Lecture 7

SYNTHESIS OF DISSIPATIVE SYSTEMS

OUTLINE

Part I: \mathcal{H}_{∞} control and the synthesis of dissipative systems

- 1. The \mathcal{H}_∞ control problem in a behavioral context
- 2. Generalization: synthesis of dissipative systems

Part II: Special cases

- 1. The state space \mathcal{H}_∞ control problem
- 2. The \mathcal{H}_{∞} filtering problem

PART I

\mathcal{H}_{∞} CONTROL AND THE SYNTHESIS OF DISSIPATIVE SYSTEMS

\mathcal{H}_{∞} CONTROL IN A BEHAVIORAL CONTEXT

Our plant has three kinds of variables:

- to be regulated variables f,
- exogenous disturbance variables d,
- control variables *c*.

Full plant behavior:

 $\mathcal{P}_{\text{full}} := \{ (d, f, c) \mid (d, f, c) \text{ satisfies the plant equations} \}$

We assume that \mathcal{P}_{full} is a linear differential system, i.e. an element of \mathfrak{L}^{d+f+c} .

The control variables *c* are those variables in the full plant that we are allowed to put constraints on. In particular, we allow constraints of the form

$$C(rac{d}{dt})c=0,$$

with $C \in \mathbb{R}^{\bullet \times c}[\xi]$.

In other words: a controller is a linear differential system $C \in \mathfrak{L}^{c}$, with manifest variable c:

 $C = \{c \mid c \text{ satisfies the controller equations} \}.$

Given a plant behavior \mathcal{P}_{full} , and a controller behavior \mathcal{C} , the manifest controlled behavior \mathcal{K} is given by

$$\mathcal{K}:=\{(d,f)\mid ext{ there exists } c\in \mathcal{C} ext{ such that} \ (d,f,c)\in \mathcal{P}_{ ext{full}}\}.$$

Recall: we say: C implements \mathcal{K} or: \mathcal{K} is implemented by the controller C.

Also: $\mathcal{K} \in \mathfrak{L}^{d+f}$ is called implementable (with respect to \mathcal{P}_{full}) if there exists a controller $\mathcal{C} \in \mathfrak{L}^{c}$ that implements \mathcal{K} .

CONTROL PROBLEMS

Recall: given a full plant \mathcal{P}_{full} , and a set of design specifications, the corresponding control problem is to find conditions for the existence of, and compute, a controller \mathcal{C} such that the resulting manifest controlled behavior \mathcal{K} satisfies the specifications.

Reformulation: given \mathcal{P}_{full} and a set of design specifications, find conditions for the existence of, and compute, a behavior \mathcal{K} such that

- *K* is implementable,
- *K* satisfies the specifications.

Of course, after finding an implementable behavior \mathcal{K} that satisfies the specifications, one still needs to compute an actual controller $\mathcal{C} \in \mathfrak{L}^{c}$ that implements \mathcal{K} .

\mathcal{H}_{∞} SPECIFICATIONS

In an \mathcal{H}_{∞} -context, we will deal with controllable systems, and the specifications on $\mathcal{K} \in \mathfrak{L}_{cont}^{d+f}$ are:

• disturbance attenuation:

$$\int_{-\infty}^{\infty} |f|^2 - |d|^2 dt \leq 0 ext{ for all } (d,f) \in \mathcal{K} \cap \mathcal{L}_2(\mathbb{R},\mathbb{R}^{d+\mathrm{f}}),$$

• stability:

$$(0,f)\in \mathcal{K}\Rightarrow \lim_{t
ightarrow\infty}f(t)=0,$$

• 'liveness':

in \mathcal{K} , d is free.

Liveness: in the manifest controlled behavior, no direct restrictions on the exogenous disturbances are allowed: every component of *d* is arbitrary.

\mathcal{H}_∞ SPECIFICATIONS IN TERMS OF KERNEL REPRESENTATIONS

Suppose $\mathcal{K} \in \mathfrak{L}_{cont}^{d+f}$ is represented by a minimal kernel representation

$$P(rac{d}{dt})f=Q(rac{d}{dt})d,$$

with $P \in \mathbb{R}^{\bullet imes \mathtt{f}}[\xi]$ and $Q \in \mathbb{R}^{\bullet imes \mathtt{d}}[\xi]$.

Question: what do the \mathcal{H}_{∞} specifications on \mathcal{K} say about this representation?

Proposition 7.1: The following statements are equivalent:

- 1. $\int_{-\infty}^{\infty} |f|^2 |d|^2 dt \leq 0$ for all $(d, f) \in \mathcal{K} \cap \mathcal{L}_2(\mathbb{R}, \mathbb{R}^{d+f})$, $(0, f) \in \mathcal{K} \Rightarrow \lim_{t \to \infty} f(t) = 0$, and in \mathcal{K}, d is free,
- 2. $P(\frac{d}{dt})f = Q(\frac{d}{dt})d$ is an input/output representation, P is Hurwitz, and the transfer matrix $G_{d\mapsto f} := P^{-1}Q$ from d to fsatisfies $||G_{d\mapsto f}||_{\mathcal{H}_{\infty}} \leq 1$.

\mathcal{H}_{∞} SPECIFICATIONS AND DISSIPATIVITY

The \mathcal{H}_{∞} specifications on \mathcal{K} can be restated in terms of dissipativity of \mathcal{K} with respect to the supply rate $Q_{\Sigma}(d, f) = |d|^2 - |f|^2$ associated with the (constant) two-variable polynomial matrix

$$\Sigma = \begin{bmatrix} I_{\rm d} & 0 \\ 0 & -I_{\rm f} \end{bmatrix}$$
, and the input cardinality of \mathcal{K} :

Proposition 7.2: Let $\mathcal{K} \in \mathfrak{L}_{cont}^{d+f}$. The following statements are equivalent:

- 1. \mathcal{K} is Σ -dissipative on \mathbb{R}_{-} , and $\mathfrak{m}(\mathcal{K}) = d$,
- 2. $\int_{-\infty}^{\infty} |f|^2 |d|^2 dt \leq 0$ for all $(d, f) \in \mathcal{K} \cap \mathcal{L}_2(\mathbb{R}, \mathbb{R}^{d+f})$, $(0, f) \in \mathcal{K} \Rightarrow \lim_{t \to \infty} f(t) = 0$, and in \mathcal{K} , d is free.

Recall: \mathfrak{B} is called Σ -dissipative on $\mathbb{R}_{-\infty}$ if $\int_{-\infty}^{0} Q_{\Sigma}(w) dt \geq 0$ for all $w \in \mathfrak{B} \cap \mathcal{D}(\mathbb{R}, \mathbb{R}^{w})$.

THE \mathcal{H}_{∞} CONTROL PROBLEM

Given $\mathcal{P}_{full} \in \mathfrak{L}^{d+f+c}$, the \mathcal{H}_{∞} control problem is to find conditions for the existence of, and compute, $\mathcal{K} \in \mathfrak{L}_{cont}^{d+f}$ that satisfies the following three properties:

- $\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$ (implementability),
- \mathcal{K} is Σ -dissipative on \mathbb{R}_{-} (dissipativity),
- $m(\mathcal{K}) = d$ (liveness).

Recall: \mathcal{N} is the hidden behavior, and \mathcal{P} the manifest plant behavior associated with \mathcal{P}_{full} :

 $\mathcal{N} = \{(d,f) \mid (d,f,0) \in \mathcal{P}_{ ext{full}} \},$

 $\mathcal{P} = \{(d, f) \mid \text{ there exists } c \text{ such that } (d, f, c) \in \mathcal{P}_{\mathrm{full}} \}.$

SYNTHESIS OF DISSIPATIVE SYSTEMS

More general problem:

• in $\mathcal{P}_{\text{full}}$ to be controlled variable $(d, f) \longrightarrow$ in $\mathcal{P}_{\text{full}}$ to be controlled variable v,

•
$$\Sigma = \begin{bmatrix} I_{d} & 0 \\ 0 & -I_{f} \end{bmatrix}$$
 defining $|d|^{2} - |f|^{2} \longrightarrow$ general $\Sigma = \Sigma^{*} \in \mathbb{R}^{v imes v}[\zeta, \eta]$ defining the QDF $Q_{\Sigma}(v)$

•
$$m(\mathcal{K}) = d \longrightarrow m(\mathcal{K}) = \sigma_+(\Sigma)$$

GENERAL PROBLEM FORMULATION

General problem:

Let $\mathcal{N}, \mathcal{P} \in \mathfrak{L}^{v}_{\text{cont}}$ and $\Sigma = \Sigma^{*} \in \mathbb{R}^{v \times v}[\zeta, \eta]$, with $\mathcal{N} \subset \mathcal{P}$, and Σ non-degenerate; Σ is called the weighting functional

The problem is to find $\mathcal{K}\in\mathfrak{L}^v_{\operatorname{cont}}$ such that:

- 1. $\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$ (implementability),
- 2. \mathcal{K} is Σ -dissipative on \mathbb{R}_{-} (dissipativity),

3. $m(\mathcal{K}) = \sigma_+(\Sigma)$ (liveness).

It can be shown: \mathcal{K} is Σ -dissipative $\Rightarrow m(\mathcal{K}) \leq \sigma_+(\Sigma)$.

Hence the input cardinality of such \mathcal{K} attains the upper bound $\sigma_{+}(\Sigma)$.

Questions:

- What are necessary and sufficient conditions, in terms of N, P, and Σ, for the existence of such K?
- If such \mathcal{K} exists, how can it be computed?.
- Given such \mathcal{K} , how can we compute a controller \mathcal{C} that implements this \mathcal{K} ?

deriving necessary conditions

Assume $\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$, $\mathcal{K} \Sigma$ -dissipative on \mathbb{R}_{-} , and $\mathfrak{m}(\mathcal{K}) = \sigma_{+}(\Sigma)$.

Then \mathcal{K} is Σ -dissipative, so: $|\mathcal{N}|$ is Σ -dissipative.

Since $m(\mathcal{K}) = \sigma_+(\Sigma)$, we have: \mathcal{K} is Σ -dissipative $\Leftrightarrow \mathcal{K}^{\perp_{\Sigma}}$ is $(-\Sigma)$ -dissipative.

Since
$$\mathcal{K} \subset \mathcal{P}$$
, we have $\mathcal{P}^{\perp_{\Sigma}} \subset \mathcal{K}^{\perp_{\Sigma}}$, whence:
 $\mathcal{P}^{\perp_{\Sigma}}$ is $(-\Sigma)$ -dissipative.

Recall: For a given $\mathfrak{B}, \mathfrak{B}^{\perp_{\Phi}}$ is the Φ -orthogonal behavior of \mathfrak{B} , defined by

$$\mathfrak{B}^{\perp_\Phi} = \{w \mid \int_{-\infty}^{+\infty} L_\Phi(w,w') \ dt = 0 ext{ for all } w' \in \mathfrak{B} \cap \mathfrak{D} \ \}.$$

So far, we have derived two necessary conditions. We can obtain a set of necessary and sufficient conditions by adding a third condition.

This conditions deals with the existence of certain storage functions for \mathcal{N} and $\mathcal{P}^{\perp \Sigma}$.

Since $\mathcal{N} \subset \mathcal{P}$ we have $\mathcal{P}^{\perp_{\Sigma}} \subset \mathcal{N}^{\perp_{\Sigma}}$, so $\mathcal{N} \perp_{\Sigma} \mathcal{P}^{\perp_{\Sigma}}$.

Hence, there exists a two-variable polynomial matrix $\Psi_{(\mathcal{N}, \mathcal{P}^{\perp_{\Sigma}})} \in \mathbb{R}^{v \times v}[\zeta, \eta]$ such that

$$rac{d}{dt}L_{\Psi_{(\mathcal{N},\mathcal{P}^{\perp}\Sigma)}}(v_1,v_2)=L_{\Sigma}(v_1,v_2), ext{ for } v_1\in\mathcal{N}, v_2\in\mathcal{P}^{\perp_{\Sigma}}.$$

The BLDF $L_{\Psi_{(\mathcal{N},\mathcal{P}^{\perp}\Sigma)}}(v_1,v_2)$ is the so called $(N,\mathcal{P}^{\perp_{\Sigma}},\Sigma)$ adapted bilinear differential form. It is unique on $\mathcal{N} \times \mathcal{P}^{\perp_{\Sigma}}$.

FORMULATION OF THE MAIN RESULT

<u>Theorem 7.3:</u> $\mathcal{K} \in \mathfrak{L}_{cont}^{v}$ described in the problem formulation exists if and only if the following conditions are satisfied:

- 1. \mathcal{N} is Σ -dissipative,
- 2. $\mathcal{P}^{\perp_{\Sigma}}$ is $(-\Sigma)$ -dissipative,
- 3. there exist $\Psi_{\mathcal{N}}, \Psi_{\mathcal{P}^{\perp \Sigma}} \in \mathbb{R}^{v \times v}[\zeta, \eta]$, defining
 - a storage function Q_{Ψ_N} for \mathcal{N} as a Σ -dissipative system, i.e., $\frac{d}{dt}Q_{\Psi_N}(v_1) \leq Q_{\Sigma}(v_1)$ for $v_1 \in \mathcal{N}$,
 - a storage function $Q_{\Psi_{\mathcal{P}^{\perp}\Sigma}}$ for $\mathcal{P}^{\perp_{\Sigma}}$ as a $(-\Sigma)$ -dissipative system, i.e., $\frac{d}{dt}Q_{\Psi_{\mathcal{P}^{\perp}\Sigma}}(v_2) \leq -Q_{\Sigma}(v_2)$ for $v_2 \in \mathcal{P}^{\perp_{\Sigma}}$, such that the QDF

$$Q_{\Psi_{\mathcal{N}}}(v_1) - Q_{\Psi_{\mathcal{P}^{\perp}\Sigma}}(v_2) + 2L_{\Psi_{(\mathcal{N},\mathcal{P}^{\perp}\Sigma)}}(v_1,v_2)$$

is non-negative for $v_1 \in \mathcal{N}$ and $v_2 \in \mathcal{P}^{\perp_{\Sigma}}.$

• Surprising condition is the non-negativity:

$$Q_{\Psi_\mathcal{N}}(v_1) - Q_{\Psi_{\mathcal{P}^{\perp}\Sigma}}(v_2) + 2L_{\Psi_{(\mathcal{N},\mathcal{P}^{\perp}\Sigma)}}(v_1,v_2) \geq 0$$

for $v_1 \in \mathcal{N}$ and $v_2 \in \mathcal{P}^{\perp_{\Sigma}}$. This condition is called (the coupling condition). It expresses that the storage functions $Q_{\Psi_{\mathcal{N}}}$ and $Q_{\Psi_{\mathcal{P}^{\perp_{\Sigma}}}}$ should be coupled via the $(N, \mathcal{P}^{\perp_{\Sigma}}, \Sigma)$ adapted bilinear differential form.

Generalization of the well-known coupling condition of state space \mathcal{H}_{∞} -theory involving solutions of algebraic Riccati equations.

Note that, for a given \$\mathcal{P}_{full}\$, the conditions are purely in terms of properties of the hidden behavior \$\mathcal{N}\$ and manifest plant behavior \$\mathcal{P}\$. No representations are involved.

Outline of proof:

Fact: the case of a general, non-degenerate $\Sigma = \Sigma^* \in \mathbb{R}^{v \times v}[\zeta, \eta]$ can be reduced to the case that Σ is a constant, non-singular, symmetric matrix. Assume this holds.

(only if) Let $X, Z \in \mathbb{R}^{\bullet \times w}[\xi]$ be such that $X(\frac{d}{dt})$ is a minimal state map for $\mathcal{K}, Z(\frac{d}{dt})$ a minimal state map for \mathcal{K}^{\perp} and such that

$$rac{d}{dt}(X(rac{d}{dt})v_1)^T(Z(rac{d}{dt})v_2)=v_1^Tv_2 \ \ v_1\in \mathcal{K}, v_2\in \mathcal{K}^{\perp_{\Sigma}}.$$

(i.e. (X, Z) is a matched pair of minimal state maps for \mathcal{K} and \mathcal{K}^{\perp} .)

1. $\mathcal{K} \Sigma$ -dissipative on \mathbb{R}_{-} and $\mathfrak{m}(\mathcal{K}) = \sigma_{+}(\Sigma) \Rightarrow$ every storage function of \mathcal{K} is of the form $|X(\frac{d}{dt})v_{1}|_{K}^{2}$, with the matrix $K = K^{T} > 0$.

2. Hence $-|Z(\frac{d}{dt})\Sigma v_2|_{K^{-1}}^2$ is a storage function of $\mathcal{K}^{\perp \Sigma}$ as a $(-\Sigma)$ -dissipative system.

3. We have, for all $v_1 \in \mathcal{K}$ and $v_2 \in \mathcal{K}^{\perp_{\Sigma}}$:

$$rac{d}{dt}|X(rac{d}{dt})v_1|_K^2\leq |v_1|_\Sigma^2 \;\;$$
 (dissipation inequality),

$$-rac{d}{dt}|Z(rac{d}{dt})\Sigma v_2|^2_{K^{-1}}\leq -|v_2|^2_{\Sigma}$$
 (dissipation inequality),

Since $\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$, whence $\mathcal{P}^{\perp_{\Sigma}} \subset \mathcal{K}^{\perp_{\Sigma}}$, these relations also hold for $v_1 \in \mathcal{N}$ and $v_2 \in \mathcal{P}^{\perp_{\Sigma}}$.

$$egin{aligned} &|X(rac{d}{dt})v_1|_K^2 + |Z(rac{d}{dt})\Sigma v_2|_{K^{-1}}^2 + 2(X(rac{d}{dt})v_1)^T(Z(rac{d}{dt})\Sigma v_2) \ &= |X(rac{d}{dt})v_1 + K^{-1}Z(rac{d}{dt})\Sigma v_2|_K^2. \end{aligned}$$

for $v_1 \in \mathcal{N}$ and $v_2 \in \mathcal{P}^{\perp_{\Sigma}}$. Since *K* is positive definite, this QDF is non-negative.

5. Since

$$\frac{d}{dt}(X(\frac{d}{dt})v_1)^T(Z(\frac{d}{dt})\Sigma v_2) = v_1^T \Sigma v_2 = L_{\Sigma}(v_1, v_2)$$

for $v_1 \in \mathcal{N}$ and $v_2 \in \mathcal{P}^{\perp_{\Sigma}}$, the $(N, \mathcal{P}^{\perp_{\Sigma}}, \Sigma)$ adapted bilinear differential form is equal to

$$L_{\Psi_{(\mathcal{N},\mathcal{P}^{\perp}\Sigma)}}(v_1,v_2) = (X(rac{d}{dt})v_1)^T(Z(rac{d}{dt})\Sigma v_2).$$

6. Finally define the required storage functions:

$$Q_{\Psi_\mathcal{N}}(v_1):=|X(rac{d}{dt})v_1|_K^2, v_1\in\mathcal{N},$$

$$Q_{\Psi_{\mathcal{P}^{\perp}\Sigma}}(v_2):=-|Z(rac{d}{dt})\Sigma v_2|^2_{K^{-1}},v_2\in\mathcal{P}^{\perp_{\Sigma}}.$$

These storage functions, together with the $(N, \mathcal{P}^{\perp_{\Sigma}}, \Sigma)$ adapted bilinear differential form $L_{\Psi_{(\mathcal{N}, \mathcal{P}^{\perp_{\Sigma}})}}(v_1, v_2)$, yield the coupling condition:

$$Q_{\Psi_{\mathcal{N}}}(v_1) - Q_{\Psi_{\mathcal{P}^{\perp}\Sigma}}(v_2) + 2L_{\Psi_{(\mathcal{N},\mathcal{P}^{\perp}\Sigma)}}(v_1,v_2) \ge 0$$

for $v_1 \in \mathcal{N}$ and $v_2 \in \mathcal{P}^{\perp_{\Sigma}}$.

(if) Involves a construction of \mathcal{K} . Ingredients are the fine points of dissipative systems.

NON-UNIQUENESS OF STORAGE FUNCTIONS

Note: our main theorem is stated as an existence result: it requires the existence of storage functions that satisfy the coupling condition. Storage functions of a given system are essentially non-unique. Question: which storage functions of \mathcal{N} and $\mathcal{P}^{\perp \Sigma}$ are most likely to satisfy the coupling condition

$$Q_{\Psi_\mathcal{N}}(v_1) - Q_{\Psi_{\mathcal{P}^{\perp}\Sigma}}(v_2) + 2L_{\Psi_{(\mathcal{N},\mathcal{P}^{\perp}\Sigma)}}(v_1,v_2) \geq 0?$$

Answer:

- the largest storage function $Q_{\Psi_{\mathcal{N}}^{\sup}}(v_1)$ for \mathcal{N} (the required supply),
- the smallest storage function $Q_{\Psi_{\mathcal{P}^{\perp}\Sigma}^{\inf}}(v_2)$ of $\mathcal{P}^{\perp_{\Sigma}}$ (the available storage).

ALTERNATIVE FORMULATION OF THE MAIN RESULT

<u>Theorem 7.4</u>: $\mathcal{K} \in \mathfrak{L}_{cont}^{v}$ described in the problem formulation exists if and only if the following conditions are satisfied:

- 1. \mathcal{N} is Σ -dissipative,
- 2. $\mathcal{P}^{\perp_{\Sigma}}$ is $(-\Sigma)$ -dissipative,
- 3. the QDF

$$Q_{\Psi^{ ext{sup}}_\mathcal{N}}(v_1) - Q_{\Psi^{ ext{inf}}_{\mathcal{P}^{\perp}\Sigma}}(v_2) + 2L_{\Psi_{(\mathcal{N},\mathcal{P}^{\perp}\Sigma)}}(v_1,v_2)$$

is non-negative for all $v_1 \in \mathcal{N}$ and $v_2 \in \mathcal{P}^{\perp_{\Sigma}}.$

Here, $Q_{\Psi_{\mathcal{N}}^{\mathrm{sup}}}$ is the largest storage function of \mathcal{N} as a Σ -dissipative system, $Q_{\Psi_{\mathcal{P}}^{\mathrm{inf}}}$ is the smallest storage function of $\mathcal{P}^{\perp_{\Sigma}}$ as a $(-\Sigma)$ -dissipative system, and (as before) $L_{\Psi_{(\mathcal{N},\mathcal{P}^{\perp_{\Sigma}})}}$ is the $(\mathcal{N}, \mathcal{P}^{\perp_{\Sigma}}, \Sigma)$ -adapted bilinear differential form.

FROM GENERAL RESULT TO PARTICULAR REPRESENTATIONS

Statement of the main result does not use representations of \mathcal{N} and \mathcal{P} . Hence: applicable to any particular representation of the full plant $\mathcal{P}_{\mathrm{full}}$.

Procedure:

- for a given representation of $\mathcal{P}_{\text{full}}$, compute representations of its hidden behavior \mathcal{N} and its manifest plant behavior \mathcal{P} .
- Next: express the representation-free conditions of the main result in terms of the parameters of these representations. In general, these conditions will only involve basic matrix computations, ARE's, LMI's, etc.
- Use the general construction of the controlled behavior \mathcal{K} to set up algoritms in terms of the parameters of these representations.

Illustration: full plant \mathcal{P}_{full} given in state space form:

PART II

SPECIAL CASES

APPLICATION: THE STATE SPACE \mathcal{H}_{∞} CONTROL PROBLEM

Assume \mathcal{P}_{full} represented in input/state/output form by

$$egin{array}{rcl} rac{d}{dt}x&=&Ax&+&Bu&+&Gd\ y&=&Cx&+&&+&Dd\ f&=&Hx&+&Ju \end{array}$$

Problem: find a controller in input/state/output representation, with *y* as input and *u* as output:

$$egin{array}{rcl} rac{d}{dt} x_c &=& A_c x_c &+& B_c y \ u &=& C_c x_c &+& D_c y \end{array}$$

such that the controlled system is internally stable and its transfer matrix $G_{d\mapsto f}$ from d to f satisfies $||G_{d\mapsto f}||_{\mathcal{H}_{\infty}} \leq 1$.

Control variable: c = (u, y), to be controlled variable (d, f). Weighting functional $\Sigma = \begin{bmatrix} I_{\rm d} & 0 \\ 0 & -I_{\rm f} \end{bmatrix}$.

We already know: the following are equivalent:

- 1. there exists an implementable $\mathcal{K} \in \mathfrak{L}^{d+f}$ such that in \mathcal{K}, d is input, f is output, the transfer matrix $G_{d\mapsto f}$ is externally stable, and satisfies $||G_{d\mapsto f}||_{\mathcal{H}_{\infty}} \leq 1$
- N is Σ-dissipative, P[⊥][∑] is (−Σ)-dissipative, and the largest storage function of N and smallest storage function of P satisfy the coupling condition.

Note: provided \mathcal{N} and \mathcal{P} controllable. For this, assume (A, G) controllable pair, (H, A) an observable pair.

In order to simplify notation: $DD^T = I$ and $DG^T = 0, J^TJ = I$ and $J^TH = 0$.

VERIFICATION OF THE CONDITIONS

Dissipativity of $\mathcal N$

Output nulling representation hidden behavior $\mathcal{N} \in \mathfrak{L}^{d+f}$:

$$egin{array}{rcl} \displaystylerac{d}{dt}x&=&Ax+egin{bmatrix}G&0\end{bmatrix}egin{bmatrix}d\\f\end{bmatrix},\ \displaystyleegin{bmatrix}0\\0\end{bmatrix}&=&egin{bmatrix}C\\H\end{bmatrix}x+egin{bmatrix}D&0\\0&-I\end{bmatrix}egin{bmatrix}d\\f\end{bmatrix}. \end{array}$$

Fact: \mathcal{N} is Σ -dissipative if and only if the Riccati inequality

$$-A^T K_{\mathcal{N}} - K_{\mathcal{N}} A - H^T H - K_{\mathcal{N}} G G^T K_{\mathcal{N}} + C^T C \geq 0$$

has a real symmetric solution K_N .

All storage functions for \mathcal{N} : $x^T K_{\mathcal{N}} x$.

Largest storage function for \mathcal{N} : $x^T K_{\mathcal{N}}^+ x$, with $K_{\mathcal{N}}^+$ the largest real symmetric solution of the algebraic Riccati equation

$$-A^T K_{\mathcal{N}} - K_{\mathcal{N}} A - H^T H - K_{\mathcal{N}} G G^T K_{\mathcal{N}} + C^T C = 0.$$

Dissipativity of $\mathcal{P}^{\perp_{\Sigma}}$

Driving variable representation manifest plant behavior $\mathcal{P} \in \mathfrak{L}^{d+f}$:

$$egin{array}{rcl} \displaystylerac{d}{dt}x&=&Ax+egin{bmatrix}B&G\end{bmatrix}egin{bmatrix} u\d\end{bmatrix}egin{array}{rcl} \displaystyle d\d\end{bmatrix} ,\ \left[egin{bmatrix} d\d\end{bmatrix}\end{smallmatrix}
ight]&=&egin{bmatrix}0\H\end{bmatrix}x+egin{bmatrix}0&I\J&0\end{bmatrix}egin{bmatrix} u\d\end{bmatrix}egin{bmatrix} u\d\end{bmatrix} .$$

Output nulling representation of $\mathcal{P}^{\perp_{\Sigma}}$ (with variable (d', f')):

$$egin{array}{rcl} \displaystylerac{d}{dt}z&=&-A^Tz+egin{bmatrix} 0&-H^T\end{bmatrix}egin{bmatrix} \displaystyle d'\ f'\end{bmatrix},\ \displaystyle egin{bmatrix} \displaystyle 0\ \ 0\end{bmatrix}&=&egin{bmatrix} B^T\ G^T\end{bmatrix}z+egin{bmatrix} 0&J^T\ -I&0\end{bmatrix}egin{bmatrix} d'\ f'\end{bmatrix}, \end{array}$$

Fact: $\mathcal{P}^{\perp_{\Sigma}}$ is $(-\Sigma)$ -dissipative if and only if the Riccati inequality

$$AK_{\mathcal{P}} + K_{\mathcal{P}}A^T - GG^T - K_{\mathcal{P}}H^THK_{\mathcal{P}} + BB^T \ge 0$$

has a real symmetric solution $K_{\mathcal{P}}$.

All storage functions for $\mathcal{P}^{\perp_{\Sigma}}$: $z^T K_{\mathcal{P}} z$.

Smallest storage function for $\mathcal{P}^{\perp_{\Sigma}}$: $z^T K_{\mathcal{P}}^- z$, with $K_{\mathcal{P}}^-$ the smallest real symmetric solution of the algebraic Riccati equation

$$AK_{\mathcal{P}} + K_{\mathcal{P}}A^T - GG^T - K_{\mathcal{P}}H^THK_{\mathcal{P}} + BB^T = 0.$$

The coupling condition

x state of \mathcal{N}, z state of $\mathcal{P}^{\perp_{\Sigma}}$. Direct computation shows:

$$rac{d}{dt}x^Tz=d^Td'-f^Tf'.$$

Hence: the $(\mathcal{N}, \mathcal{P}^{\perp_{\Sigma}}, \Sigma)$ -adapted bilinear differential form is $x^T z$ Coupling condition: $x^T K_{\mathcal{N}} x - z^T K_{\mathcal{P}} z + 2x^T z \ge 0$ along state trajectories x of \mathcal{N} and z of $\mathcal{P}^{\perp_{\Sigma}}$. Trimness of representations \Rightarrow coupling condition becomes

$$\left[egin{array}{cc} K_{\mathcal{N}} & I \ I & -K_{\mathcal{P}} \end{array}
ight] \geq 0.$$

This non-negativity is equivalent to the combined conditions

- 1. $K_{\mathcal{N}} > 0$,
- 2. $K_{\mathcal{P}} < 0$,
- 3. $K_{\mathcal{N}} \geq (-K_{\mathcal{P}})^{-1} \quad (\Leftrightarrow \rho(K_{\mathcal{N}}K_{\mathcal{P}}) \geq 1).$

Here, ρ denotes the spectral radius.

SOLUTION OF THE STATE SPACE \mathcal{H}_{∞} CONTROL PROBLEM

<u>Theorem 7.5:</u> The following statements are equivalent:

- 1. There exists a feedback controller such that the controlled system is internally stable, and the closed loop transfer matrix $G_{d\mapsto f}$ satisfies $||G_{d\mapsto f}||_{\mathcal{H}_{\infty}} \leq 1$,
- 2. there exist real symmetric solutions of the algebraic Riccati equations, and the largest real symmetric solution $K_{\mathcal{N}}^+$ and smallest real symmetric solution $K_{\mathcal{P}}^-$ satisfy $K_{\mathcal{N}}^+ > 0, K_{\mathcal{P}}^- < 0$, and $K_{\mathcal{N}}^+ \ge (-K_{\mathcal{P}}^-)^{-1}$.

Also: formulas for input/state/output representations of the required feedback controllers.

THE \mathcal{H}_{∞} FILTERING PROBLEM

Our plant has three kinds of variables:

- exogenous disturbance variables d,
- to be estimated variables f,
- measured variables y.

Full plant behavior:

 $\mathcal{P}_{\text{full}} := \{ (d, f, y) \mid (d, f, y) \text{ satisfies the plant equations} \}$

We assume that \mathcal{P}_{full} is a linear differential system, i.e. in \mathfrak{L}^{d+f+y} .

A filter is a system with manifest variable (y, \hat{f}) , where y has the dimension of the measured plant variable, and \hat{f} has the dimension of the to be estimated plant variable f.

We allow filters represented by equations of the form

$$F_1(rac{d}{dt})y=F_2(rac{d}{dt})\hat{f}.$$

In other words: a filter is a linear differential system $\mathcal{F} \in \mathfrak{L}^{y+f}$.

We aim at finding filters \mathcal{F} such that in the interconnection through y of $\mathcal{P}_{\text{full}}$ and \mathcal{F} , \hat{f} is an estimate of f (in a sense to be explained).

Let $\mathcal{P}_{full} \in \mathfrak{L}^{d+f+y}$. For a given filter $\mathcal{F} \in \mathfrak{L}^{y+f}$, we define the estimation error behavior as the behavior $\mathcal{E} \in \mathfrak{L}^{d+f}$ given by:

$$egin{aligned} \mathcal{E} &= \{(d,e) \mid ext{ there exists } (f,y,\hat{f}) ext{ such that } (d,f,y) \in \mathcal{P}_{ ext{full}}, \ &(y,\hat{f}) \in \mathcal{F}, e = f - \hat{f} \}. \end{aligned}$$

We say: \mathcal{F} implements \mathcal{E} or: \mathcal{E} is implemented by the filter \mathcal{F} . Also: $\mathcal{E} \in \mathfrak{L}^{d+f}$ is called implementable (with respect to \mathcal{P}_{full}).

FILTERING PROBLEMS

Given a full plant \mathcal{P}_{full} , and a set of design specifications, the corresponding filtering problem is to find conditions for the existence of, and compute, a filter \mathcal{F} such that the resulting estimation error behavior \mathcal{E} satisfies the specifications.

Reformulation: given \mathcal{P}_{full} and a set of design specifications, find conditions for the existence of, and compute, a behavior $\mathcal{E} \in \mathfrak{L}^{d+f}$ such that

- \mathcal{E} is implementable,
- *E* satisfies the specifications.

Of course, after finding an implementable behavior \mathcal{E} that satisfies the specifications, one still needs to compute an actual filter \mathcal{F} that implements \mathcal{E} .

IMPLEMENTABILITY

Let $\mathcal{P}_{full} \in \mathfrak{L}^{d+f+y}$. Characterize all \mathcal{E} 's that are implementable. It turns out that here the hidden behavior \mathcal{N} associated with \mathcal{P}_{full} is crucial. Recall:

$$\mathcal{N} = \{(d,f) \mid (d,f,0) \in \mathcal{P}_{ ext{full}}\}.$$

Theorem: $\mathcal{E} \in \mathfrak{L}^{d+f}$ is implementable by a filter $\mathcal{F} \in \mathfrak{L}^{y+f}$ if and only if

$$\mathcal{N}\subset\mathcal{E}.$$

Moreover, if \mathcal{E} is implementable, then it can be implemented by a filter $\mathcal{F} \in \mathfrak{L}^{y+f}$ such that in \mathcal{F} , y is input and \hat{f} output.

\mathcal{H}_{∞} SPECIFICATIONS

In an \mathcal{H}_{∞} -context, we will deal with controllable systems, and the specifications on $\mathcal{E} \in \mathfrak{L}_{cont}^{d+f}$ are:

• disturbance attenuation:

$$\int_{-\infty}^{\infty} |e|^2 - |d|^2 dt \leq 0 ext{ for all } (d,e) \in \mathcal{E} \cap \mathcal{L}_2(\mathbb{R},\mathbb{R}^{d+f}),$$

• stability:

$$(0,e)\in \mathcal{E} \Rightarrow \lim_{t
ightarrow\infty} e(t)=0,$$

• 'liveness':

in \mathcal{E} , d is free.

Liveness: in the estimation error behavior, no direct restrictions on the exogenous disturbances are allowed: every component of *d* is arbitrary. It can be shown that these three specifications on \mathcal{E} are equivalent to the two following:

- \mathcal{E} is Σ -dissipative on \mathbb{R}_{-} (where $\Sigma = \text{blockdiag}(I_d, -I_f)$,
- $m(\mathcal{E}) = d.$

Recall the implementability condition

• $\mathcal{N} \subset \mathcal{E}$.

Given $\mathcal{P}_{\text{full}}$, we define the \mathcal{H}_{∞} filtering problem as the problem of finding $\mathcal{E} \in \mathfrak{L}^{d+f}$, that satisfy these three conditions.

SOLUTION TO THE \mathcal{H}_{∞} -FILTERING PROBLEM

Note that this problem is a special case of our general result, with \mathcal{P} taken equal to $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{d+f})$. Hence $\mathcal{P}^{\perp \Sigma} = 0$, so (- Σ)-dissipativity of $\mathcal{P}^{\perp \Sigma}$ is trivially satisfied.

The coupling condition degenerates to the condition that \mathcal{N} should have a non-negative storage function.

<u>Theorem</u>: Assume that $\mathcal{N} \in \mathfrak{L}_{cont}^{d+f}$. Then there exists $\mathcal{E} \in \mathfrak{L}_{cont}^{d+f}$ that satisfies the conditions of the \mathcal{H}_{∞} -filtering problem if and only if

 \mathcal{N} is Σ -dissipative on \mathbb{R}_{-} ,

equivalently, there exists $\Psi \in \mathbb{R}^{(d+f) \times (d+f)}[\zeta, \eta]$, such that

$$Q_{\Psi}(d,e)\geq 0, ext{ and } rac{d}{dt}Q_{\Psi}(d,e)\leq |d|^2-|e|^2, \ (d,e)\in\mathcal{N}.$$

- No representations are involved. The result can be applied to any particular representation of the full plant \mathcal{P}_{full} .
- For particular representations, checking the conditions comes down to basic matrix computations, ARE's, and LMI's.
- As an example, if the full plant is represented by \$\bar{x} = Ax + Gd\$, \$y = Cx + Dd\$, \$f = Hx\$, (assuming \$DD^T = 0\$, \$C^TD = 0\$, (H, A) observable) then the result can be applied to obtain that an \$\mathcal{H}_{\infty}\$ filter exists if and only the algebraic Riccati equation

$$-A^T K - KA - H^T H - KGG^T K + C^T C = 0.$$

has a solution $K = K^T > 0$.

RECAP

- We have given a representation free formulation of the \mathcal{H}_{∞} control problem.
- This problem has been generalized to a general problem on the existence of a dissipative behavior wedged in between two given behaviors, having maximal input cardinality.
- Necessary and sufficient conditions for the existence of such behavior have been found.
- These conditions are in terms of the existence of certain storage functions associated with the hidden behavior and manifest plant behavior. In particular, these storage functions should satisfy a coupling condition.
- The conditions are, again, representation free, and are hence applicable to any particular representation of the full plant $\mathcal{P}_{\text{full}}$.

- We have applied our general result to the 'classical' state space \mathcal{H}_{∞} control problem, and have re-derived a version of the well-known solution in terms of two Riccati equations plus coupling condition.
- We have shown that our general problem formulation also has a class of \mathcal{H}_{∞} filtering problems as a special case.
- We have applied our general result to derive necessary and sufficient conditions for the existence of \mathcal{H}_{∞} filters.
- Again, these conditions are representation free, and are hence applicable to any particular representation of the full plant \mathcal{P}_{full} .