl,j Wi + 0+ J:1R1,j% i = 0
W 0 W 1 d W n d’
2J—1R W3 + 2_]':1R2,jawj Tt 2j:1R2,j% i = 0
ZW RO ZW Rl d EW Rn dn .
j=1 wJ —I_ j= gs] aw‘] _I_ . —I_ j=1 gaj% J T 0
Coefficients Rk 3 indices!

|
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Linear constantcoefficientdiffer ential equations

-

Variables: w1, w2, ... wy, up to ntimes diff erentiated, g

equations.
W 0 W 1 d w 0 d"
Ej_lRl,jwj _I_ EJ:lRl,Jan _I_ * e _I_ Ejlel,j% j — 0
w 0 W 1 d - n d"
EJ_lR Wy + Ejlez,jawj R gjle%j% ; =0
=“_,R? sv_ gt O .
j=14%, ;Wi T g3 Wi+ e 2y g g =

Coefficients Rk 3 indices!
i=1,...,g: for the i-th diff erential equation,

o |
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Linear constantcoefficientdiffer ential equations

-

Variables: w1, w2, ... wy, up to ntimes diff erentiated, g

equations.
W 0 W 1 d w 0 d"
Ej_lRl,jwj _I_ EJ:lRl,Jan _I_ * e _I_ Ejlel,j% j — 0
w 0 W 1 d - n d"
EJ_lR Wy + Ejlez,jawj R gjle%j% ; =0
=“_,R? sv_ gt O .
j=14%, ;Wi T g3 Wi+ e 2y g g =

Coefficients Rk 3 indices!

i=1,...,g: for the i-th diff erential equation,
j = 1, .+« 4w : for the variable w; involved,
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Linear constantcoefficientdiffer ential equations

-

Variables: w1, w2, ... wy, up to ntimes diff erentiated, g

equations.
W 0 W 1 d w 0 d"
Ej_lRl,jwj _I_ EJ:lRl,Jan _I_ * e _I_ Ejlel’j% j — 0
w 0 W 1 d - n d"
EJ_lR Wy + Ejlez,jawj R gjle%j% ; =0
=“_,R? sv_ gt O .
j=14%, ;Wi T g3 Wi+ e 2y g g =

Coefficients Rk 3 indices!
i=1,...,g: for the i-th diff erential equation,
j = 1, .+« 4w : for the variable w; involved,

k
Lk =1,...,n :for the order c?tk of diff erentiation. J
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-

In vector/matrix notation:

k k k
w1 R1,1 R1,2 T Rl,w
w R, R, .- RE
29 2,1 2,2 2,W
w — 0 Rk — _ .
k k k
o Wy _ _Rga]- R872 Rg9W_

o |
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-

In vector/matrix notation:

k k k
w1 R1,1 R1,2 Rl,w
w R, R, .- RE
29 2,1 2,2 2,W
w — 0 Rk — _ .
k k k
o Wy _ _Rga]- R872 Rg9W_

Yields

R0w+R1%w+---+Rn%w=O,

with Ro, Ry,--- , Ry € R&XV,
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o N

Combined with the polynomial matrix (in the indeterminate &)

R(§) = Ry + R1&£+ -+ -+ RLE,

we obtain for this the short notation

R(%)w = 0.

o |
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o N

Combined with the polynomial matrix (in the indeterminate &)

R(§) = Ry + R1&£+ -+ -+ RLE,

we obtain for this the short notation

R(%)w = 0.

Including latent variables ~»

R(g)w = M(g)

with R, M € R**°®[g].

o |
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Polynomial matrices

o N

A polynomial matrix is a polynomial with matrix coefficients:
P(&) = Py + Pi§+--- + Pu&7,

with Py, Py, ..., P, € Rr1Xnz,

o |
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Polynomial matrices

-

A polynomial matrix is a polynomial with matrix coefficients:
P(&) = Py + Pi§+--- + Pu&7,

with Py, Py, ..., P, € RiXxnz
We may view P(&) also as a matrix of polynomials:

_P1,1(€) Pi2(&) --- Pl,nQ(f)_

P(¢) — Pz,T(S) Pz,?(é) P2,Il:2(€)

_Pn1,1(€) Pn1,2(€) Pn1,n2(€)_

with the I; ;’s polynomials with real coefficients.

o |
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Polynomial matrices

-

A polynomial matrix is a polynomial with matrix coefficients:
P(&) = Py + Pi§+--- + Pu&7,

with Py, Py, ..., P, € RiXxnz
We may view P(&) also as a matrix of polynomials:

_P1,1(€) Pi2(&) --- Pl,n2(£)_

P(¢) — Pz,f(&) Pz,?(é) P2,n:2(€)

_Pn1,1(€) Pn1,2(€) N Pn19n2 (6)_
with the I; ;’s polynomials with real coefficients.

LNotation . RMxn2[e] ReX[g], R™*® €], R*<®[£]. J
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o N

What do we mean by the behavior of this system of diff erential equations?

o |
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o N

What do we mean by the behavior of this system of diff erential equations?

When shall we define w : R — IR" to be a solution of
R(%)w = 07

o |
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o N

What do we mean by the behavior of this system of diff erential equations?

When shall we define w : R — IR" to be a solution of
R(%)w = 07

Possibilities:

o |
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o N

What do we mean by the behavior of this system of diff erential equations?

When shall we define w : R — IR" to be a solution of
R(%)w = 07

Possibilities:

Strong solutions?

o |
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o N

What do we mean by the behavior of this system of diff erential equations?

When shall we define w : R — IR" to be a solution of
R(%)w = 07

Possibllities:
Strong solutions?

Weak solutions?

o |
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o N

What do we mean by the behavior of this system of diff erential equations?

When shall we define w : R — IR" to be a solution of
R(%)w = 07

Possibllities:

Strong solutions?

Weak solutions?

C>° (R, RY) (infinitel y diff erentiab le) solutions?

o |
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o N

What do we mean by the behavior of this system of diff erential equations?

When shall we define w : R — IR" to be a solution of
R(%)w = 07

Possibllities:

Strong solutions?

Weak solutions?

C>° (R, RY) (infinitel y diff erentiab le) solutions?

Distrib utional solutions?

Lecture 2 LINEAR DIFFERENTIAL SYSTEMS — p.8/22



-

We will be ‘pragmatic’, and take the easy way out:

~ | €°° solutions!

o |
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-

We will be ‘pragmatic’, and take the easy way out:

¢ °® solutions!

-

EC>®-solution:  w : R — R¥is a (&> -solution | of R(%)w = 0 if

1. w is infinitel y diff erentiab le (:= w € €*° (R, R") ), and

2. R(%)w = 0.

|
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-

We will be ‘pragmatic’, and take the easy way out:

¢ °® solutions!

-

EC>®-solution:  w : R — R¥is a (&> -solution | of R(%)w = 0 if

1. w is infinitel y diff erentiab le (:= w € €*° (R, R") ), and

2. R(%)’w = 0.

Transmits main ideas, easier to handle , easy theory, sometimes

(too) restrictive .

|
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-

Whence, R(%)w = 0 defines the system X = (R, R", 28) with

B = {w € €°(R,RY) | R(%)w = 0}.

|
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-

Whence, R(%)w = 0 defines the system X = (R, R", 28) with

B = {w € €°(R,RY) | R(%)w = 0}.

Proposition : This system is linear and time-in variant.

|
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-

Whence, R(%)w = 0 defines the system X = (R, R", 28) with

B = {w € €°(R,RY) | R(%)w = 0}.

Proposition : This system is linear and time-in variant.

Note that 28 is equal to the kernel of the operator R(%). We will

theref ore call R(%)fw = 0 akernel representation of this system,
or the behavior.

o |
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Whence, R(%)w = 0 defines the system X = (R, R", 28) with

B = {w € €°(R,R) | R(%)w = 0}.

Proposition : This system is linear and time-in variant.

Note that 28 is equal to the kernel of the operator R(%). We will

theref ore call R(%)fw = 0 akernel representation of this system,
or the behavior.

R determines 35 uniquel y, the converse is not true!

|
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Notation and nomenclature

o N

L2 :all such systems (with any - finite - number of variables)

£V with wvariables
B = ker(R(%))
B € £Y (no ambiguity regarding T, W)

o |
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Notation and nomenclature

o N

L2 :all such systems (with any - finite - number of variables)

£V with wvariables
B = ker(R(%))
B € £Y (no ambiguity regarding T, W)

Elements of £°® : linear differential systems
R(%)fw = 0 ‘has’ behavior B
3 or B: the system induced by R € R®*®[€]

o |
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Part 2: Inputs and outputs



Linear diff erential system: 3 = (R, RY,5).

|
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Linear diff erential system: 3 = (R, RY,5).
B induced by a polynomial matrix R € R®*"[£]:

B = {w € € (&) | R(S)w =0},

variable w = (wi, w2, ..., wy).

ldea: there are degrees of freedom in the diff erential equation

R(%)w = 0. In other words: the requirement w € B leaves
some of the components w1, wa, ..., Wy unconstrained. These
components are arbitrar y functions .

|
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Linear diff erential system: 3 = (R, RY,5).
B induced by a polynomial matrix R € R®*"[£]:

B = {w € € (&) | R(S)w =0},

variable w = (wi, w2, ..., wy).

ldea: there are degrees of freedom in the diff erential equation

R(%)w = 0. In other words: the requirement w € B leaves
some of the components w1, wa, ..., Wy unconstrained. These
components are arbitrar y functions . ~= Inputs.
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Linear diff erential system: 3 = (R, RY,5).
B induced by a polynomial matrix R € R®*"[£]:

B = {w € € (&) | R(S)w =0},

variable w = (wi, w2, ..., wy).

ldea: there are degrees of freedom in the diff erential equation

R(%)w = 0. In other words: the requirement w € B leaves
some of the components w1, wa, ..., Wy unconstrained. These
components are arbitrar y functions . ~= Inputs.

After choosing these free components, the remaining components
are determined up to Initial conditions.

|
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Linear diff erential system: 3 = (R, RY,5).
B induced by a polynomial matrix R € R®*"[£]:

B = {w € € (&) | R(S)w =0},

variable w = (wi, w2, ..., wy).

ldea: there are degrees of freedom in the diff erential equation

R(%)w = 0. In other words: the requirement w € B leaves
some of the components w1, wa, ..., Wy unconstrained. These
components are arbitrar y functions . ~= Inputs.

After choosing these free components, the remaining components
are determined up to initial conditions. ~» outputs.
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Linear diff erential system: 3 = (R, RY,5).
B induced by a polynomial matrix R € R®*"[£]:

B = {w € € (&) | R(S)w =0},

variable w = (wi, w2, ..., wy).

ldea: there are degrees of freedom in the diff erential equation

R(%)w = 0. In other words: the requirement w € B leaves
some of the components w1, wa, ..., Wy unconstrained. These
components are arbitrar y functions . ~= Inputs.

After choosing these free components, the remaining components
are determined up to initial conditions. ~» outputs.

|
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Example

Position g(t) € R3 of point mass M subject to a force
F(t) € R3:
¥ = (R,R%, B),

2

d
B=1gF) | M_3q—F =0}

|
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Example

-

Position g(t) € R3 of point mass M subject to a force
F(t) € R3:
> = (R,R,B),
2
= 0j}.
dt2 I

Three (diff erential) equations, six variables. (g, F') € 28 does not
put constraints on F': F'is allowed to be any function. After

choosing F', q is determined up to g(0) and %(O).

={(q, F) | M—;

o |
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Example

-

Position g(t) € R3 of point mass M subject to a force
F(t) € R3:
¥ = (R,R%, B),

2

d
B=1gF) | M_3q—F =0}

Three (diff erential) equations, six variables. (g, F') € 28 does not
put constraints on F': F'is allowed to be any function. After
choosing F', q is determined up to g(0) and %(O).

Also: (g, F') € B does not put constraints on q: q is allowed to
be any function. After choosing q, F'is determined uniquel y.

|
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-

Freevariables

Let B € £, w = (wi,wa,...,wy).
Let I = {il,iz,...,ik} C {1,2,...,W},

The functions w’ = (w;,, w;,,...,w;, ) obtained by selecting
from w = (w1, wa, ..., wy;) € B only the components in the
inde x set I, form again a linear diff erential system (the elimination

theorem, see lecture 3).

Denote it by Pré)5.

o |
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Freevariables

o N

Let B € £, w = (wi,wa,...,wy).
Let I = {il,iz,...,ik} C {1,2,...,W},

The functions w’ = (w;,, w;,,...,w;, ) obtained by selecting
from w = (w1, wa, ..., wy;) € B only the components in the
index set I, form again a linear diff erential system (the elimination
theorem, see lecture 3).

Denote it by Pré)5.

The set of variables {w;,, w;,, ..., w; }is called free in 2B | if

P8 = ¢ (R, R/,
Lwhere |I| = k, the cardinality of the set I. J
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Maximally free
fLet B ec LY w=(wi,w,...,wy). T
Let I = {il,iz,...,ik} C {1,2,...,W}

The set of variables {w;, , w;,, ..., w;, }is called
[maximall y free in %] if it is free, and if for any I’ C {1,2,...,w}
such that I & I’ we have

Pr®B S € (R,RIT).

o |
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Maximally free

o N

Let B € £ w = (w1, wa,...,Wy).
Let I = {il,iz,...,ik} C {1,2,...,W}

The set of variables {w;, , w;,, ..., w;, }is called
[maximall y free in %] if it is free, and if for any I’ C {1,2,...,w}
such that I & I’ we have

Pr®B S € (R,RIT).

So: if {w;,, w;,,...,w;, }is maximally free, then any set of
variab les obtained by adding to this set one or more of the
remaining variables is no long er free.

o |

Lecture 2 LINEAR DIFFERENTIAL SYSTEMS — p.16/22



Input/output partition

o N

Let B € £ w = (w1, wa,...,Wy).

Possib ly after permutation of its components, a partition of w into
w = (wM, w?®) with w® = (wy, wa,...,w,)and

w(2) = (Wyt1, Wpt2y...,Wy), is called

[an input/output partition in %j if {wy,wa,...,wy}is maximally
free.

o |
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Input/output partition

o N

Let B € £ w = (w1, wa,...,Wy).

Possib ly after permutation of its components, a partition of w into
w = (wM, w?®) with w® = (wy, wa,...,w,)and

w(2) = (Wyt1, Wpt2y...,Wy), is called

[an input/output partition in %j if {wy,wa,...,wy}is maximally
free.

In that case, w) is called an [input of %], and w(?) is called an

[output of %j. Usuall y, we write u for w(l), and vy for w(2).

o |
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Input/output partition

o N

Let B € £ w = (w1, wa,...,Wy).

Possib ly after permutation of its components, a partition of w into
w = (wM, w?®) with w® = (wy, wa,...,w,)and
w(2) = (Wyt1, Wpt2y...,Wy), is called

[an Input/output partition In %j if {wy,wa,...,wy}is maximally
free.

In that case, w) is called an [input of %], and w'?) is called an

[output of %j Usuall y, we write u for fw(l), and vy for w(2).

Non-uniqueness: for given %38, the manif est variable w in general
allows more than one input/output partition.

o |
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Input/output representations

-

Let 2B € £ be the system with kernel representation

d

d
P(E)’wz = Q(E)wla w = (w1, w2),

where P € R**®[£],and Q € R®**°*[£].

o |
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Input/output representations

o N

Let 2B € £ be the system with kernel representation

d d
P(E)’wz = Q(E)wla w = (w1, w2),

where P € R®**®[€],and Q € R**°[€£].

Question: Under what conditions on the polynomial matrices P
and Q is (w1, ws) an input/output partition (with input w; and
output ws)?

o |
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Input/output representations

o N

Let 2B € £ be the system with kernel representation

d d
P(E)’wz = Q(E)wla w = (w1, w2),

where P € R®**®[€],and Q € R**°[€£].

Question: Under what conditions on the polynomial matrices P
and Q is (w1, ws) an input/output partition (with input w; and
output ws)?

Proposition: (w1, ws2) is an input/output partition of 2B with input
w1, output wo if and only if P is square and det(P) # O.

o |
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Input/output representations

o N

Let 2B € £ be the system with kernel representation

d d
P(E)’wz = Q(E)wla w = (w1, w2),

where P € R®**®[€],and Q € R**°[€£].

Question: Under what conditions on the polynomial matrices P
and Q is (w1, ws) an input/output partition (with input w; and
output ws)?

Proposition: (w1, ws2) is an input/output partition of 2B with input
w1, output wo if and only if P is square and det(P) # O.

: d _ d :
The representation P(;)w2 = Q(g;)w1 is then called an
input/output representation of 5.

The rational matrix P~1Q is called the transf er matrix of 23 w.r.t.
the given input/output partition
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Does every B € £" have an input/output representation?

|
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Does every B € £" have an input/output representation?

Theorem: Let B € £", with manif est variable w. There exists
(possib ly after permutation of the components) a componentwise
partition of w into w = (u, y), and polynomial matrices

P € RY*Y[g], det(P) # 0, Q € RY*[£], such that

B = {(u,9) | Py = Q(5)ul

|
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Does every 28 € £" have an input/output representation?

Theorem: Let B € £", with manif est variable w. There exists
(possib ly after permutation of the components) a componentwise
partition of w into w = (u, y), and polynomial matrices

P € RY*Y[g], det(P) # 0, Q € RY*[£], such that

B = {(u,9) | Py = Q(5)ul

There even exists such a partition such that P_lQ IS proper.

o |
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-

Input and output cardinality

B € LY has many input/output partitions w = (u, y). However:
the number of input components in any input/output partition of 25
is fixed. This number is denoted by m(253) and is called the

[input cardinality of %]:

m(B) := max{k € N[{w;,,w;,,...,w; }is free in B}.

|
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Input and output cardinality

-

B € LY has many input/output partitions w = (u, y). However:
the number of input components in any input/output partition of 25
is fixed. This number is denoted by m(253) and is called the

[input cardinality of %]:

m(B) := max{k € N[{w;,,w;,,...,w; }is free in B}.

The [output cardinality of %j, denoted by p(28), is the number of

output components in any input/output partition of 23. Obviousl y:

p(B) = w —n(B).

o |

Lecture 2 LINEAR DIFFERENTIAL SYSTEMS — p.20/22



Input and output cardinality

-

B € LY has many input/output partitions w = (u, y). However:
the number of input components in any input/output partition of 25
is fixed. This number is denoted by m(253) and is called the

[input cardinality of %]:

m(B) := max{k € N[{w;,,w;,,...,w; }is free in B}.

The [output cardinality of %], denoted by p(28), is the number of

output components in any input/output partition of 23. Obviousl y:

p(B) = w —n(B).

For 98 = ker(R(%)): p(28) = rank(R).

o |
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® Linear differential systems: those decribed by linear constant
coefficient diff erential equations ~» £°, etc.
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R(&) polynomial matrix, R(%)w = 0 : a kernel
representation of the system induced by R.
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Summarizing
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Linear diff erential systems: those decribed by linear constant
coefficient diff erential equations ~» £°, etc.

Behavior := the set of €°° solutions (for convenience).
R(&) polynomial matrix, R(%)w = 0 : a kernel
representation of the system induced by R.

For a given system B, w = (u, y) is an input/output partition
If the set of components of w is maximall y free: these
components can be chosen arbitraril y. The components of y
are then determined up to initial conditions.
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Summarizing

-

Linear diff erential systems: those decribed by linear constant
coefficient diff erential equations ~» £°, etc.

Behavior := the set of €°° solutions (for convenience).

R(&) polynomial matrix, R(%)w = 0 : a kernel
representation of the system induced by R.

For a given system B, w = (u, y) is an input/output partition
If the set of components of w is maximall y free: these

components can be chosen arbitraril y. The components of y
are then determined up to initial conditions.

An input/output representation of *% is a special kind of kernel
representation: P(%)y = Q(%)u, w = (u,y), with
det(P) # 0. Equivalent with: (u,y) is an input/output

partition.
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o N

® A system has in general many i/o representations, so also i/o
partitions.
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o N

® A system has in general many i/o representations, so also i/o
partitions.

® Given *B, the number of components of w is the same in any

/o partition w = (u, y). This number is called the input
cardinality m(%8) of 2.
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End of Lecture 2
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