
Lecture 7

SYNTHESIS OF DISSIPATIVE SYSTEMS

1



OUTLINE

Part I: control and the synthesis of dissipative systems

1. The control problem in a behavioral context

2. Generalization: synthesis of dissipative systems

Part II: Special cases

1. The state space control problem

2. The filtering problem
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PART I

CONTROL AND THE SYNTHESIS OF DISSIPATIVE SYSTEMS
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CONTROL IN A BEHAVIORAL CONTEXT
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...

...

disturbance
variables

variables

control variables
...

to be regulated

Our plant has three kinds of variables:

to be regulated variables ,

exogenous disturbance variables ,

control variables .

Full plant behavior:

satisfies the plant equations

We assume that is a linear differential system, i.e. an element of
.
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CONTROLLER
...

control variables

The control variables are those variables in the full plant that we
are allowed to put constraints on. In particular, we allow constraints
of the form

with .

In other words: a controller is a linear differential system ,
with manifest variable :

satisfies the controller equations
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variables
...

...

...

control variables

to be regulated
variables

disturbance

Given a plant behavior , and a controller behavior , the
manifest controlled behavior is given by

there exists such that

Recall: we say: implements or: is implemented by the
controller .

Also: is called implementable (with respect to ) if
there exists a controller that implements .
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CONTROL PROBLEMS

Recall: given a full plant , and a set of design specifications, the
corresponding control problem is to find conditions for the existence
of, and compute, a controller such that the resulting manifest
controlled behavior satisfies the specifications.

Reformulation: given and a set of design specifications, find
conditions for the existence of, and compute, a behavior such that

is implementable,

satisfies the specifications.

Of course, after finding an implementable behavior that satisfies
the specifications, one still needs to compute an actual controller

that implements .
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SPECIFICATIONS

In an -context, we will deal with controllable systems, and the
specifications on are:

disturbance attenuation:

for all

stability:

‘liveness’:
in , is free

Liveness: in the manifest controlled behavior, no direct restrictions
on the exogenous disturbances are allowed: every component of is
arbitrary.
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SPECIFICATIONS IN TERMS OF KERNEL REPRESENTATIONS

Suppose is represented by a minimal kernel
representation

with and .

Question: what do the specifications on say about this
representation?

Proposition 7.1: The following statements are equivalent:

1. for all ,
, and in , is free,

2. is an input/output representation, is
Hurwitz, and the transfer matrix from to
satisfies .
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SPECIFICATIONS AND DISSIPATIVITY

The specifications on can be restated in terms of dissipativity
of with respect to the supply rate
associated with the (constant) two-variable polynomial matrix

and the input cardinality of :

Proposition 7.2: Let . The following statements are
equivalent:

1. is -dissipative on , and ,

2. for all ,
, and in , is free.

Recall: is called -dissipative on if for all
.
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THE CONTROL PROBLEM

Given , the control problem is to find
conditions for the existence of, and compute, that satisfies
the following three properties:

(implementability),

is -dissipative on (dissipativity),

(liveness).

Recall: is the hidden behavior, and the manifest plant behavior
associated with :

there exists such that
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SYNTHESIS OF DISSIPATIVE SYSTEMS
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More general problem:

in to be controlled variable in to be
controlled variable ,

defining general

defining the QDF

variablesvariables
to be controlled control

PLANT CONTROLLER
...

...

14



GENERAL PROBLEM FORMULATION

General problem:

Let and , with , and
non-degenerate; is called the weighting functional

The problem is to find such that:

1. (implementability),

2. is -dissipative on (dissipativity),

3. (liveness).

It can be shown: is -dissipative .

Hence the input cardinality of such attains the upper bound
.
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Questions:

What are necessary and sufficient conditions, in terms of , ,
and , for the existence of such ?

If such exists, how can it be computed?.

Given such , how can we compute a controller that
implements this ?
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deriving necessary conditions

Assume , -dissipative on , and .

Then is -dissipative, so: is -dissipative.

Since , we have: is -dissipative is
-dissipative.

Since , we have , whence:
is -dissipative.

Recall: For a given , is the -orthogonal behavior of ,
defined by

for all
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So far, we have derived two necessary conditions. We can obtain a set
of necessary and sufficient conditions by adding a third condition.

This conditions deals with the existence of certain storage functions
for and .

Since we have , so .

Hence, there exists a two-variable polynomial matrix
such that

for

The BLDF is the so called adapted
bilinear differential form. It is unique on .
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FORMULATION OF THE MAIN RESULT

Theorem 7.3: described in the problem formulation exists
if and only if the following conditions are satisfied:

1. is -dissipative,

2. is -dissipative,

3. there exist , defining
a storage function for as a -dissipative system, i.e.,

for ,
a storage function for as a -dissipative
system, i.e., for ,

such that that the QDF

is non-negative for and .
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Surprising condition is the non-negativity:

for and . This condition is called
the coupling condition . It expresses that the storage functions

and should be coupled via the
adapted bilinear differential form.
Generalization of the well-known coupling condition of state
space -theory involving solutions of algebraic Riccati
equations.

Note that, for a given , the conditions are purely in terms of
properties of the hidden behavior and manifest plant behavior
. No representations are involved.
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Outline of proof:

Fact: the case of a general, non-degenerate
can be reduced to the case that is a constant, non-singular,
symmetric matrix. Assume this holds.

(only if) Let be such that is a minimal state
map for , a minimal state map for and such that

(i.e. is a matched pair of minimal state maps for and .)

1. -dissipative on and every storage
function of is of the form , with the matrix

.

2. Hence is a storage function of as a
-dissipative system.
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3. We have, for all and :

(dissipation inequality),

(dissipation inequality),

(matching condition),

Since , whence , these relations also hold
for and .
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4. Note that

for and . Since is positive definite, this
QDF is non-negative.

5. Since

for and , the adapted bilinear
differential form is equal to
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6. Finally define the required storage functions:

These storage functions, together with the adapted
bilinear differential form , yield the coupling
condition:

for and .

(if) Involves a construction of . Ingredients are the fine points of
dissipative systems.
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NON-UNIQUENESS OF STORAGE FUNCTIONS

Note: our main theorem is stated as an existence result: it requires
the existence of storage functions that satisfy the coupling condition.

Storage functions of a given system are essentially non-unique.

Question: which storage functions of and are most likely to
satisfy the coupling condition

Answer:

the largest storage function for (the required
supply),

the smallest storage function of (the available
storage).

25



ALTERNATIVE FORMULATION OF THE MAIN RESULT

Theorem 7.4: described in the problem formulation exists
if and only if the following conditions are satisfied:

1. is -dissipative,

2. is -dissipative,

3. the QDF

is non-negative for all and .
Here, is the largest storage function of as a
-dissipative system, is the smallest storage function of

as a -dissipative system, and (as before) is
the -adapted bilinear differential form.
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FROM GENERAL RESULT TO PARTICULAR REPRESENTATIONS

Statement of the main result does not use representations of and
. Hence: applicable to any particular representation of the full

plant .

Procedure:

for a given representation of , compute representations of its
hidden behavior and its manifest plant behavior .

Next: express the representation-free conditions of the main
result in terms of the parameters of these representations. In
general, these conditions will only involve basic matrix
computations, ARE’s, LMI’s, etc.

Use the general construction of the controlled behavior to set
up algoritms in terms of the parameters of these representations.

Illustration: full plant given in state space form:
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PART II

SPECIAL CASES
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APPLICATION: THE STATE SPACE CONTROL PROBLEM

Assume represented in input/state/output form by

Problem: find a controller in input/state/output representation, with
as input and as output:

such that the controlled system is internally stable and its transfer
matrix from to satisfies .
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Control variable: , to be controlled variable .

Weighting functional

We already know: the following are equivalent:

1. there exists an implementable such that in , is
input, is output, the transfer matrix is externally stable,
and satisfies

2. is -dissipative, is ( )-dissipative, and the largest
storage function of and smallest storage function of satisfy
the coupling condition.

Note: provided and controllable. For this, assume
controllable pair, an observable pair.

In order to simplify notation: and ,
and .
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VERIFICATION OF THE CONDITIONS

Dissipativity of

Output nulling representation hidden behavior :

Fact: is -dissipative if and only if the Riccati inequality

has a real symmetric solution .

All storage functions for : .
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Largest storage function for : , with the largest real
symmetric solution of the algebraic Riccati equation

Dissipativity of

Driving variable representation manifest plant behavior :
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Output nulling representation of (with variable ):

Fact: is -dissipative if and only if the Riccati inequality

has a real symmetric solution .

All storage functions for : .
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Smallest storage function for : , with the smallest
real symmetric solution of the algebraic Riccati equation

The coupling condition

state of , state of . Direct computation shows:

Hence: the -adapted bilinear differential form is

Coupling condition: along state
trajectories of and of .
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Trimness of representations coupling condition becomes

This non-negativity is equivalent to the combined conditions

1. ,

2. ,

3. ( ).

Here, denotes the spectral radius.

35



SOLUTION OF THE STATE SPACE CONTROL PROBLEM

Theorem 7.5: The following statements are equivalent:

1. There exists a feedback controller such that the controlled system
is internally stable, and the closed loop transfer matrix
satisfies ,

2. there exist real symmetric solutions of the algebraic Riccati
equations, and the largest real symmetric solution and
smallest real symmetric solution satisfy , ,
and .

Also: formulas for input/state/output representations of the required
feedback controllers.
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THE FILTERING PROBLEM
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PLANT

Our plant has three kinds of variables:

exogenous disturbance variables ,

to be estimated variables ,

measured variables .

Full plant behavior:

satisfies the plant equations

We assume that is a linear differential system, i.e. in .
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FILTER

A filter is a system with manifest variable , where has the
dimension of the measured plant variable, and has the dimension of
the to be estimated plant variable .

We allow filters represented by equations of the form

In other words: a filter is a linear differential system .

We aim at finding filters such that in the interconnection through
of and , is an estimate of (in a sense to be explained).
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...

variables

measured

...

...
...

...

to-be-estimated

estimate

error
estimation

variables

...disturbances

Let . For a given filter , we define
the estimation error behavior as the behavior given by:

there exists such that

We say: implements or: is implemented by the filter .

Also: is called implementable (with respect to ).
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FILTERING PROBLEMS

Given a full plant , and a set of design specifications, the
corresponding filtering problem is to find conditions for the existence
of, and compute, a filter such that the resulting estimation error
behavior satisfies the specifications.

Reformulation: given and a set of design specifications, find
conditions for the existence of, and compute, a behavior
such that

is implementable,

satisfies the specifications.

Of course, after finding an implementable behavior that satisfies
the specifications, one still needs to compute an actual filter that
implements .

41



IMPLEMENTABILITY

Let . Characterize all ’s that are implementable.

It turns out that here the hidden behavior associated with is
crucial. Recall:

Theorem: is implementable by a filter if and
only if

Moreover, if is implementable, then it can be implemented by a
filter such that in , is input and output.
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SPECIFICATIONS

In an -context, we will deal with controllable systems, and the
specifications on are:

disturbance attenuation:

for all

stability:

‘liveness’:
in , is free

Liveness: in the estimation error behavior, no direct restrictions on
the exogenous disturbances are allowed: every component of is
arbitrary.
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It can be shown that these three specifications on are equivalent to
the the two following:

is -dissipative on (where ,

.

Recall the implementability condition

.

Given , we define the filtering problem as the problem of
finding , that satisfy these three conditions.
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SOLUTION TO THE -FILTERING PROBLEM

Note that this problem is a special case of our general result, with
taken equal to . Hence , so (- )-dissipativity
of is trivially satisfied.

The coupling condition degenerates to the condition that should
have a non-negative storage function.

Theorem: Assume that . Then there exists that
satisfies the conditions of the -filtering problem if and only if

is -dissipative on

equivalently, there exists , such that

and
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No representations are involved. The result can be applied to any
particular representation of the full plant .

For particular representations, checking the conditions comes
down to basic matrix computations, ARE’s, and LMI’s.

As an example, if the full plant is represented by ,
, , (assuming , ,

observable) then the result can be applied to obtain that
an filter exists if and only the algebraic Riccati equation

has a solution .
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RECAP

We have given a representation free formulation of the
control problem.

This problem has been generalized to a general problem on the
existence of a dissipative behavior wedged in between two given
behaviors, having maximal input cardinality.

Necessary and sufficient conditions for the existence of such
behavior have been found.

These conditions are in terms of the existence of certain storage
functions associated with the hidden behavior and manifest plant
behavior. In particular, these storage functions should satisfy a
coupling condition.

The conditions are, again, representation free, and are hence
applicable to any particular representation of the full plant .
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We have applied our general result to the ’classical’ state space
control problem, and have re-derived a version of the

well-known solution in terms of two Riccati equations plus
coupling condition.

We have shown that our general problem formulation also has a
class of filtering problems as a special case.

We have applied our general result to derive necessary and
sufficient conditions for the existence of filters.

Again, these conditions are representation free, and are hence
applicable to any particular representation of the full plant .
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