Lecture 2

LINEAR DIFFERENTIAL SYSTEMS

Harry Trentelman

University of Groningen, The Netherlands

Minicourse ECC 2003

Cambridge, UK, September 2, 2003

Part 1: Generalities

We discuss the theory of dynamical systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{\scriptscriptstyle W}, \mathfrak{B})$$

that are

We discuss the theory of dynamical systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$$

that are

We discuss the theory of dynamical systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{\scriptscriptstyle{W}}, \mathfrak{B})$$

that are

1. *linear*, meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$

We discuss the theory of dynamical systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{\mathtt{w}}, \mathfrak{B})$$

that are

2. *time-invariant*,

We discuss the theory of dynamical systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{\mathtt{w}}, \mathfrak{B})$$

that are

1. *linear*, meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$ 2. *time-invariant*, meaning $((w \in \mathfrak{B}) \land (t \in \mathbb{R})) \Rightarrow (\sigma^t w \in \mathfrak{B})),$ where σ^t denotes the t-shift, $\sigma^t f(t') := f(t' + t)$

We discuss the theory of dynamical systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{\mathtt{w}}, \mathfrak{B})$$

that are

1. *linear*, meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$ 2. *time-invariant*, meaning $((w \in \mathfrak{B}) \land (t \in \mathbb{R})) \Rightarrow (\sigma^t w \in \mathfrak{B})),$ where σ^t denotes the t-shift, $\sigma^t f(t') := f(t' + t)$ 3. *differential*,

We discuss the theory of dynamical systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{\mathtt{W}}, \mathfrak{B})$$

that are

linear, 1. meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$ 2. *time-invariant*, meaning $((\boldsymbol{w} \in \mathfrak{B}) \land (t \in \mathbb{R})) \Rightarrow (\sigma^t \boldsymbol{w} \in \mathfrak{B})),$ where σ^t denotes the t-shift, $\sigma^t f(t') := f(t'+t)$ differential, 3. meaning \mathfrak{B} consists of the solutions of a system of differential equations.

Variables: $w_1, w_2, \ldots w_w$, up to n times differentiated, g equations.

$$\begin{split} \Sigma_{j=1}^{w} R_{1,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{1,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{1,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0\\ \Sigma_{j=1}^{w} R_{2,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{2,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{2,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0\\ \vdots & \vdots & \vdots \\ \Sigma_{j=1}^{w} R_{g,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{g,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{g,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0 \end{split}$$

Coefficients $R^{
m k}_{
m i,j}$: 3 indices!

Variables: $w_1, w_2, \ldots w_w$, up to n times differentiated, g equations.

$$\begin{split} \Sigma_{j=1}^{w} R_{1,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{1,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{1,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0 \\ \Sigma_{j=1}^{w} R_{2,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{2,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{2,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0 \\ \vdots & \vdots & \vdots \\ \Sigma_{j=1}^{w} R_{g,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{g,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{g,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0 \end{split}$$

Coefficients $R_{i,j}^{k}$: 3 indices! $i = 1, \ldots, g$: for the i-th differential equation,

Variables: $w_1, w_2, \ldots w_w$, up to n times differentiated, g equations.

$$\begin{split} \Sigma_{j=1}^{w} R_{1,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{1,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{1,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0\\ \Sigma_{j=1}^{w} R_{2,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{2,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{2,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0\\ \vdots & \vdots & \vdots\\ \Sigma_{j=1}^{w} R_{g,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{g,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{g,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0 \end{split}$$

Coefficients $R_{i,j}^{k}$: 3 indices! $i = 1, \dots, g$: for the i-th differential equation, $j = 1, \dots, w$: for the variable w_{j} involved,

Variables: $w_1, w_2, \ldots w_w$, up to n times differentiated, g equations.

$$\begin{split} \Sigma_{j=1}^{w} R_{1,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{1,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{1,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0\\ \Sigma_{j=1}^{w} R_{2,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{2,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{2,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0\\ \vdots & \vdots & \vdots\\ \Sigma_{j=1}^{w} R_{g,j}^{0} w_{j} + \Sigma_{j=1}^{w} R_{g,j}^{1} \frac{d}{dt} w_{j} + \dots + \Sigma_{j=1}^{w} R_{g,j}^{n} \frac{d^{n}}{dt^{n}} w_{j} &= 0 \end{split}$$

Coefficients $R_{i,j}^{k}$: 3 indices! $i = 1, \dots, g$: for the i-th differential equation, $j = 1, \dots, w$: for the variable w_{j} involved, $k = 1, \dots, n$: for the order $\frac{d^{k}}{dt^{k}}$ of differentiation. In vector/matrix notation:

$$egin{aligned} m{w} = egin{bmatrix} m{w_1} \ m{w_2}, \ dots \ m{w_2}, \ m{w_w} \end{bmatrix}, & R_{ ext{k}} = egin{bmatrix} R_{1,1}^{ ext{k}} & R_{1,2}^{ ext{k}} & \cdots & R_{1, ext{w}}^{ ext{k}} \ R_{2,1}^{ ext{k}} & R_{2,2}^{ ext{k}} & \cdots & R_{2, ext{w}}^{ ext{k}} \ dots & dots & dots & \cdots & dots \ dots & dot$$

In vector/matrix notation:

Yields

$$R_0 oldsymbol{w} + R_1 rac{d}{dt} oldsymbol{w} + \dots + R_{ extsf{n}} rac{d^{ extsf{n}}}{dt^{ extsf{n}}} oldsymbol{w} = 0,$$

with $R_0, R_1, \cdots, R_{ ext{n}} \in \mathbb{R}^{ ext{g} imes imes}$.

Combined with the polynomial matrix (in the indeterminate ξ)

$$R(\xi)=R_0+R_1\xi+\dots+R_{
m n}\xi^{
m n},$$

we obtain for this the short notation

$$R(rac{d}{dt})oldsymbol{w}=0.$$

Combined with the polynomial matrix (in the indeterminate ξ)

$$R(\xi)=R_0+R_1\xi+\cdots+R_{
m n}\xi^{
m n},$$

we obtain for this the short notation

$$R(rac{d}{dt})oldsymbol{w}=0.$$

Including latent variables \rightsquigarrow

$$R(rac{d}{dt}) oldsymbol{w} = M(rac{d}{dt}) oldsymbol{\ell}$$

with $R, M \in \mathbb{R}^{ullet imes ullet}[\xi]$.

Polynomial matrices

A polynomial matrix is a polynomial with matrix coefficients:

$$P(\xi)=P_0+P_1\xi+\cdots+P_{\mathrm{n}}\xi^{\mathrm{n}},$$

with $P_0, P_1, \ldots, P_{ extsf{n}} \in \mathbb{R}^{ extsf{n}_1 imes extsf{n}_2}$.

Polynomial matrices

A polynomial matrix is a polynomial with matrix coefficients:

$$P(\xi)=P_0+P_1\xi+\dots+P_{\mathrm{n}}\xi^{\mathrm{n}},$$

with $P_0, P_1, \ldots, P_n \in \mathbb{R}^{n_1 \times n_2}$. We may view $P(\xi)$ also as a matrix of polynomials:

$$P(\xi) = egin{bmatrix} P_{1,1}(\xi) & P_{1,2}(\xi) & \cdots & P_{1,{
m n}_2}(\xi) \ P_{2,1}(\xi) & P_{2,2}(\xi) & \cdots & P_{2,{
m n}_2}(\xi) \ dots & dots & \cdots & dots \ P_{{
m n}_1,1}(\xi) & P_{{
m n}_1,2}(\xi) & \cdots & P_{{
m n}_1,{
m n}_2}(\xi) \end{bmatrix},$$

with the $P_{i,j}$'s polynomials with real coefficients.

Polynomial matrices

A polynomial matrix is a polynomial with matrix coefficients:

$$P(\xi)=P_0+P_1\xi+\dots+P_{\mathrm{n}}\xi^{\mathrm{n}},$$

with $P_0, P_1, \ldots, P_n \in \mathbb{R}^{n_1 imes n_2}$. We may view $P(\xi)$ also as a matrix of polynomials:

$$P(\xi) = egin{bmatrix} P_{1,1}(\xi) & P_{1,2}(\xi) & \cdots & P_{1,{
m n}_2}(\xi) \ P_{2,1}(\xi) & P_{2,2}(\xi) & \cdots & P_{2,{
m n}_2}(\xi) \ dots & dots & \cdots & dots \ P_{{
m n}_1,1}(\xi) & P_{{
m n}_1,2}(\xi) & \cdots & P_{{
m n}_1,{
m n}_2}(\xi) \end{bmatrix},$$

with the $P_{i,j}$'s polynomials with real coefficients.

Notation: $\mathbb{R}^{n_1 \times n_2}[\xi], \mathbb{R}^{\bullet \times n}[\xi], \mathbb{R}^{n \times \bullet}[\xi], \mathbb{R}^{\bullet \times \bullet}[\xi]$.

$$R(rac{d}{dt})oldsymbol{w}=0$$

$$R(rac{d}{dt})oldsymbol{w}=0$$

When shall we define $w:\mathbb{R} o\mathbb{R}^{ imes}$ to be a solution of $R(rac{d}{dt})w=0$?

$$R(rac{d}{dt})oldsymbol{w}=0$$

When shall we define $w:\mathbb{R} o\mathbb{R}^{ imes}$ to be a solution of $R(rac{d}{dt})w=0$?

Possibilities:

$$R(rac{d}{dt})oldsymbol{w}=0$$

When shall we define $w:\mathbb{R} o\mathbb{R}^{ imes}$ to be a solution of $R(rac{d}{dt})w=0$?

Possibilities:

Strong solutions?

$$R(rac{d}{dt})oldsymbol{w}=0$$

When shall we define $w:\mathbb{R} o\mathbb{R}^{ imes}$ to be a solution of $R(rac{d}{dt})w=0$?

Possibilities:

Strong solutions?

Weak solutions?

$$R(rac{d}{dt})oldsymbol{w}=0$$

When shall we define $w:\mathbb{R} o\mathbb{R}^{ imes}$ to be a solution of $R(rac{d}{dt})w=0$?

Possibilities:

Strong solutions?

Weak solutions?

 $\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{W})$ (infinitely differentiable) solutions?

$$R(rac{d}{dt})oldsymbol{w}=0$$

When shall we define $w:\mathbb{R} o\mathbb{R}^{ imes}$ to be a solution of $R(rac{d}{dt})w=0$?

Possibilities:

Strong solutions?

Weak solutions?

 $\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{W})$ (infinitely differentiable) solutions?

Distributional solutions?

We will be 'pragmatic', and take the easy way out:

We will be 'pragmatic', and take the easy way out:

 $\rightsquigarrow \mathfrak{C}^{\infty}$ solutions!

<u> \mathfrak{C}^∞ -solution:</u> $w:\mathbb{R}\to\mathbb{R}^w$ is a \mathfrak{C}^∞ -solution of $R(rac{d}{dt})w=0$ if

- 1. w is infinitely differentiable (:= $w \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{ imes})$), and
- 2. $R(\frac{d}{dt})w = 0.$

We will be 'pragmatic', and take the easy way out:

 $\rightsquigarrow \mathfrak{C}^{\infty}$ solutions!

<u> \mathfrak{C}^∞ -solution:</u> $w:\mathbb{R}\to\mathbb{R}^w$ is a <u> \mathfrak{C}^∞ -solution</u> of $R(rac{d}{dt})w=0$ if

1. w is infinitely differentiable (:= $w \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{ imes})$), and

2.
$$R(\frac{d}{dt})w = 0.$$

Transmits main ideas, easier to handle, easy theory, sometimes (too) restrictive.

Whence,
$$R(rac{d}{dt})m{w}=0$$
 defines the system $\Sigma=(\mathbb{R},\mathbb{R}^{ imes},\mathfrak{B})$ with

$$\mathfrak{B} = \{ \boldsymbol{w} \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{W}}) \mid R(\frac{d}{dt})\boldsymbol{w} = 0 \}.$$

Whence,
$$R(rac{d}{dt})m{w}=0$$
 defines the system $\Sigma=(\mathbb{R},\mathbb{R}^{ imes},\mathfrak{B})$ with

$$\mathfrak{B} = \{ \boldsymbol{w} \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W}) \mid R(\frac{d}{dt})\boldsymbol{w} = 0 \}.$$

Proposition: This system is **linear** and **time-invariant**.

Whence,
$$R(rac{d}{dt})m{w}=0$$
 defines the system $\Sigma=(\mathbb{R},\mathbb{R}^{ imes},\mathfrak{B})$ with

$$\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W}) \mid R(\frac{d}{dt})w = 0 \}.$$

Proposition: This system is linear and time-invariant.

Note that \mathfrak{B} is equal to the kernel of the operator $R(\frac{d}{dt})$. We will therefore call $R(\frac{d}{dt})w = 0$ a kernel representation of this system, or the behavior.

Whence,
$$R(rac{d}{dt})m{w}=0$$
 defines the system $\Sigma=(\mathbb{R},\mathbb{R}^{ imes},\mathfrak{B})$ with

$$\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W}) \mid R(\frac{d}{dt})w = 0 \}.$$

Proposition: This system is linear and time-invariant.

Note that \mathfrak{B} is equal to the kernel of the operator $R(\frac{d}{dt})$. We will therefore call $R(\frac{d}{dt})w = 0$ a kernel representation of this system, or the behavior.

R determines \mathfrak{B} uniquely, the converse is not true!

Notation and nomenclature

- \mathfrak{L}^{ullet} : all such systems (with any finite number of variables)
- $\mathfrak{L}^{\mathtt{W}}:$ with \mathtt{W} variables
- $\mathfrak{B} = \ker(R(rac{d}{dt}))$
- $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle{W}}$ (no ambiguity regarding \mathbb{T},\mathbb{W})

Notation and nomenclature

- \mathfrak{L}^{ullet} : all such systems (with any finite number of variables)
- $\mathfrak{L}^{\mathtt{W}}$: with \mathtt{W} variables
- $\mathfrak{B} = \ker(R(rac{d}{dt}))$
- $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle{W}}$ (no ambiguity regarding \mathbb{T},\mathbb{W})
- Elements of \mathfrak{L}^{\bullet} : *linear differential systems*
- $R(rac{d}{dt})oldsymbol{w}=0$ 'has' behavior ${\mathfrak B}$
- Σ or \mathfrak{B} : the system *induced* by $R \in \mathbb{R}^{ullet imes ullet}[\xi]$

Part 2: Inputs and outputs

 \mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{ullet imes \mathbb{W}}[\xi]$:

$$\mathfrak{B} = \{ oldsymbol{w} \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{w}) \mid R(rac{d}{dt})oldsymbol{w} = 0 \},$$

variable $w = (w_1, w_2, \ldots, w_{\scriptscriptstyle W}).$

Idea: there are degrees of freedom in the differential equation $R(\frac{d}{dt})w = 0$. In other words: the requirement $w \in \mathfrak{B}$ leaves some of the components w_1, w_2, \ldots, w_w unconstrained. These components are arbitrary functions.

 \mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{ullet imes \mathbb{W}}[\xi]$:

$$\mathfrak{B} = \{ oldsymbol{w} \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{w}) \mid R(rac{d}{dt})oldsymbol{w} = 0 \},$$

variable $w = (w_1, w_2, \ldots, w_{\scriptscriptstyle W}).$

Idea: there are degrees of freedom in the differential equation $R(\frac{d}{dt})w = 0$. In other words: the requirement $w \in \mathfrak{B}$ leaves some of the components w_1, w_2, \ldots, w_w unconstrained. These components are arbitrary functions. \rightsquigarrow inputs.

 \mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{ullet imes \mathbb{W}}[\xi]$:

$$\mathfrak{B} = \{ oldsymbol{w} \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{w}) \mid R(rac{d}{dt})oldsymbol{w} = 0 \},$$

variable $w = (w_1, w_2, \ldots, w_{\scriptscriptstyle W}).$

Idea: there are degrees of freedom in the differential equation $R(\frac{d}{dt})w = 0$. In other words: the requirement $w \in \mathfrak{B}$ leaves some of the components w_1, w_2, \ldots, w_w unconstrained. These components are arbitrary functions. \rightsquigarrow inputs.

After choosing these free components, the remaining components are determined up to initial conditions.

 \mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{ullet imes \mathbb{W}}[\xi]$:

$$\mathfrak{B} = \{ oldsymbol{w} \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{w}) \mid R(rac{d}{dt})oldsymbol{w} = 0 \},$$

variable $w = (w_1, w_2, \ldots, w_{\scriptscriptstyle W}).$

Idea: there are degrees of freedom in the differential equation $R(\frac{d}{dt})w = 0$. In other words: the requirement $w \in \mathfrak{B}$ leaves some of the components w_1, w_2, \ldots, w_w unconstrained. These components are arbitrary functions. \rightsquigarrow inputs.

After choosing these free components, the remaining components are determined up to initial conditions. \rightarrow outputs.

 \mathfrak{B} induced by a polynomial matrix $R \in \mathbb{R}^{ullet imes \mathbb{W}}[\xi]$:

$$\mathfrak{B} = \{ oldsymbol{w} \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{w}) \mid R(rac{d}{dt})oldsymbol{w} = 0 \},$$

variable $w = (w_1, w_2, \ldots, w_{\scriptscriptstyle W}).$

Idea: there are degrees of freedom in the differential equation $R(\frac{d}{dt})w = 0$. In other words: the requirement $w \in \mathfrak{B}$ leaves some of the components w_1, w_2, \ldots, w_w unconstrained. These components are arbitrary functions. \rightsquigarrow inputs.

After choosing these free components, the remaining components are determined up to initial conditions. \rightarrow outputs.

Example

Position $q(t) \in \mathbb{R}^3$ of point mass M subject to a force $F(t) \in \mathbb{R}^3$:

 $\Sigma = (\mathbb{R}, \mathbb{R}^6, \mathfrak{B}),$ $\mathfrak{B} = \{ (q, F) \mid M rac{d^2}{dt^2} q - F = 0 \}.$

Example

Position $q(t) \in \mathbb{R}^3$ of point mass M subject to a force $F(t) \in \mathbb{R}^3$:

 $\Sigma = (\mathbb{R}, \mathbb{R}^6, \mathfrak{B}),$

$$\mathfrak{B} = \{ (\boldsymbol{q}, \boldsymbol{F}) \mid M rac{d^2}{dt^2} \boldsymbol{q} - \boldsymbol{F} = 0 \}.$$

Three (differential) equations, six variables. $(q, F) \in \mathfrak{B}$ does not put constraints on F: F is allowed to be any function. After choosing F, q is determined up to q(0) and $\frac{dq}{dt}(0)$.

Example

Position $q(t) \in \mathbb{R}^3$ of point mass M subject to a force $F(t) \in \mathbb{R}^3$:

 $\Sigma = (\mathbb{R}, \mathbb{R}^6, \mathfrak{B}),$

$$\mathfrak{B} = \{ (\boldsymbol{q}, \boldsymbol{F}) \mid M rac{d^2}{dt^2} \boldsymbol{q} - \boldsymbol{F} = 0 \}.$$

Three (differential) equations, six variables. $(q, F) \in \mathfrak{B}$ does not put constraints on F: F is allowed to be any function. After choosing F, q is determined up to q(0) and $\frac{dq}{dt}(0)$. Also: $(q, F) \in \mathfrak{B}$ does not put constraints on q: q is allowed to be any function. After choosing q, F is determined uniquely.

Free variables

Let $\mathfrak{B} \in \mathfrak{L}^{\scriptscriptstyle \mathbb{V}}$, $w=(w_1,w_2,\ldots,w_{\scriptscriptstyle \mathbb{V}}).$

Let $I=\{i_1,i_2,\ldots,i_k\}\subseteq\{1,2,\ldots,{\tt w}\}$,

The functions $w' = (w_{i_1}, w_{i_2}, \dots, w_{i_k})$ obtained by selecting from $w = (w_1, w_2, \dots, w_w) \in \mathfrak{B}$ only the components in the index set I, form again a linear differential system (*the elimination theorem*, see lecture 3).

Denote it by $P_I \mathfrak{B}$.

Free variables

Let $\mathfrak{B} \in \mathfrak{L}^{\scriptscriptstyle \mathbb{V}}$, $w=(w_1,w_2,\ldots,w_{\scriptscriptstyle \mathbb{V}}).$

Let $I=\{i_1,i_2,\ldots,i_k\}\subseteq\{1,2,\ldots,{\tt w}\}$,

The functions $w' = (w_{i_1}, w_{i_2}, \dots, w_{i_k})$ obtained by selecting from $w = (w_1, w_2, \dots, w_w) \in \mathfrak{B}$ only the components in the index set I, form again a linear differential system (*the elimination theorem, see lecture 3*).

Denote it by $P_I \mathfrak{B}$.

The set of variables $\{w_{i_1}, w_{i_2}, \ldots, w_{i_k}\}$ is called (free in \mathfrak{B}) if

$$P_I\mathfrak{B}=\mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{|I|}),$$

where |I| = k, the cardinality of the set I.

Maximally free

Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$, $w = (w_1, w_2, \dots, w_{\mathbb{W}})$. Let $I = \{i_1, i_2, \dots, i_k\} \subseteq \{1, 2, \dots, \mathbb{W}\}$ The set of variables $\{w_{i_1}, w_{i_2}, \dots, w_{i_k}\}$ is called

maximally free in \mathfrak{B} if it is free, and if for any $I' \subseteq \{1, 2, ..., w\}$ such that $I \subsetneq I'$ we have

 $P_{I'}\mathfrak{B} \subsetneqq \mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{|I'|}).$

Maximally free

Let $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle W},\quad w=(w_1,w_2,\ldots,w_{\scriptscriptstyle W}).$ Let $I=\{i_1,i_2,\ldots,i_k\}\subset\{1,2,\ldots,{\scriptscriptstyle W}\}$

The set of variables $\{w_{i_1}, w_{i_2}, \ldots, w_{i_k}\}$ is called maximally free in \mathfrak{B} if it is free, and if for any $I' \subseteq \{1, 2, \ldots, w\}$ such that $I \subsetneq I'$ we have

$$P_{I'}\mathfrak{B} \subsetneqq \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{|I'|}).$$

So: if $\{w_{i_1}, w_{i_2}, \ldots, w_{i_k}\}$ is maximally free, then any set of variables obtained by adding to this set one or more of the remaining variables is no longer free.

Input/output partition

Possibly after permutation of its components, a partition of w into $w = (w^{(1)}, w^{(2)})$, with $w^{(1)} = (w_1, w_2, \dots, w_m)$ and $w^{(2)} = (w_{m+1}, w_{m+2}, \dots, w_w)$, is called (an input/output partition in \mathfrak{B}) if $\{w_1, w_2, \dots, w_m\}$ is maximally free.

Input/output partition

Possibly after permutation of its components, a partition of w into $w = (w^{(1)}, w^{(2)})$, with $w^{(1)} = (w_1, w_2, \dots, w_m)$ and $w^{(2)} = (w_{m+1}, w_{m+2}, \dots, w_w)$, is called (an input/output partition in \mathfrak{B}) if $\{w_1, w_2, \dots, w_m\}$ is maximally free.

In that case, $w^{(1)}$ is called an input of \mathfrak{B} , and $w^{(2)}$ is called an output of \mathfrak{B} . Usually, we write u for $w^{(1)}$, and y for $w^{(2)}$.

Input/output partition

Possibly after permutation of its components, a partition of w into $w = (w^{(1)}, w^{(2)})$, with $w^{(1)} = (w_1, w_2, \dots, w_m)$ and $w^{(2)} = (w_{m+1}, w_{m+2}, \dots, w_w)$, is called (an input/output partition in \mathfrak{B}) if $\{w_1, w_2, \dots, w_m\}$ is maximally free.

In that case, $w^{(1)}$ is called an input of \mathfrak{B} , and $w^{(2)}$ is called an output of \mathfrak{B} . Usually, we write u for $w^{(1)}$, and y for $w^{(2)}$.

Non-uniqueness: for given \mathfrak{B} , the manifest variable w in general allows more than one input/output partition.

Let $\mathfrak{B} \in \mathfrak{L}^{\scriptscriptstyle W}$ be the system with kernel representation

$$P(\frac{d}{dt})w_2 = Q(\frac{d}{dt})w_1, \quad w = (w_1, w_2),$$

where $P \in \mathbb{R}^{ullet imes ullet}[\xi]$, and $Q \in \mathbb{R}^{ullet imes ullet}[\xi]$.

Let $\mathfrak{B} \in \mathfrak{L}^{\scriptscriptstyle W}$ be the system with kernel representation

$$P(\frac{d}{dt})w_2 = Q(\frac{d}{dt})w_1, \ w = (w_1, w_2),$$

where $P \in \mathbb{R}^{ullet imes ullet}[\xi]$, and $Q \in \mathbb{R}^{ullet imes ullet}[\xi]$.

Question: Under what conditions on the polynomial matrices P and Q is (w_1, w_2) an input/output partition (with input w_1 and output w_2)?

Let $\mathfrak{B} \in \mathfrak{L}^{\scriptscriptstyle W}$ be the system with kernel representation

$$P(rac{d}{dt})w_2 = Q(rac{d}{dt})w_1, \ w = (w_1, w_2),$$

where $P \in \mathbb{R}^{ullet imes ullet}[\xi]$, and $Q \in \mathbb{R}^{ullet imes ullet}[\xi]$.

Question: Under what conditions on the polynomial matrices P and Q is (w_1, w_2) an input/output partition (with input w_1 and output w_2)?

Proposition: (w_1, w_2) is an input/output partition of \mathfrak{B} with input w_1 , output w_2 if and only if P is square and $\det(P) \neq 0$.

Let $\mathfrak{B} \in \mathfrak{L}^{\scriptscriptstyle W}$ be the system with kernel representation

$$P(\frac{d}{dt})w_2 = Q(\frac{d}{dt})w_1, \quad w = (w_1, w_2),$$

where $P \in \mathbb{R}^{ullet imes ullet}[\xi]$, and $Q \in \mathbb{R}^{ullet imes ullet}[\xi]$.

Question: Under what conditions on the polynomial matrices P and Q is (w_1, w_2) an input/output partition (with input w_1 and output w_2)?

Proposition: (w_1, w_2) is an input/output partition of \mathfrak{B} with input w_1 , output w_2 if and only if P is square and $\det(P) \neq 0$. The representation $P(\frac{d}{dt})w_2 = Q(\frac{d}{dt})w_1$ is then called an input/output representation of \mathfrak{B} . The rational matrix $P^{-1}Q$ is called the transfer matrix of \mathfrak{B} w.r.t. the given input/output partition

Does every $\mathfrak{B} \in \mathfrak{L}^{W}$ have an input/output representation?

Does every $\mathfrak{B} \in \mathfrak{L}^{w}$ have an input/output representation?

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$, with manifest variable w. There exists (possibly after permutation of the components) a componentwise partition of w into w = (u, y), and polynomial matrices $P \in \mathbb{R}^{y \times y}[\xi], \det(P) \neq 0, Q \in \mathbb{R}^{y \times u}[\xi]$, such that

$$\mathfrak{B} = \{ (\boldsymbol{u}, \boldsymbol{y}) \mid P(\frac{d}{dt})\boldsymbol{y} = Q(\frac{d}{dt})\boldsymbol{u} \}.$$

Does every $\mathfrak{B} \in \mathfrak{L}^{w}$ have an input/output representation?

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$, with manifest variable w. There exists (possibly after permutation of the components) a componentwise partition of w into w = (u, y), and polynomial matrices $P \in \mathbb{R}^{y \times y}[\xi], \det(P) \neq 0, Q \in \mathbb{R}^{y \times u}[\xi]$, such that

$$\mathfrak{B} = \{ (oldsymbol{u},oldsymbol{y}) \mid P(rac{d}{dt})oldsymbol{y} = Q(rac{d}{dt})oldsymbol{u} \}.$$

There even exists such a partition such that $P^{-1}Q$ is proper.

Input and output cardinality

 $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle W}$ has many input/output partitions w=(u,y). However: the number of input components in any input/output partition of \mathfrak{B} is fixed. This number is denoted by $\mathfrak{m}(\mathfrak{B})$ and is called the

input cardinality of \mathfrak{B} :

 $\mathtt{m}(\mathfrak{B}) := \max\{k \in \mathbb{N} | \{w_{i_1}, w_{i_2}, \dots, w_{i_k}\} \text{ is free in } \mathfrak{B}\}.$

Input and output cardinality

 $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle W}$ has many input/output partitions w=(u,y). However: the number of input components in any input/output partition of \mathfrak{B} is fixed. This number is denoted by $\mathfrak{m}(\mathfrak{B})$ and is called the

input cardinality of \mathfrak{B} :

$$\mathtt{m}(\mathfrak{B}):=\max\{k\in\mathbb{N}|\{w_{i_1},w_{i_2},\ldots,w_{i_k}\}\text{ is free in }\mathfrak{B}\}.$$

The output cardinality of \mathfrak{B} , denoted by $p(\mathfrak{B})$, is the number of

output components in any input/output partition of \mathfrak{B} . Obviously:

$$p(\mathfrak{B}) = w - m(\mathfrak{B}).$$

Input and output cardinality

 $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle W}$ has many input/output partitions w=(u,y). However: the number of input components in any input/output partition of \mathfrak{B} is fixed. This number is denoted by $\mathtt{m}(\mathfrak{B})$ and is called the

input cardinality of \mathfrak{B} :

$$\mathtt{m}(\mathfrak{B}):=\max\{k\in\mathbb{N}|\{w_{i_1},w_{i_2},\ldots,w_{i_k}\}\text{ is free in }\mathfrak{B}\}.$$

The output cardinality of \mathfrak{B} , denoted by $p(\mathfrak{B})$, is the number of

output components in any input/output partition of \mathfrak{B} . Obviously:

$$p(\mathfrak{B}) = w - m(\mathfrak{B}).$$

For $\mathfrak{B} = \ker(R(\frac{d}{dt}))$: $\mathfrak{p}(\mathfrak{B}) = \operatorname{rank}(R)$.

✓ Linear differential systems: those decribed by linear constant coefficient differential equations $\rightsquigarrow \mathfrak{L}^{\bullet}$, etc.

- Linear differential systems: those decribed by linear constant coefficient differential equations $\rightsquigarrow \mathfrak{L}^{\bullet}$, etc.
- **Solutions** Behavior := the set of \mathfrak{C}^{∞} solutions (for convenience).

- Linear differential systems: those decribed by linear constant coefficient differential equations $\rightsquigarrow \mathfrak{L}^{\bullet}$, etc.
- **9** Behavior := the set of \mathfrak{C}^{∞} solutions (for convenience).
- $R(\xi)$ polynomial matrix, $R(\frac{d}{dt})w = 0$: a kernel representation of the system induced by R.

- Linear differential systems: those decribed by linear constant coefficient differential equations $\rightsquigarrow \mathfrak{L}^{\bullet}$, etc.
- **9** Behavior := the set of \mathfrak{C}^{∞} solutions (for convenience).
- $R(\xi)$ polynomial matrix, $R(\frac{d}{dt})w = 0$: a kernel representation of the system induced by R.
- For a given system $\mathfrak{B}, w = (u, y)$ is an input/output partition if the set of components of u is maximally free: these components can be chosen arbitrarily. The components of yare then determined up to initial conditions.

- Linear differential systems: those decribed by linear constant coefficient differential equations $\rightsquigarrow \mathfrak{L}^{\bullet}$, etc.
- **Solutions** Behavior := the set of \mathfrak{C}^{∞} solutions (for convenience).
- $R(\xi)$ polynomial matrix, $R(\frac{d}{dt})w = 0$: a kernel representation of the system induced by R.
- For a given system $\mathfrak{B}, w = (u, y)$ is an input/output partition if the set of components of u is maximally free: these components can be chosen arbitrarily. The components of yare then determined up to initial conditions.
- An input/output representation of 𝔅 is a special kind of kernel representation: $P(\frac{d}{dt})y = Q(\frac{d}{dt})u$, w = (u, y), with $\det(P) \neq 0$. Equivalent with: (u, y) is an input/output partition.

A system has in general many i/o representations, so also i/o partitions.

- A system has in general many i/o representations, so also i/o partitions.
- Siven \mathfrak{B} , the number of components of u is the same in any i/o partition w = (u, y). This number is called the input cardinality $\mathfrak{m}(\mathfrak{B})$ of \mathfrak{B} .

End of Lecture 2