Lecture 2

LINEAR DIFFERENTIAL SYSTEMS

Harry Trentelman

University of Groningen, The Netherlands

Part 1: Generalities

Linear differential systems

We discuss the theory of dynamical systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

Linear differential systems

We discuss the theory of dynamical systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are

1. linear,

Linear differential systems

We discuss the theory of dynamical systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

1. linear,
meaning
$\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right) ;$

Linear differential systems

We discuss the theory of dynamical systems

$$
\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are

1. linear,
meaning
$\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right) ;$
2. time-invariant,

Linear differential systems

We discuss the theory of dynamical systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are

1. linear,
meaning

$$
\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right)
$$

2. time-invariant, meaning

$$
\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{t} \boldsymbol{w} \in \mathfrak{B}\right)\right)
$$

where σ^{t} denotes the $t-$ shift, $\sigma^{t} f\left(t^{\prime}\right):=f\left(t^{\prime}+t\right)$

Linear differential systems

We discuss the theory of dynamical systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

1. linear,
meaning

$$
\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right)
$$

2. time-invariant, meaning

$$
\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{t} \boldsymbol{w} \in \mathfrak{B}\right)\right)
$$ where σ^{t} denotes the $t-$ shift, $\sigma^{t} f\left(t^{\prime}\right):=f\left(t^{\prime}+t\right)$

3. differential,

Linear differential systems

We discuss the theory of dynamical systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

1. linear,
meaning

$$
\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right)
$$

2. time-invariant, meaning

$$
\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{t} \boldsymbol{w} \in \mathfrak{B}\right)\right)
$$

where σ^{t} denotes the t-shift, $\sigma^{t} f\left(t^{\prime}\right):=f\left(t^{\prime}+t\right)$
3. differential, meaning
\mathfrak{B} consists of the solutions of a system of differential equations.

Linear constant coefficient differential equations

Variables: $w_{1}, w_{2}, \ldots w_{\text {w }}$, up to n times differentiated, g equations.

$$
\begin{array}{cc}
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\vdots & \vdots \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\hline
\end{array}
$$

Coefficients $R_{i, j}^{\mathrm{k}}$: 3 indices!

Linear constant coefficient differential equations

Variables: $w_{1}, w_{2}, \ldots w_{\text {w }}$, up to n times differentiated, g equations.

$$
\begin{array}{cc}
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\vdots & \vdots \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0
\end{array}
$$

Coefficients $R_{i, j}^{\mathrm{k}}: 3$ indices!
$\mathrm{i}=1, \ldots, \mathrm{~g}:$ for the i -th differential equation,

Linear constant coefficient differential equations

Variables: $w_{1}, w_{2}, \ldots w_{\text {w }}$, up to n times differentiated, g equations.

$$
\begin{array}{cc}
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\vdots & \vdots \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0
\end{array}
$$

Coefficients $R_{i, j}^{\mathrm{k}}: 3$ indices!
$i=1, \ldots, g$: for the i-th differential equation,
$j=1, \ldots$, w : for the variable w_{j} involved,

Linear constant coefficient differential equations

Variables: $w_{1}, w_{2}, \ldots w_{\text {w }}$, up to n times differentiated, g equations.

$$
\begin{array}{cc}
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\vdots & \vdots \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0
\end{array}
$$

Coefficients $R_{i, j}^{\mathrm{k}}$: 3 indices!
$i=1, \ldots, g:$ for the i-th differential equation,
$j=1, \ldots, w$: for the variable w_{j} involved,
$\mathrm{k}=1, \ldots, \mathrm{n}$: for the order $\frac{d^{\mathrm{k}}}{d t^{k}}$ of differentiation.

In vector/matrix notation:

$$
\boldsymbol{w}=\left[\begin{array}{c}
w_{1} \\
w_{2}, \\
\vdots \\
w_{\mathrm{w}}
\end{array}\right], \quad \boldsymbol{R}_{\mathrm{k}}=\left[\begin{array}{cccc}
\boldsymbol{R}_{1,1}^{\mathrm{k}} & \boldsymbol{R}_{1,2}^{\mathrm{k}} & \cdots & \boldsymbol{R}_{1, \mathrm{w}}^{\mathrm{k}} \\
\boldsymbol{R}_{2,1}^{\mathrm{k}} & \boldsymbol{R}_{2,2}^{\mathrm{k}} & \cdots & \boldsymbol{R}_{2, \mathrm{w}}^{\mathrm{k}} \\
\vdots & \vdots & \cdots & \vdots \\
\boldsymbol{R}_{\mathrm{g}, 1}^{\mathrm{k}} & \boldsymbol{R}_{\mathrm{g}, 2}^{\mathrm{k}} & \cdots & \boldsymbol{R}_{\mathrm{g}, \mathrm{w}}^{\mathrm{k}}
\end{array}\right]
$$

In vector/matrix notation:

$$
\boldsymbol{w}=\left[\begin{array}{c}
\boldsymbol{w}_{1} \\
w_{2}, \\
\vdots \\
w_{\mathrm{w}}
\end{array}\right], \quad \boldsymbol{R}_{\mathrm{k}}=\left[\begin{array}{cccc}
\boldsymbol{R}_{1,1}^{\mathrm{k}} & \boldsymbol{R}_{1,2}^{\mathrm{k}} & \cdots & \boldsymbol{R}_{1, \mathrm{w}}^{\mathrm{k}} \\
\boldsymbol{R}_{2,1}^{\mathrm{k}} & \boldsymbol{R}_{2,2}^{\mathrm{k}} & \cdots & \boldsymbol{R}_{2, \mathrm{w}}^{\mathrm{k}} \\
\vdots & \vdots & \cdots & \vdots \\
\boldsymbol{R}_{\mathrm{g}, 1}^{\mathrm{k}} & \boldsymbol{R}_{\mathrm{g}, 2}^{\mathrm{k}} & \cdots & \boldsymbol{R}_{\mathrm{g}, \mathrm{w}}^{\mathrm{k}}
\end{array}\right] .
$$

Yields

$$
\boldsymbol{R}_{0} \boldsymbol{w}+\boldsymbol{R}_{1} \frac{d}{d t} w+\cdots+\boldsymbol{R}_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} \boldsymbol{w}=0
$$

with $\boldsymbol{R}_{0}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\mathrm{g} \times \mathrm{w}}$.

Combined with the polynomial matrix (in the indeterminate $\boldsymbol{\xi}$)

$$
R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}}
$$

we obtain for this the short notation

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=0 .
$$

Combined with the polynomial matrix (in the indeterminate $\boldsymbol{\xi}$)

$$
R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}}
$$

we obtain for this the short notation

$$
R\left(\frac{d}{d t}\right) w=0 .
$$

Including latent variables \sim

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

with $R, M \in \mathbb{R}^{\bullet \times \bullet}[\boldsymbol{\xi}]$.

Polynomial matrices

A polynomial matrix is a polynomial with matrix coefficients:

$$
P(\xi)=P_{0}+P_{1} \xi+\cdots+P_{\mathrm{n}} \xi^{\mathrm{n}}
$$

with $P_{0}, P_{1}, \ldots, P_{\mathrm{n}} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.

Polynomial matrices

A polynomial matrix is a polynomial with matrix coefficients:

$$
P(\xi)=P_{0}+P_{1} \xi+\cdots+P_{\mathrm{n}} \xi^{\mathrm{n}},
$$

with $P_{0}, P_{1}, \ldots, P_{\mathrm{n}} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
We may view $P(\xi)$ also as a matrix of polynomials:

$$
P(\xi)=\left[\begin{array}{cccc}
P_{1,1}(\xi) & P_{1,2}(\xi) & \cdots & P_{1, \mathrm{n}_{2}}(\xi) \\
P_{2,1}(\xi) & P_{2,2}(\xi) & \cdots & P_{2, \mathrm{n}_{2}}(\xi) \\
\vdots & \vdots & \cdots & \vdots \\
P_{\mathrm{n}_{1}, 1}(\xi) & P_{\mathrm{n}_{1}, 2}(\xi) & \cdots & P_{\mathrm{n}_{1}, \mathrm{n}_{2}}(\xi)
\end{array}\right]
$$

with the $P_{i, j}$'s polynomials with real coefficients.

Polynomial matrices

A polynomial matrix is a polynomial with matrix coefficients:

$$
P(\xi)=P_{0}+P_{1} \xi+\cdots+P_{\mathrm{n}} \xi^{\mathrm{n}},
$$

with $P_{0}, P_{1}, \ldots, P_{\mathrm{n}} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
We may view $P(\xi)$ also as a matrix of polynomials:

$$
P(\xi)=\left[\begin{array}{cccc}
P_{1,1}(\xi) & P_{1,2}(\xi) & \cdots & P_{1, \mathrm{n}_{2}}(\xi) \\
P_{2,1}(\xi) & P_{2,2}(\xi) & \cdots & P_{2, \mathrm{n}_{2}}(\xi) \\
\vdots & \vdots & \cdots & \vdots \\
P_{\mathrm{n}_{1}, 1}(\xi) & P_{\mathrm{n}_{1}, 2}(\xi) & \cdots & P_{\mathrm{n}_{1}, \mathrm{n}_{2}}(\xi)
\end{array}\right]
$$

with the $\boldsymbol{P}_{i, j}$'s polynomials with real coefficients.
Notation: $\mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi], \mathbb{R}^{\bullet \times \mathrm{n}}[\xi], \mathbb{R}^{\mathrm{n} \times \bullet}[\xi], \mathbb{R}^{\bullet \times \bullet}[\boldsymbol{\xi}]$.

$$
R\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the behavior of this system of differential equations?

$$
R\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the behavior of this system of differential equations?
When shall we define $w: \mathbb{R} \rightarrow \mathbb{R}^{W}$ to be a solution of $R\left(\frac{d}{d t}\right) w=0$?

$$
R\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the behavior of this system of differential equations?

When shall we define $w: \mathbb{R} \rightarrow \mathbb{R}^{W}$ to be a solution of
$R\left(\frac{d}{d t}\right) w=0$?
Possibilities:

$$
R\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the behavior of this system of differential equations?

When shall we define $w: \mathbb{R} \rightarrow \mathbb{R}^{\text {w }}$ to be a solution of
$R\left(\frac{d}{d t}\right) w=0 ?$
Possibilities:
Strong solutions?

$$
R\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the behavior of this system of differential equations?

When shall we define $w: \mathbb{R} \rightarrow \mathbb{R}^{\text {w }}$ to be a solution of
$R\left(\frac{d}{d t}\right) w=0 ?$
Possibilities:
Strong solutions?
Weak solutions?

$$
R\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the behavior of this system of differential equations?

When shall we define $w: \mathbb{R} \rightarrow \mathbb{R}^{\text {w }}$ to be a solution of
$R\left(\frac{d}{d t}\right) w=0 ?$
Possibilities:

Strong solutions?

Weak solutions?
$\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}\right)$ (infinitely differentiable) solutions?

$$
R\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the behavior of this system of differential equations?

When shall we define $w: \mathbb{R} \rightarrow \mathbb{R}^{\text {w }}$ to be a solution of
$R\left(\frac{d}{d t}\right) w=0$?
Possibilities:

Strong solutions?

Weak solutions?
$\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}\right)$ (infinitely differentiable) solutions?
Distributional solutions?

We will be 'pragmatic', and take the easy way out:
$\sim \mathfrak{C}^{\infty}$ solutions!

We will be 'pragmatic', and take the easy way out:

$\leadsto \mathfrak{C}^{\infty}$ solutions!

\mathfrak{C}^{∞}-solution: $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}}$ is a \mathfrak{C}^{∞}-solution of $R\left(\frac{d}{d t}\right) w=0$ if 1. w is infinitely differentiable $\left(:=w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)\right)$, and
2. $R\left(\frac{d}{d t}\right) w=0$.

We will be 'pragmatic', and take the easy way out:

$\leadsto \mathfrak{C}^{\infty}$ solutions!

\mathfrak{C}^{∞}-solution: $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}}$ is a \mathbb{C}^{∞}-solution of $R\left(\frac{d}{d t}\right) w=0$ if 1. w is infinitely differentiable $\left(:=w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)\right.$), and
2. $R\left(\frac{d}{d t}\right) w=0$.

Transmits main ideas, easier to handle, easy theory, sometimes (too) restrictive.

Whence, $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ defines the system $\Sigma=\left(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}\right)$ with

$$
\mathfrak{B}=\left\{\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, R\left(\frac{d}{d t}\right) \boldsymbol{w}=0\right.\right\}
$$

Whence, $R\left(\frac{d}{d t}\right) w=0$ defines the system $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$ with

$$
\mathfrak{B}=\left\{\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0\right.\right\}
$$

Proposition: This system is linear and time-invariant.

Whence, $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ defines the system $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$ with

$$
\mathfrak{B}=\left\{\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0\right.\right\}
$$

Proposition: This system is linear and time-invariant.
Note that \mathfrak{B} is equal to the kernel of the operator $R\left(\frac{d}{d t}\right)$. We will therefore call $R\left(\frac{d}{d t}\right) w=0$ a kernel representation of this system, or the behavior.

Whence, $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ defines the system $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$ with

$$
\mathfrak{B}=\left\{\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0\right.\right\}
$$

Proposition: This system is linear and time-invariant.
Note that \mathfrak{B} is equal to the kernel of the operator $R\left(\frac{d}{d t}\right)$. We will therefore call $R\left(\frac{d}{d t}\right) w=0$ a kernel representation of this system, or the behavior.
R determines \mathfrak{B} uniquely, the converse is not true!

Notation and nomenclature

\mathfrak{L}^{\bullet} : all such systems (with any - finite - number of variables)
$\mathfrak{L}^{\mathrm{W}}$: with w variables
$\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$
$\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$ (no ambiguity regarding \mathbb{T}, \mathbb{W})

Notation and nomenclature

\mathfrak{L}^{\bullet} : all such systems (with any - finite - number of variables) $\mathfrak{L}^{\mathrm{W}}$: with w variables
$\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$
$\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$ (no ambiguity regarding \mathbb{T}, \mathbb{W})
Elements of \mathfrak{L}^{\bullet} : linear differential systems
$\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ 'has' behavior \mathfrak{B}
Σ or \mathfrak{B} : the system induced by $R \in \mathbb{R}^{\bullet} \times \bullet[\xi]$

Part 2: Inputs and outputs

Linear differential system: $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$.

Linear differential system: $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$.
\mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{\bullet \times w}[\xi]$:

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

variable $w=\left(w_{1}, w_{2}, \ldots, w_{\text {w }}\right)$.
Idea: there are degrees of freedom in the differential equation $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}$. In other words: the requirement $\boldsymbol{w} \in \boldsymbol{\mathfrak { B }}$ leaves some of the components $w_{1}, w_{2}, \ldots, w_{\text {w }}$ unconstrained. These components are arbitrary functions.

Linear differential system: $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$.
\mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{\bullet \times w}[\xi]$:

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

variable $w=\left(w_{1}, w_{2}, \ldots, w_{\text {w }}\right)$.
Idea: there are degrees of freedom in the differential equation $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}$. In other words: the requirement $\boldsymbol{w} \in \boldsymbol{\mathfrak { B }}$ leaves some of the components $w_{1}, w_{2}, \ldots, w_{\text {w }}$ unconstrained. These components are arbitrary functions. ~ inputs.

Linear differential system: $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$.
\mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{\bullet \times w}[\xi]$:

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

variable $w=\left(w_{1}, w_{2}, \ldots, w_{\text {w }}\right)$.
Idea: there are degrees of freedom in the differential equation $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$. In other words: the requirement $w \in \mathfrak{B}$ leaves some of the components $w_{1}, w_{2}, \ldots, w_{w}$ unconstrained. These components are arbitrary functions. \sim inputs.

After choosing these free components, the remaining components are determined up to initial conditions.

Linear differential system: $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$.
\mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{\bullet \times w}[\xi]$:

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

variable $w=\left(w_{1}, w_{2}, \ldots, w_{\text {w }}\right)$.
Idea: there are degrees of freedom in the differential equation $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$. In other words: the requirement $w \in \mathfrak{B}$ leaves some of the components $w_{1}, w_{2}, \ldots, w_{w}$ unconstrained. These components are arbitrary functions. \sim inputs.

After choosing these free components, the remaining components are determined up to initial conditions. \sim outputs.

Linear differential system: $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$.
\mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{\bullet \times w}[\xi]$:

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

variable $w=\left(w_{1}, w_{2}, \ldots, w_{\text {w }}\right)$.
Idea: there are degrees of freedom in the differential equation $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$. In other words: the requirement $w \in \mathfrak{B}$ leaves some of the components $w_{1}, w_{2}, \ldots, w_{w}$ unconstrained. These components are arbitrary functions. \sim inputs.

After choosing these free components, the remaining components are determined up to initial conditions. \sim outputs.

Example

Position $q(t) \in \mathbb{R}^{3}$ of point mass M subject to a force $F(t) \in \mathbb{R}^{\mathbf{3}}:$

$$
\begin{gathered}
\Sigma=\left(\mathbb{R}, \mathbb{R}^{6}, \mathfrak{B}\right) \\
\mathfrak{B}=\left\{(q, F) \left\lvert\, M \frac{d^{2}}{d t^{2}} q-F=0\right.\right\}
\end{gathered}
$$

Example

Position $q(t) \in \mathbb{R}^{\mathbf{3}}$ of point mass M subject to a force $F(t) \in \mathbb{R}^{\mathbf{3}}$:

$$
\begin{gathered}
\Sigma=\left(\mathbb{R}, \mathbb{R}^{6}, \mathfrak{B}\right) \\
\mathfrak{B}=\left\{(q, F) \left\lvert\, M \frac{d^{2}}{d t^{2}} q-F=0\right.\right\}
\end{gathered}
$$

Three (differential) equations, six variables. $(\boldsymbol{q}, \boldsymbol{F}) \in \mathfrak{B}$ does not put constraints on $\boldsymbol{F}: \boldsymbol{F}$ is allowed to be any function. After choosing F, q is determined up to $q(0)$ and $\frac{d q}{d t}(0)$.

Example

Position $q(t) \in \mathbb{R}^{3}$ of point mass M subject to a force $F(t) \in \mathbb{R}^{\mathbf{3}}$:

$$
\begin{gathered}
\Sigma=\left(\mathbb{R}, \mathbb{R}^{6}, \mathfrak{B}\right) \\
\mathfrak{B}=\left\{(q, F) \left\lvert\, M \frac{d^{2}}{d t^{2}} q-F=0\right.\right\}
\end{gathered}
$$

Three (differential) equations, six variables. $(q, F) \in \mathfrak{B}$ does not put constraints on $\boldsymbol{F}: \boldsymbol{F}$ is allowed to be any function. After choosing F, q is determined up to $q(0)$ and $\frac{d q}{d t}(0)$.
Also: $(q, F) \in \mathfrak{B}$ does not put constraints on q : q is allowed to be any function. After choosing q, F is determined uniquely.

Free variables

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}, \quad \boldsymbol{w}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\mathrm{w}}\right)$.
Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{1,2, \ldots$, w $\}$,
The functions $w^{\prime}=\left(w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}\right)$ obtained by selecting from $w=\left(w_{1}, w_{2}, \ldots, w_{\mathrm{w}}\right) \in \mathfrak{B}$ only the components in the index set I, form again a linear differential system (the elimination theorem, see lecture 3).

Denote it by $\boldsymbol{P}_{\boldsymbol{I}} \mathfrak{B}$.

Free variables

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}, \quad \boldsymbol{w}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\mathrm{w}}\right)$.
Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{1,2, \ldots$, w $\}$,
The functions $w^{\prime}=\left(w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}\right)$ obtained by selecting from $w=\left(w_{1}, w_{2}, \ldots, w_{\text {w }}\right) \in \mathfrak{B}$ only the components in the index set I, form again a linear differential system (the elimination theorem, see lecture 3).

Denote it by $\boldsymbol{P}_{\boldsymbol{I}} \mathfrak{B}$.
The set of variables $\left\{w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}\right\}$ is called free in \mathfrak{B} if

$$
\boldsymbol{P}_{\boldsymbol{I}} \mathfrak{B}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{|I|}\right)
$$

where $|I|=k$, the cardinality of the set I.

Maximally free

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}, \quad \boldsymbol{w}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\mathrm{w}}\right)$.
Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{1,2, \ldots$, w $\}$
The set of variables $\left\{w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}\right\}$ is called maximally free in \mathfrak{B} if it is free, and if for any $I^{\prime} \subseteq\{1,2, \ldots$, w $\}$ such that $I \varsubsetneqq I^{\prime}$ we have

$$
\boldsymbol{P}_{I^{\prime}} \mathfrak{B} \varsubsetneqq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\left|I^{\prime}\right|}\right)
$$

Maximally free

Let $\mathfrak{B} \in \mathfrak{L}^{\mathfrak{W}}, \quad w=\left(w_{1}, w_{2}, \ldots, w_{\mathrm{w}}\right)$.
Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{1,2, \ldots$, w $\}$
The set of variables $\left\{w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}\right\}$ is called maximally free in \mathfrak{B} if it is free, and if for any $I^{\prime} \subseteq\{1,2, \ldots$, w $\}$ such that $I \varsubsetneqq I^{\prime}$ we have

$$
\boldsymbol{P}_{I^{\prime}} \mathfrak{B} \varsubsetneqq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\left|I^{\prime}\right|}\right)
$$

So: if $\left\{w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}\right\}$ is maximally free, then any set of variables obtained by adding to this set one or more of the remaining variables is no longer free.

Input/output partition

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}, \quad \boldsymbol{w}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\text {w }}\right)$.
Possibly after permutation of its components, a partition of \boldsymbol{w} into $w=\left(w^{(1)}, w^{(2)}\right)$, with $w^{(1)}=\left(w_{1}, w_{2}, \ldots, w_{\mathrm{m}}\right)$ and $w^{(2)}=\left(w_{\mathrm{m}+1}, w_{\mathrm{m}+2}, \ldots, w_{\mathrm{w}}\right)$, is called
an input/output partition in \mathfrak{B} if $\left\{w_{1}, w_{2}, \ldots, w_{\mathrm{m}}\right\}$ is maximally free.

Input/output partition

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}, \quad \boldsymbol{w}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\text {w }}\right)$.
Possibly after permutation of its components, a partition of \boldsymbol{w} into $w=\left(w^{(1)}, w^{(2)}\right)$, with $w^{(1)}=\left(w_{1}, w_{2}, \ldots, w_{\mathrm{m}}\right)$ and $w^{(2)}=\left(w_{\mathrm{m}+1}, w_{\mathrm{m}+2}, \ldots, w_{\mathrm{w}}\right)$, is called
an input/output partition in \mathfrak{B} if $\left\{w_{1}, w_{2}, \ldots, w_{\mathrm{m}}\right\}$ is maximally free.

In that case, $w^{(1)}$ is called an input of \mathfrak{B}, and $w^{(2)}$ is called an output of \mathfrak{B}. Usually, we write u for $w^{(1)}$, and y for $w^{(2)}$.

Input/output partition

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}, \quad \boldsymbol{w}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\text {w }}\right)$.
Possibly after permutation of its components, a partition of \boldsymbol{w} into $w=\left(w^{(1)}, w^{(2)}\right)$, with $w^{(1)}=\left(w_{1}, w_{2}, \ldots, w_{\mathrm{m}}\right)$ and $w^{(2)}=\left(w_{\mathrm{m}+1}, w_{\mathrm{m}+2}, \ldots, w_{\mathrm{w}}\right)$, is called
an input/output partition in \mathfrak{B} if $\left\{w_{1}, w_{2}, \ldots, w_{\mathrm{m}}\right\}$ is maximally free.

In that case, $w^{(1)}$ is called an input of \mathfrak{B}, and $w^{(2)}$ is called an output of \mathfrak{B}. Usually, we write u for $w^{(1)}$, and y for $w^{(2)}$.

Non-uniqueness: for given \mathfrak{B}, the manifest variable w in general allows more than one input/output partition.

Input/output representations

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$ be the system with kernel representation

$$
P\left(\frac{d}{d t}\right) w_{2}=Q\left(\frac{d}{d t}\right) w_{1}, \quad w=\left(w_{1}, w_{2}\right)
$$

where $P \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, and $Q \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.

Input/output representations

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ be the system with kernel representation

$$
P\left(\frac{d}{d t}\right) w_{2}=Q\left(\frac{d}{d t}\right) w_{1}, \quad w=\left(w_{1}, w_{2}\right)
$$

where $P \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, and $Q \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.
Question: Under what conditions on the polynomial matrices P and Q is $\left(w_{1}, w_{2}\right)$ an input/output partition (with input w_{1} and output w_{2})?

Input/output representations

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ be the system with kernel representation

$$
P\left(\frac{d}{d t}\right) w_{2}=Q\left(\frac{d}{d t}\right) w_{1}, \quad w=\left(w_{1}, w_{2}\right)
$$

where $P \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, and $Q \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.
Question: Under what conditions on the polynomial matrices P and Q is $\left(w_{1}, w_{2}\right)$ an input/output partition (with input w_{1} and output w_{2})?
Proposition: $\left(w_{1}, w_{2}\right)$ is an input/output partition of \mathfrak{B} with input w_{1}, output w_{2} if and only if P is square and $\operatorname{det}(P) \neq 0$.

Input/output representations

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ be the system with kernel representation

$$
P\left(\frac{d}{d t}\right) w_{2}=Q\left(\frac{d}{d t}\right) w_{1}, \quad w=\left(w_{1}, w_{2}\right)
$$

where $P \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, and $Q \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.
Question: Under what conditions on the polynomial matrices P and Q is $\left(w_{1}, w_{2}\right)$ an input/output partition (with input w_{1} and output w_{2})?
Proposition: $\left(w_{1}, w_{2}\right)$ is an input/output partition of \mathfrak{B} with input w_{1}, output w_{2} if and only if P is square and $\operatorname{det}(P) \neq 0$. The representation $P\left(\frac{d}{d t}\right) w_{2}=Q\left(\frac{d}{d t}\right) w_{1}$ is then called an input/output representation of \mathfrak{B}.
The rational matrix $P^{-1} Q$ is called the transfer matrix of \mathfrak{B} w.r.t. the given input/output partition

Does every $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ have an input/output representation?

Does every $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ have an input/output representation?

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, with manifest variable \boldsymbol{w}. There exists (possibly after permutation of the components) a componentwise partition of w into $w=(u, y)$, and polynomial matrices $\boldsymbol{P} \in \mathbb{R}^{\mathrm{y} \times \mathrm{y}}[\boldsymbol{\xi}], \operatorname{det}(\boldsymbol{P}) \neq 0, \boldsymbol{Q} \in \mathbb{R}^{\mathrm{y} \times \mathrm{u}}[\boldsymbol{\xi}]$, such that

$$
\mathfrak{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

Does every $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ have an input/output representation?

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbf{w}}$, with manifest variable \boldsymbol{w}. There exists (possibly after permutation of the components) a componentwise partition of w into $w=(u, y)$, and polynomial matrices $\boldsymbol{P} \in \mathbb{R}^{\mathrm{y} \times \mathrm{y}}[\boldsymbol{\xi}], \operatorname{det}(\boldsymbol{P}) \neq 0, \boldsymbol{Q} \in \mathbb{R}^{\mathrm{y} \times \mathrm{u}}[\boldsymbol{\xi}]$, such that

$$
\mathfrak{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\} .
$$

There even exists such a partition such that $P^{-1} Q$ is proper.

Input and output cardinality

$\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$ has many input/output partitions $\boldsymbol{w}=(\boldsymbol{u}, \boldsymbol{y})$. However: the number of input components in any input/output partition of \mathfrak{B} is fixed. This number is denoted by $m(\mathfrak{B})$ and is called the input cardinality of \mathfrak{B} :
$\mathrm{m}(\mathfrak{B}):=\max \left\{k \in \mathbb{N} \mid\left\{w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}\right\}\right.$ is free in $\left.\mathfrak{B}\right\}$.

Input and output cardinality

$\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$ has many input/output partitions $\boldsymbol{w}=(\boldsymbol{u}, \boldsymbol{y})$. However: the number of input components in any input/output partition of \mathfrak{B} is fixed. This number is denoted by $m(\mathfrak{B})$ and is called the input cardinality of \mathfrak{B} :

$$
\mathrm{m}(\mathfrak{B}):=\max \left\{k \in \mathbb{N} \mid\left\{w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}\right\} \text { is free in } \mathfrak{B}\right\}
$$

The output cardinality of \mathfrak{B}, denoted by $p(\mathfrak{B})$, is the number of output components in any input/output partition of \mathfrak{B}. Obviously:

$$
\mathrm{p}(\boldsymbol{B})=\mathrm{w}-\mathrm{m}(\boldsymbol{\mathfrak { B }})
$$

Input and output cardinality

$\mathfrak{B} \in \mathfrak{L}^{w}$ has many input/output partitions $w=(u, y)$. However: the number of input components in any input/output partition of \mathfrak{B} is fixed. This number is denoted by $m(\mathfrak{B})$ and is called the input cardinality of \mathfrak{B} :

$$
\mathrm{m}(\mathfrak{B}):=\max \left\{k \in \mathbb{N} \mid\left\{w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}\right\} \text { is free in } \mathfrak{B}\right\}
$$

The output cardinality of \mathfrak{B}, denoted by $p(\mathfrak{B})$, is the number of output components in any input/output partition of \mathfrak{B}. Obviously:

$$
\mathrm{p}(\mathfrak{B})=\mathrm{w}-\mathrm{m}(\boldsymbol{B}) .
$$

For $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right): \mathrm{p}(\mathfrak{B})=\operatorname{rank}(\boldsymbol{R})$.

Summarizing

- Linear differential systems: those decribed by linear constant coefficient differential equations $\leadsto \mathfrak{L}^{\bullet}$, etc.

Summarizing

- Linear differential systems: those decribed by linear constant coefficient differential equations $\sim \mathfrak{L}^{\bullet}$, etc.
- Behavior := the set of \mathfrak{C}^{∞} solutions (for convenience).

Summarizing

- Linear differential systems: those decribed by linear constant coefficient differential equations $\sim \mathfrak{L}^{\bullet}$, etc.
- Behavior := the set of \mathfrak{C}^{∞} solutions (for convenience).
- $R(\xi)$ polynomial matrix, $R\left(\frac{d}{d t}\right) w=0$: a kernel representation of the system induced by \boldsymbol{R}.

Summarizing

- Linear differential systems: those decribed by linear constant coefficient differential equations $\sim \mathfrak{L}^{\bullet}$, etc.
- Behavior := the set of \mathfrak{C}^{∞} solutions (for convenience).
- $R(\xi)$ polynomial matrix, $R\left(\frac{d}{d t}\right) w=0$: a kernel representation of the system induced by \boldsymbol{R}.
- For a given system $\mathfrak{B}, \boldsymbol{w}=(u, y)$ is an input/output partition if the set of components of u is maximally free: these components can be chosen arbitrarily. The components of y are then determined up to initial conditions.

Summarizing

- Linear differential systems: those decribed by linear constant coefficient differential equations $\sim \mathfrak{L}^{\bullet}$, etc.
- Behavior := the set of \mathfrak{C}^{∞} solutions (for convenience).
- $R(\xi)$ polynomial matrix, $R\left(\frac{d}{d t}\right) w=0$: a kernel representation of the system induced by \boldsymbol{R}.
- For a given system $\mathfrak{B}, \boldsymbol{w}=(u, y)$ is an input/output partition if the set of components of u is maximally free: these components can be chosen arbitrarily. The components of \boldsymbol{y} are then determined up to initial conditions.
- An input/output representation of \mathfrak{B} is a special kind of kernel representation: $P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)$, with $\operatorname{det}(P) \neq 0$. Equivalent with: (u, y) is an input/output partition.
- A system has in general many i/o representations, so also i/o partitions.
- A system has in general many i/o representations, so also i/o partitions.
- Given \mathfrak{B}, the number of components of u is the same in any i/o partition $w=(u, y)$. This number is called the input cardinality $\mathrm{m}(\mathfrak{B})$ of \mathfrak{B}.

End of Lecture 2

