Lecture 4

INTERCONNECTION AND CONTROL

OUTLINE

Part I: Interconnection of dynamical systems

- 1. Interconnection
- 2. Regular interconnection
- 3. Feedback interconnection
- 4. Control as interconnection
- 5. Implementability

OUTLINE

Part II: Stabilization and pole placement

- 1. Problem formulation
- 2. Stabilizability and controllability
- 3. Solution of the stabilization and pole placement problem
- 4. Feedback implementability of the controllers

PART I

INTERCONNECTION OF DYNAMICAL SYSTEMS

FULL INTERCONNECTION

Two dynamical systems:

$$\Sigma_1=(\mathbb{T},\mathbb{W},\mathfrak{B}_1),$$

 $\Sigma_2=(\mathbb{T},\mathbb{W},\mathfrak{B}_2).$

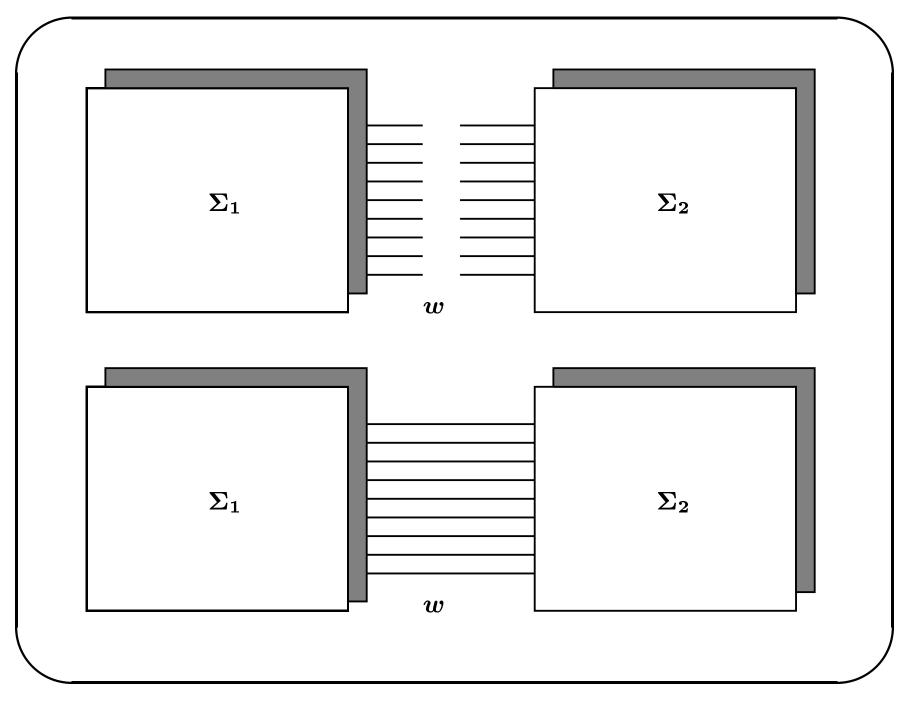
Common time axis $\mathbb T$, common signal space $\mathbb W.$

The full interconnection of Σ_1 and Σ_2 is defined by:

 $\Sigma_1 \wedge \Sigma_2 := (\mathbb{T}, \mathbb{W}, \mathfrak{B}_1 \cap \mathfrak{B}_2).$

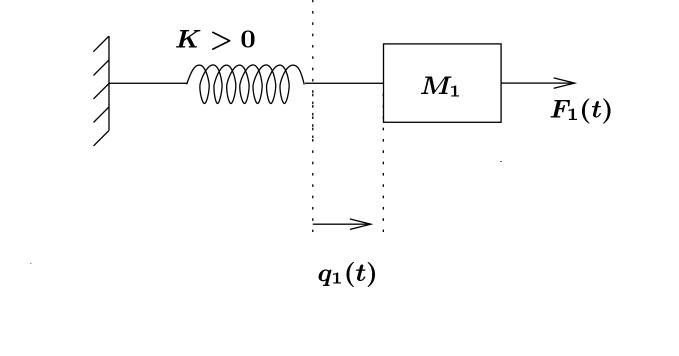
Note: the behavior of $\Sigma_1 \wedge \Sigma_2$ is the intersection of the behaviors of Σ_1 and Σ_2 .

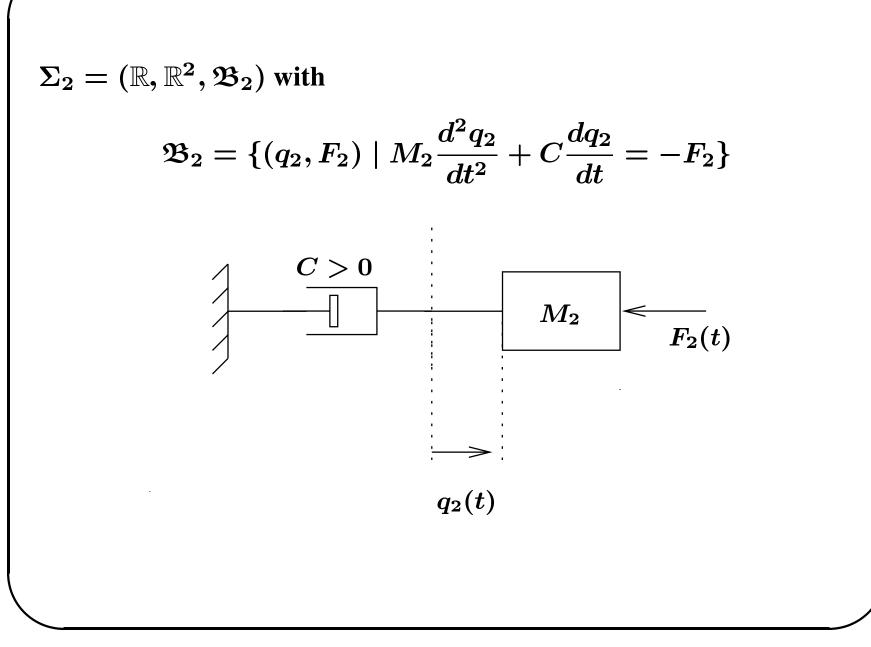
The full interconnection consists of those trajectories that are compatible with both the laws of Σ_1 ánd Σ_2 .



 $\Sigma_1=(\mathbb{R},\mathbb{R}^2,\mathfrak{B}_1)$ with

$$\mathfrak{B}_1 = \{(q_1,F_1) \mid M_1 rac{d^2 q_1}{dt^2} + K q_1 = F_1\}$$



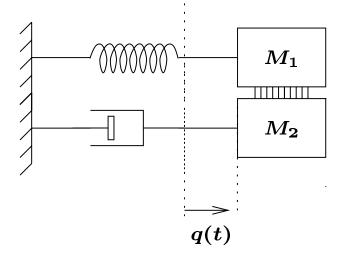


Full interconnection of Σ_1 and Σ_2 :

 $\Sigma_1 \wedge \Sigma_2 = (\mathbb{R}, \mathbb{R}^2, \mathfrak{B}_1 \cap \mathfrak{B}_2),$

$$\mathfrak{B}_2 \cap \mathfrak{B}_2 = \{(q,F) \mid egin{bmatrix} M_1 rac{d^2}{dt^2} + K & -1 \ M_2 rac{d^2}{dt^2} + C rac{d}{dt} & 1 \end{bmatrix} egin{bmatrix} q \ F \end{bmatrix} = 0\}$$

Note: $(q, F) \in \mathfrak{B}_1 \cap \mathfrak{B}_2 \Rightarrow (M_1 + M_2) \frac{d^2q}{dt^2} + C \frac{dq}{dt} + Kq = 0.$



EXAMPLE

 $\Sigma_1=(\mathbb{R},\mathbb{R}^2,\mathfrak{B}_1)$ with

+

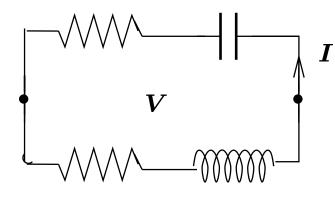
$$\Sigma_2 = (\mathbb{R}, \mathbb{R}^2, \mathfrak{B}_2)$$
 with
 $\mathfrak{B}_2 = \{(V_2, I_2) \mid V_2 = -R_L I_2 - L \frac{dI_2}{dt}\}$
 $- \bigvee_{R_L} \bigvee_{L}$

Full interconnection of Σ_1 and Σ_2 :

$$egin{aligned} \Sigma_1 \wedge \Sigma_2 &= (\mathbb{R}, \mathbb{R}^2, \mathfrak{B}_1 \cap \mathfrak{B}_2), \ \mathfrak{B}_1 \cap \mathfrak{B}_2 &= \{(V, I) \mid \left[egin{array}{c} rac{d}{dt} & -R_C rac{d}{dt} - rac{1}{C} \ 1 & L rac{d}{dt} + R_L \end{array}
ight] \left[egin{array}{c} V \ I \end{array}
ight] = \end{aligned}$$

0}

Note: $(V, I) \in B_1 \cap \mathfrak{B}_2 \Rightarrow \frac{d^2I}{dt^2} + \frac{R_L + R_C}{L} \frac{dI}{dt} + \frac{1}{LC}I = 0.$



INTERCONNECTION THROUGH SPECIFIC COMPONENTS

Often the interconnection of systems takes place only through certain components of the manifest variable:

$$\Sigma_1 = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B}_1),$$

 $\Sigma_2 = (\mathbb{T}, \mathbb{W}_2 \times \mathbb{W}_3, \mathfrak{B}_2).$

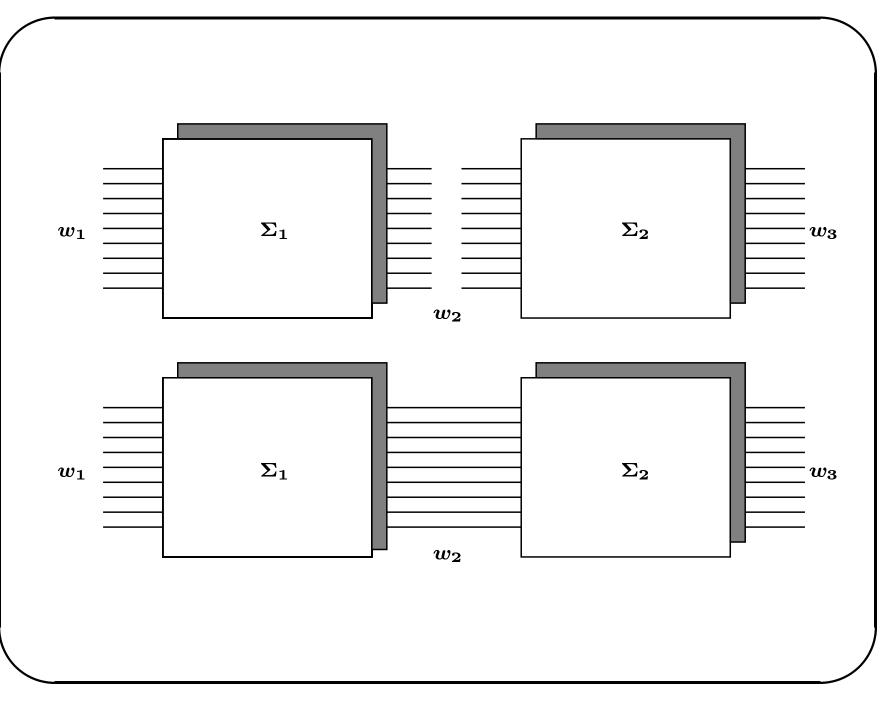
Common time axis \mathbb{T} , and common factor \mathbb{W}_2 in the signal space \mathbb{W} .

The interconnection of Σ_1 and Σ_2 through w_2 is defined by:

$$\Sigma_1 \wedge_{w_2} \Sigma_2 := (\mathbb{T}, \mathbb{W}_1 imes \mathbb{W}_2 imes \mathbb{W}_3, \mathfrak{B}),$$

where

$$\mathfrak{B}:=\{(w_1,w_2,w_3)\mid (w_1,w_2)\in\mathfrak{B}_1 ext{ and } (w_2,w_3)\in\mathfrak{B}_2\}.$$



EXAMPLE: FEEDBACK

 $\Sigma_1 = (\mathbb{R}, \mathbb{R}^{z+d} \times \mathbb{R}^{u+y}, \mathfrak{B}_1)$, with latent variable representation (latent variable x_1)

$$rac{d}{dt}x_1 = Ax_1 + Bu + Ed, \; y = C_1x_1, \; z = C_2x_1.$$

We take $w_1 = (z, d)$ and $w_2 = (u, y)$.

 $\Sigma_1 = (\mathbb{R}, \mathbb{R}^{\mathrm{u}+\mathrm{y}}, \mathfrak{B}_2)$, with latent variable representation (latent variable x_2)

$$rac{d}{dt}x_2=Kx_2+Ly,\;u=Mx_2+Ny.$$

We take $w_2 = (u, y), w_3$ is absent.

The interconnection of Σ_1 and Σ_2 through (u, y) is equal to the usual feedback interconnection, with latent variable representation (latent variable (x_1, x_2)):

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A + BNC_1 & BM \\ LC_1 & K \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} E \\ 0 \end{bmatrix} d,$$
$$\begin{bmatrix} z \\ u \\ y \end{bmatrix} = \begin{bmatrix} C_2 & 0 \\ NC_1 & 0 \\ C_1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Interconnection through specific components can be considered as full interconnection:

$$\Sigma_{1} = (\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}_{1}) \longrightarrow \Sigma_{1}' = (\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2} \times \mathbb{W}_{3}, \mathfrak{B}_{1} \times \mathbb{W}_{3}^{\mathbb{T}})$$
$$\Sigma_{2} = (\mathbb{T}, \mathbb{W}_{2} \times \mathbb{W}_{3}, \mathfrak{B}_{2}) \longrightarrow \Sigma_{2}' = (\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2} \times \mathbb{W}_{3}, \mathbb{W}_{1}^{\mathbb{T}} \times \mathfrak{B}_{2})$$
The interconnection of Σ_{1} and Σ_{2} through w_{2} is equal to the full interconnection of Σ_{1}' and Σ_{2}' :

$$\Sigma_1 \wedge_{w_2} \Sigma_2 = \Sigma_1' \wedge \Sigma_2'$$

REGULAR INTERCONNECTION

Two linear time-invariant differential systems:

$$\Sigma_1 = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}_1),$$

$$\Sigma_2=(\mathbb{R},\mathbb{R}^{\scriptscriptstyle W},\mathfrak{B}_2).$$

The full interconnection $\Sigma_1 \wedge \Sigma_2$ is called a (regular full interconnection) if the output cardinality of $\Sigma_1 \wedge \Sigma_2$ is equal to the sum of the output cardinalities of Σ_1 and Σ_2 :

$$p(\mathfrak{B}_1 \cap \mathfrak{B}_2) = p(\mathfrak{B}_1) + p(\mathfrak{B}_2).$$

In the case of interconnection through specific components:

$$\Sigma_1=(\mathbb{R},\mathbb{R}^{\mathtt{W_1}} imes\mathbb{R}^{\mathtt{W_2}},\mathfrak{B}_1),$$

$$\Sigma_2 = (\mathbb{R}, \mathbb{R}^{\mathtt{W}_2} \times \mathbb{R}^{\mathtt{W}_3}, \mathfrak{B}_2).$$

The interconnection $\Sigma_1 \wedge_{w_2} \Sigma_2$ is called a (regular interconnection) if the output cardinality of $\Sigma_1 \wedge_{w_2} \Sigma_2$ is equal to the sum of the output cardinalities of Σ_1 and Σ_2 :

$$p(\mathfrak{B}) = p(\mathfrak{B}_1) + p(\mathfrak{B}_2),$$

with

$$\mathfrak{B} = \{(w_1, w_2, w_3) \mid (w_1, w_2) \in \mathfrak{B}_1 \text{ and } (w_2, w_3) \in \mathfrak{B}_2\}.$$

EXAMPLE: FEEDBACK

Recall the previous example on the feedback interconnection of finite dimensional linear systems.

$$p(\Sigma_1) = y + z.$$
 $p(\Sigma_2) = u,$

$$p(\Sigma_1 \wedge_{(u,y)} \Sigma_2) = z + u + y.$$

Conclusion: the usual feedback interconnection of finite dimensional linear systems is a regular interconnection.

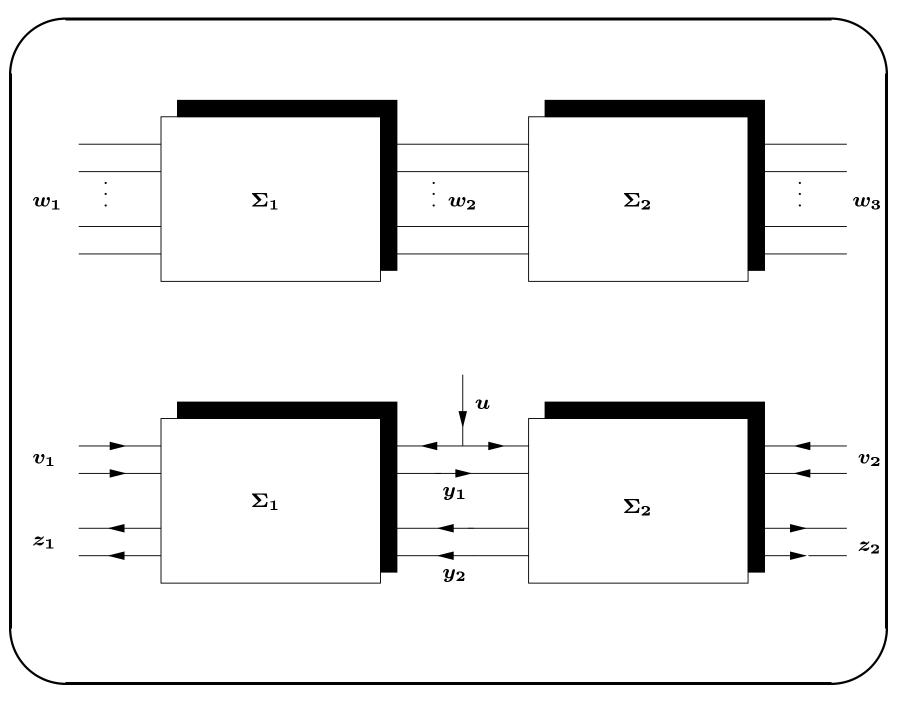
FEEDBACK INTERCONNECTION

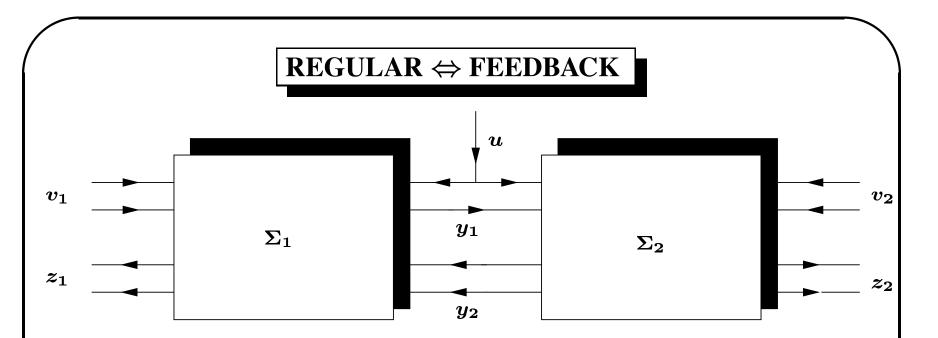
Two linear differential systems:

$$egin{aligned} \Sigma_1 &= (\mathbb{R}, \mathbb{R}^{\mathtt{w}_1} imes \mathbb{R}^{\mathtt{w}_2}, \mathfrak{B}_1) \in \mathfrak{L}^{\mathtt{w}_1 + \mathtt{w}_2}, \ \Sigma_2 &= (\mathbb{R}, \mathbb{R}^{\mathtt{w}_2} imes \mathbb{R}^{\mathtt{w}_3}, \mathfrak{B}_2) \in \mathfrak{L}^{\mathtt{w}_2 + \mathtt{w}_3}. \end{aligned}$$

The interconnection of Σ_1 and Σ_2 through w_2 is called a [feedback interconnection] if (modulo permutation of components) there exist partitions $w_1 = (v_1, z_1), w_2 = (u, y_1, y_2)$, and $w_3 = (v_2, z_2)$ such that

- in Σ_1 , (u, y_2, v_1) is input and (y_1, z_1) is output,
- in Σ_2 , (u, y_1, v_2) is input and (y_2, z_2) is output,
- in $\Sigma \wedge_{w_2} \Sigma_2$, (u, v_1, v_2) is input and (y_1, y_2, z_1, z_2) is output.





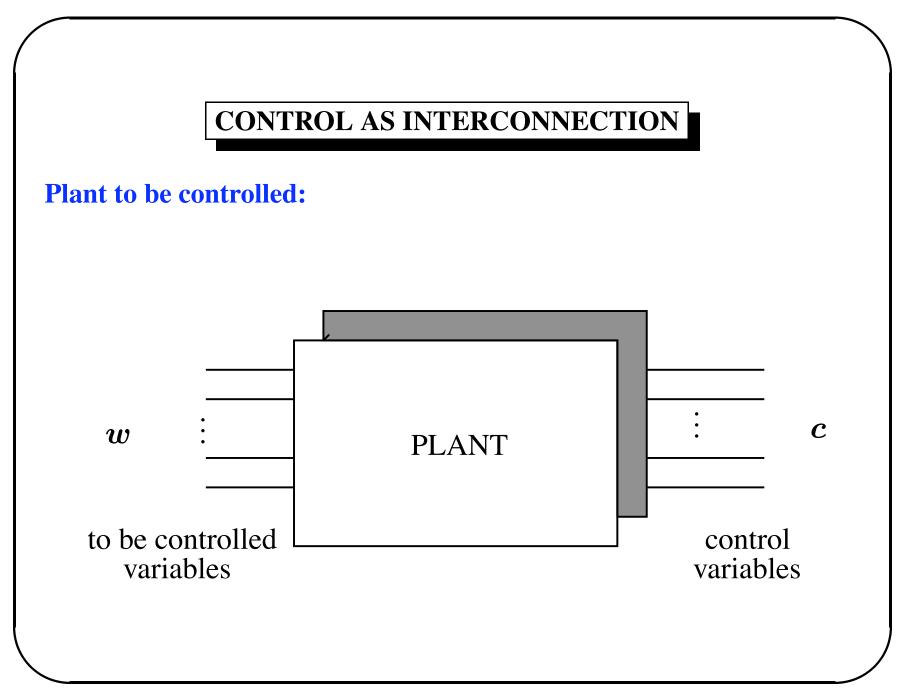
Obviously, every feedback interconnection is regular:

 $p(\Sigma_1) = y_1 + z_1, \ p(\Sigma_2) = y_2 + z_2,$

$$p(\Sigma_1 \wedge_{w_2} \Sigma_2) = y_1 + y_2 + z_1 + z_2.$$

Also the converse holds:

<u>Theorem:</u> Let $\Sigma_1 \in \mathfrak{L}^{w_1+w_2}, \Sigma_2 \in \mathfrak{L}^{w_2+w_3}$. The interconnection of Σ_1 and Σ_2 through w_2 is a regular interconnection if and only if it is a feedback interconnection.



two kinds of variables:

- variables to be controlled w (taking values in \mathbb{W}),
- control variables c (taking values in \mathbb{W}_c).

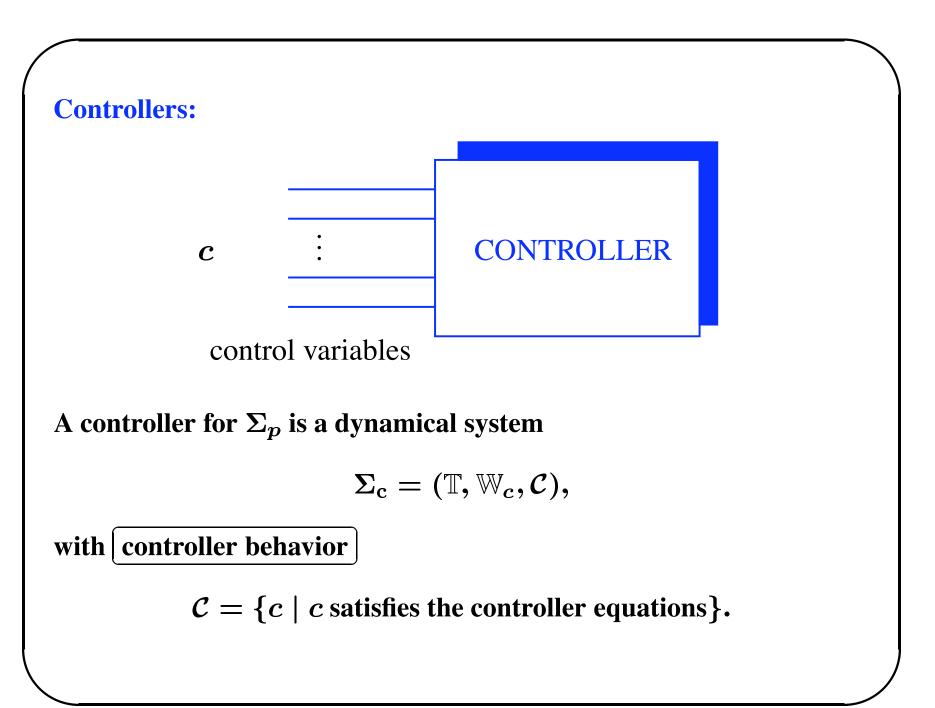
The control variables are those variables through which we will interconnect the plant to a controller.

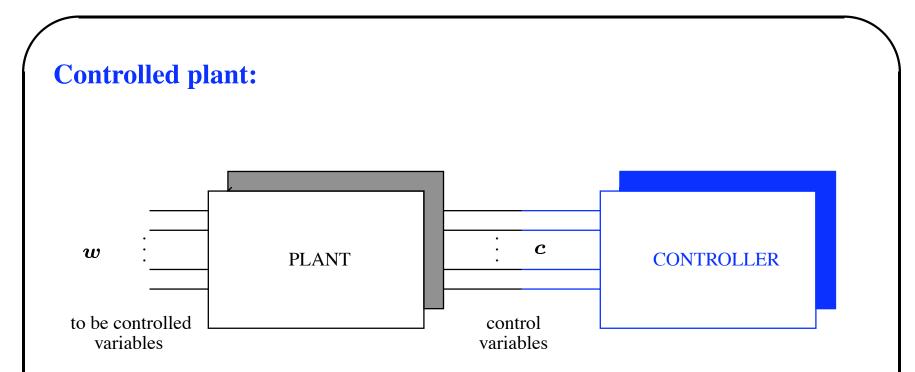
The plant is a dynamical system

$$\Sigma_{\mathbf{p}} = (\mathbb{T}, \mathbb{W} imes \mathbb{W}_{c}, \mathcal{P}_{\mathrm{full}}),$$

with [full plant behavior]

 $\mathcal{P}_{\text{full}} := \{(w, c) \mid (w, c) \text{ satisfies the plant equations} \}.$





The controlled plant is the interconnection of Σ_p and Σ_c through c:

 $\Sigma_{\mathbf{p}} \wedge_{c} \Sigma_{\mathbf{c}} = (\mathbb{T}, \mathbb{W} imes \mathbb{W}_{c}, \mathcal{K}_{\mathrm{full}}),$

with | full controlled behavior

$$\mathcal{K}_{\mathrm{full}} = \{(w,c) \mid (w,c) \in \mathcal{P}_{\mathrm{full}} ext{ and } c \in \mathcal{C} \}.$$

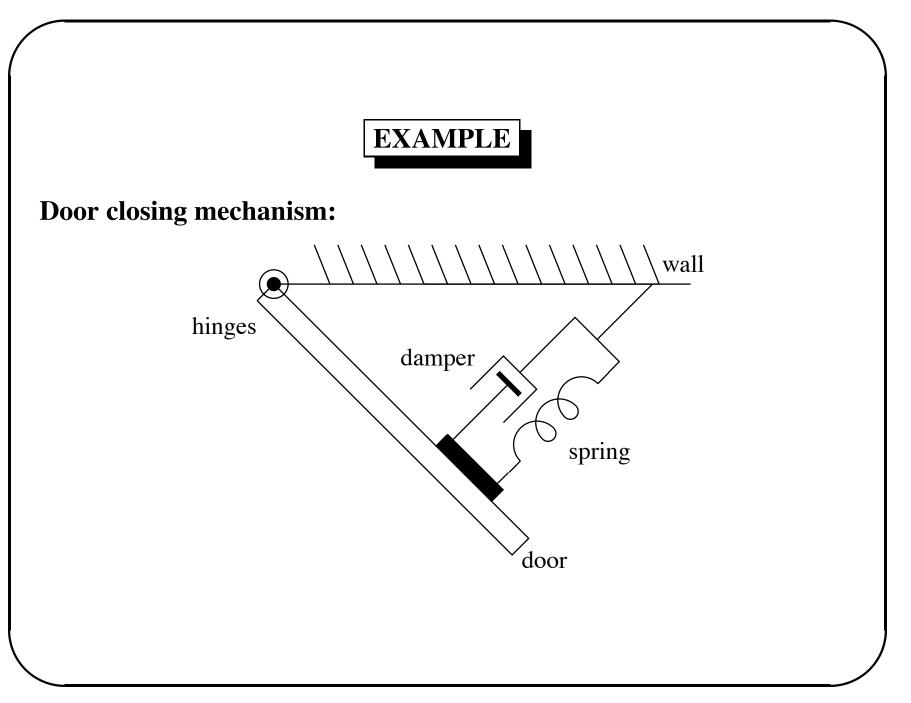
GENERAL CONTROL PROBLEM

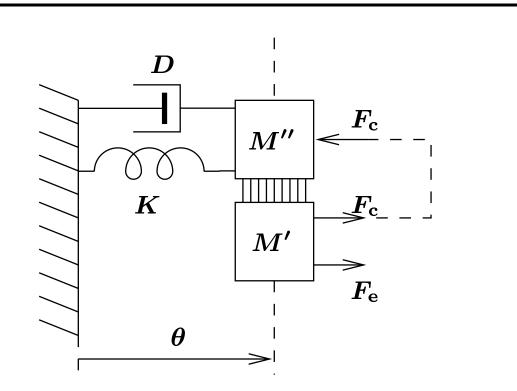
We define the [manifest controlled behavior] by

 $\mathcal{K} := \{w \mid ext{ there exists } c ext{ such that } (w,c) \in \mathcal{K}_{ ext{full}} \}.$

General control problem: given the plant $\Sigma_{\rm p}$

- specify a family \mathcal{A} of admissible controllers,
- describe a set of specifications on the controlled plant, i.e. desired properties of the manifest controlled behavior \mathcal{K} ,
- find a controller $\Sigma_c \in \mathcal{A}$ such that the manifest controlled behavior \mathcal{K} satisfies these specifications.





Equation of motion of the door:

$$M' rac{d^2 heta}{dt^2} = F_c + F_e.$$

No friction in the hinges, M' mass of the door, F_c force to be exerted by the door closing device, F_e exogenous force. To be controlled variable: $w = (\theta, F_e)$.

Control variable: $c = (\theta, F_c)$

Plant:

$$\Sigma_{\mathrm{p}} = (\mathbb{R}, \mathbb{R}^2 imes \mathbb{R}^2, \mathcal{P}_{\mathrm{full}}),$$

with $\mathcal{P}_{\text{full}}$ all $(w, c) = ((\theta, F_e), (\theta, F_c))$ that satisfy the equation of motion of the door.

Door closing mechanism modeled as mass-spring-damper combination:

$$M'' \frac{d^2\theta}{dt^2} + D \frac{d\theta}{dt} + K\theta = -F_0$$

M'' mass of the door closing mechanism, D damping coefficient, K spring constant.

Controller: $\Sigma_c = (\mathbb{R}, \mathbb{R}^2, \mathcal{C})$, with \mathcal{C} all $c = (\theta, F_c)$ that satisfy the equation of motion of the door closing mechanism.

Controlled plant: $\Sigma_{p} \wedge_{c} \Sigma_{c} = (\mathbb{R}, \mathbb{R}^{2} \times \mathbb{R}^{2}, \mathcal{K}_{full})$ with full controlled behavior \mathcal{K}_{full} : all $((\theta, F_{e}), (\theta, F_{c}))$ that satisfy the equations of motion of the door ánd the door closing mechanism. Manifest controlled behavior:

$$\mathcal{K} = \{(heta, F_e) \mid (M' + M'') rac{d^2 heta}{dt^2} + D rac{d heta}{dt} + K heta = F_e\}$$

Specifications on the controlled system: the system \mathcal{K} should have small overshoot, fast settling time, not-to-high steady state gain from F_e to θ .

Finding a suitable controller means finding suitable values for M', K and D.

IMPLEMENTABILITY

Let $\Sigma_{p} = (\mathbb{R}, \mathbb{R}^{w+c}, \mathcal{P}_{full})$ be a linear differential system, i.e., $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$.

Let the controller $\Sigma_c = (\mathbb{R}, \mathbb{R}^c, \mathcal{C})$ be a linear differential system, i.e., $\mathcal{C} \in \mathfrak{L}^c$.

Let $\mathcal{K} \in \mathfrak{L}^{\mathbb{W}}$. If \mathcal{K} is equal to the manifest controlled behavior obtained by interconnecting Σ_{p} and Σ_{c} , i.e.

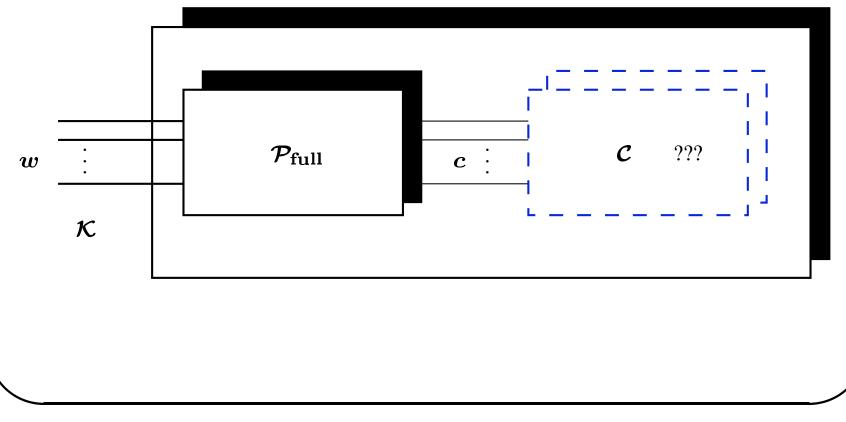
 $\mathcal{K} = \{w \mid ext{ there exists } c \in \mathcal{C} ext{ such that } (w, c) \in \mathcal{P}_{ ext{full}} \},$

then we say: $(\mathcal{C} \text{ implements } \mathcal{K})$.

Let $\mathcal{K} \in \mathfrak{L}^{\mathbb{W}}$. If there exists $\mathcal{C} \in \mathfrak{L}^{c}$ such that \mathcal{C} implements \mathcal{K} , then we say: \mathcal{K} is implementable.

Given $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$, we ask ourselves the question:

which \mathcal{K} 's in \mathfrak{L}^{W} are implementable?



MANIFEST PLANT BEHAVIOR AND HIDDEN BEHAVIOR

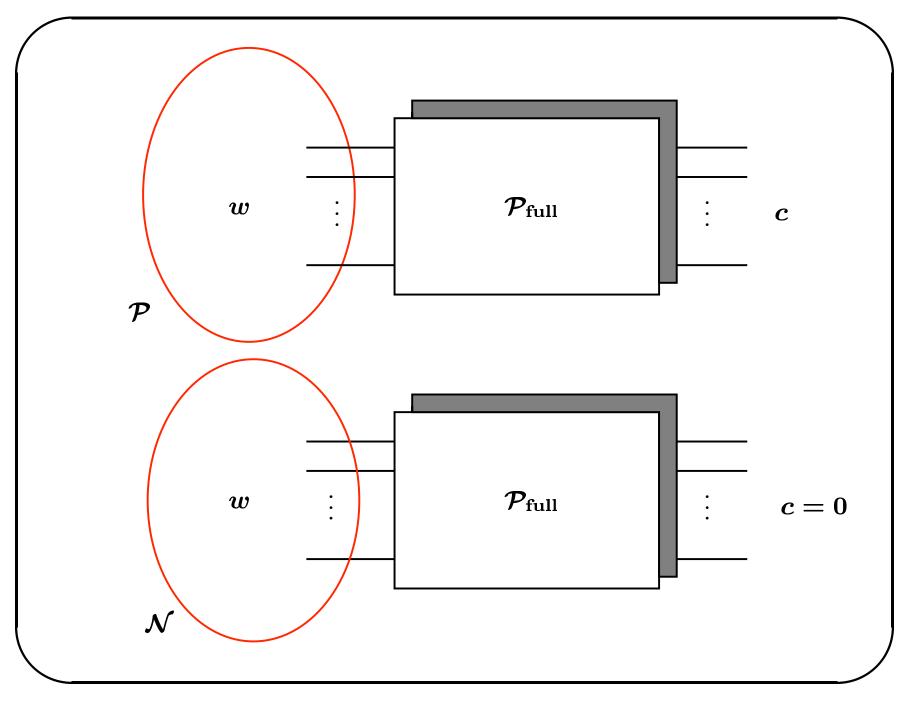
Key concepts in the characterization of the implementable \mathcal{K} 's are the plant behavior and hidden behavior associated with \mathcal{P}_{full} :

Given $\mathcal{P}_{\text{full}}$, the (manifest plant behavior) is defined as the system $\mathcal{P} \in \mathfrak{L}^{W}$ obtained by eliminating the control variable c:

 $\mathcal{P} := \{w \mid ext{there exists } c ext{ such that } (w,c) \in \mathcal{P}_{ ext{full}} \}.$

The hidden behavior is defined as the system $\mathcal{N} \in \mathfrak{L}^{W}$ consisting of the to-be controlled variable trajectories w that are compatible with the control variable c set to zero:

$$\mathcal{N} := \{w \mid \ (w,0) \in \mathcal{P}_{ ext{full}}\}.$$



CONDITIONS FOR IMPLEMENTABILITY

It is easily seen that for all $\mathcal{P}_{\text{full}}$ we have $\mathcal{N} \subset \mathcal{P}$.

The plant behavior and the hidden behavior determine whether a given $\mathcal{K} \in \mathfrak{L}^{W}$ is implementable. In fact, the implementable \mathcal{K} 's are exactly those that are wedged in between \mathcal{N} and \mathcal{K} :

<u>Theorem</u>: Let $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}, \mathcal{K} \in \mathfrak{L}^{w}$. Then we have: \mathcal{K} is implementable if and only if

$$\mathcal{N}\subset\mathcal{K}\subset\mathcal{P}.$$

REGULAR IMPLEMENTABILITY

Let $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$.

Let $C \in \mathfrak{L}^c$, $\mathcal{K} \in \mathfrak{L}^w$. If C implements \mathcal{K} , and if the interconnection of C and \mathcal{P}_{full} is regular, i.e.

$$p(\mathcal{K}_{full}) = p(\mathcal{P}_{full}) + p(\mathcal{C}),$$

then we say: (C regularly implements \mathcal{K}).

Let $\mathcal{K} \in \mathfrak{L}^{\mathbb{W}}$. If there exists $\mathcal{C} \in \mathfrak{L}^{c}$ such that \mathcal{C} regularly implements \mathcal{K} , then we say: \mathcal{K} is regularly implementable.

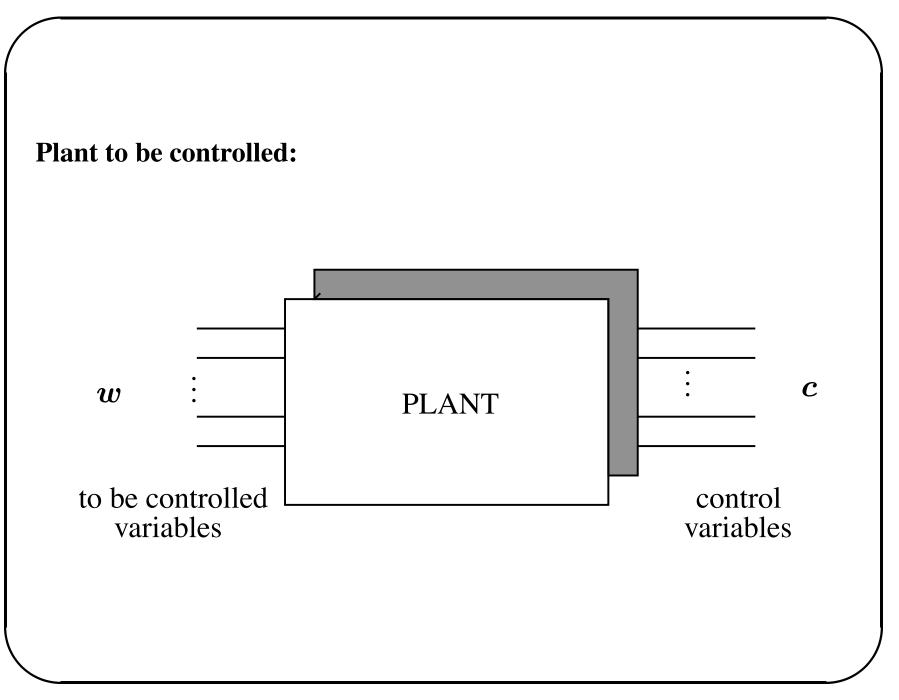
CONDITIONS FOR REGULAR IMPLEMENTABILITY

If the manifest plant behavior \mathcal{P} associated with $\mathcal{P}_{\text{full}}$ is controllable, then every implementable $\mathcal{K} \in \mathfrak{L}^{W}$ is regularly implementable:

<u>Theorem</u>: Let $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$ and $\mathcal{K} \in \mathfrak{L}^{w}$. Assume that the manifest plant behavior \mathcal{P} is controllable. Then \mathcal{K} is regularly implementable if and only if $\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$.

PART II

POLE-PLACEMENT AND STABILIZATION



Our plant has two kinds of variables:

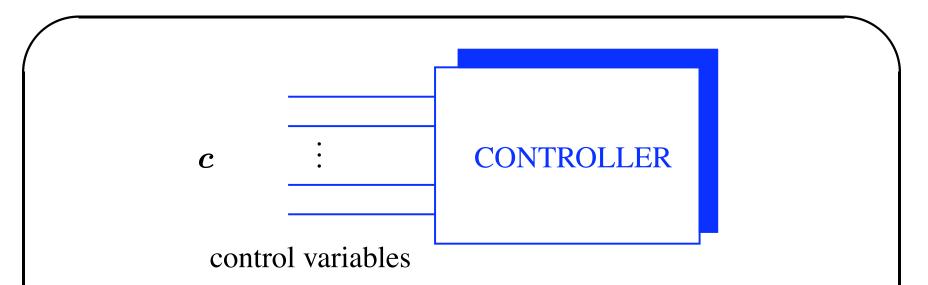
- to be controlled variables w,
- control variables *c*.

Full plant behavior:

 $\mathcal{P}_{\text{full}} := \{(w, c) \mid (w, c) \text{ satisfies the plant equations} \}$

We assume that \mathcal{P}_{full} is a linear differential system, i.e.,

$$\mathcal{P}_{\mathrm{full}} \in \mathfrak{L}^{\mathtt{w}+\mathtt{c}}.$$



The control variables *c* are those variables in the full plant that we are allowed to put constraints on. In particular, we allow constraints of the form

$$C(rac{d}{dt})c=0,$$

with $C \in \mathbb{R}^{\bullet \times c}[\xi]$.

In other words: a controller is a linear differential system $C \in \mathfrak{L}^c$, with manifest variable c:

 $C = \{c \mid c \text{ satisfies the controller equations} \}.$

Given a full plant \mathcal{P}_{full} , and a controller \mathcal{C} , we have

• the full controlled behavior given by

 $\mathcal{K}_{\mathrm{full}} = \{(w,c) \mid (w,c) \in \mathcal{P}_{\mathrm{full}} ext{ and } c \in \mathcal{C} \},$

• the manifest controlled behavior given by

 $\mathcal{K} = \{w \mid \text{ there exists } c \in \mathcal{C} \text{ such that } (w, c) \in \mathcal{P}_{\mathrm{full}} \}$

Note: $\mathcal{K}_{full} \in \mathfrak{L}^{w+c}$ and $\mathcal{K} \in \mathfrak{L}^{w}$.

DESIGN SPECIFICATIONS

Design specifications are desired properties of the manifest controlled behavior \mathcal{K} .

In this lecture:

- Stability of *K*: the stabilization problem.
- Stability of K with arbitrary transient settling time and frequencies of oscillation: the pole placement problem.

STABILITY

 $\mathfrak{B} \in \mathfrak{L}^{\mathsf{w}}$ is called stable if for all $w \in \mathfrak{B}$ we have:

 $\lim_{t\to\infty}w(t)=0.$

Note: if **B** is stable, then it is autonomous.

Stability in terms of representations:

Proposition: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$. Let $R \in \mathbb{R}^{\mathbb{W} \times \mathbb{W}}[\xi]$ be such that $R(\frac{d}{dt})w = 0$ is a kernel representation of \mathfrak{B} . Then \mathfrak{B} is stable if and only if R is Hurwitz, i.e., the polynomial det(R) has all its roots in $\mathbb{C}^- = \{\lambda \in \mathbb{C} \mid \operatorname{Re}(\lambda) < 0\}.$

THE STABILIZATION PROBLEM

Given $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$, the stabilization problem is to find a controller $\mathcal{C} \in \mathfrak{L}^{c}$ such that

- the interconnection of \mathcal{P}_{full} and $\mathcal C$ is regular, and
- the manifest controlled behavior ${\boldsymbol{\mathcal{K}}}$ is stable.

In other words:

Given $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$, find $\mathcal{K} \in \mathfrak{L}^{w}$ such that \mathcal{K} is regularly implementable and stable.

THE CHARACTERISTIC POLYNOMIAL OF A SYSTEM

Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$ be autonomous. Then there exists $R \in \mathbb{R}^{\mathbb{W} \times \mathbb{W}}[\xi]$, $\det(R) \neq 0$, such that $R(\frac{d}{dt})w = 0$ is a kernel representation of \mathfrak{B} . Obviously, for any non-zero $\alpha \in \mathbb{R}$, αR also yields a kernel representation of \mathfrak{B} .

Hence: we can choose R such that det(R) is a monic polynomial. This monic polynomial is denoted by $\chi_{\mathfrak{B}}$, and is called the

the characteristic polynomial of \mathfrak{B}).

 $\chi_{\mathfrak{B}}$ only depends on \mathfrak{B} , and not on the polynomial matrix R we have used to define it: if R_1 and R_2 both represent \mathfrak{B} , then there exists a unimodular U such that $R_2 = UR_1$. Hence if $\det(R_1)$ and $\det(R_2)$ are monic, then $\det(R_1) = \det(R_2)$.

THE POLE PLACEMENT PROBLEM

Given $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$, the pole placement problem is to find, for every monic polynomial $r \in \mathbb{R}[\xi]$, a controller $\mathcal{C} \in \mathfrak{L}^c$ such that

- $\bullet\,$ the interconnection of \mathcal{P}_{full} and \mathcal{C} is regular, and
- the characteristic polynomial $\chi_{\mathcal{K}}$ of the controlled behavior \mathcal{K} is equal to r.

In other words:

Given $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$, for every monic polynomial $r \in \mathbb{R}[\xi]$ find $\mathcal{K} \in \mathfrak{L}^{w}$ such that \mathcal{K} is regularly implementable and $\chi_{\mathcal{K}} = r$.

STABILIZABILITY

Recall that $\mathfrak{B} \in \mathfrak{L}^{w}$ is called stabilizable if for all $w \in \mathfrak{B}$ there exists $w' \in \mathfrak{B}$ such that

- w'(t) = w(t) for t < 0,
- $\lim_{t\to\infty} w'(t) = 0.$

Proposition: Let $\mathfrak{B} \in \mathfrak{L}^{w}$, and let $R \in \mathbb{R}^{\bullet \times w}[\xi]$ be such that $R(\frac{d}{dt})w = 0$ is a minimal kernel representation of \mathfrak{B} . Then \mathfrak{B} is stabilizable if and only if there exists $R' \in \mathbb{R}^{\bullet \times w}[\xi]$ such that

is Hurwitz.

Interpretation of stabilizability in terms of full interconnection

 \mathfrak{B} is represented by $R(\frac{d}{dt})w = 0$. Let \mathfrak{B}' be the system represented by $R'(\frac{d}{dt})w = 0$. The interconnection $\mathfrak{B} \cap \mathfrak{B}'$ is then represented by

Г

$$\begin{bmatrix} R(\frac{d}{dt}) \\ R'(\frac{d}{dt}) \end{bmatrix} w = 0.$$

If R, R' have full row rank then $\begin{bmatrix} R \\ R' \end{bmatrix}$ is nonsingular if and only if
 $\operatorname{rank}(R) + \operatorname{rank}(R') = \operatorname{rank} \begin{bmatrix} R \\ R' \end{bmatrix},$

Equivalently:

$$p(\mathfrak{B} \cap \mathfrak{B'}) = p(\mathfrak{B}) + p(\mathfrak{B'}).$$

Thus we get the following characterization of stabilizability in terms of stabilization by regular full interconnection:

<u>Proposition:</u> Let $\mathfrak{B} \in \mathfrak{L}^{W}$. Then \mathfrak{B} is stabilizable if and only if there exists $\mathfrak{B}' \in \mathfrak{L}^{W}$ such that the full interconnection $\mathfrak{B} \cap \mathfrak{B}'$ is stable and regular.

Note: the <u>entire</u> manifest variable w is used as a control variable.

CONTROLLABILITY

Recall the definition of controllability: $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$ is controllable if for all $w', w'' \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$egin{array}{rcl} w|_{(-\infty,0)}&=&w'|_{(-\infty,0)}\ w|_{[T,\infty)}&=&w''|_{[T,\infty)} \end{array}$$

Proposition: Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$, and let $R \in \mathbb{R}^{\bullet \times \mathbb{W}}[\xi]$ be such that $R(\frac{d}{dt})w = 0$ is a minimal kernel representation of \mathfrak{B} . Then \mathfrak{B} is controllable if and only if for every monic polynomial $r \in \mathbb{R}[\xi]$ there exists $R' \in \mathbb{R}^{\bullet \times \mathbb{W}}[\xi]$ such that

$$\det(\left[egin{array}{c} R \ R' \end{array}
ight])=r.$$

Interpretation of controllability in terms of full interconnection

This yields the following characterization of controllability in terms of pole placement by regular full interconnection:

<u>Proposition:</u> Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$. Then \mathfrak{B} is controllable if and only if for each monic polynomial $r \in \mathbb{R}[\xi]$ there exists $\mathfrak{B}' \in \mathfrak{L}^{\mathbb{W}}$ such that the full interconnection $\mathfrak{B} \cap \mathfrak{B}'$ regular, autonomous, and $\chi_{\mathfrak{B} \cap \mathfrak{B}'} = r$.

Note again: the <u>entire</u> manifest variable *w* is used as a control variable.

SOLUTION OF THE STABILIZATION PROBLEM

Recall: given $\mathcal{P}_{full} \in \mathfrak{L}^{W+c}$, the stabilization problem is to find $\mathcal{K} \in \mathfrak{L}^{W}$ such that \mathcal{K} is regularly implementable and stable. Recall the notions of manifest plant behavior:

 $\mathcal{P} := \{w \mid \text{there exists } c \text{ such that } (w, c) \in \mathcal{P}_{\text{full}}\},$

and hidden behavior:

 $\mathcal{N}:=\{w\mid \ (w,0)\in\mathcal{P}_{\mathrm{full}}\}.$

<u>Theorem</u>: Let $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$. There exists a regularly implementable, stable $\mathcal{K} \in \mathfrak{L}^{w}$ if and only if

- \mathcal{N} is stable,
- \mathcal{P} is stabilizable.

STABLE HIDDEN BEHAVIOR ⇔ DETECTABILITY

Note: \mathcal{N} is stable if and only if

$$(w,0)\in \mathcal{P}_{\mathrm{full}}\Rightarrow \lim_{t
ightarrow\infty}w(t)=0.$$

By linearity, this is equivalent with:

$$(w_1,c),(w_2,c)\in \mathcal{P}_{\mathrm{full}} \Rightarrow \lim_{t
ightarrow\infty}(w_1(t)-w_2(t))=0.$$

Conclusion: \mathcal{N} is stable \Leftrightarrow in $\mathcal{P}_{\text{full}}$, w is detectable from c.

Reformulation of the theorem:

Let $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$. There exists a regularly implementable, stable $\mathcal{K} \in \mathfrak{L}^{w}$ if and only if

- in $\mathcal{P}_{\text{full}}, w$ is detectable from c,
- the system obtained by eliminating c from \mathcal{P}_{full} is stabilizable.

Proof of Theorem:

Minimal kernel representation of $\mathcal{P}_{\text{full}}$: $R_1(\frac{d}{dt})w + R_2(\frac{d}{dt})c = 0$. By suitable unimodular premultiplication of $[R_1 \ R_2]$, $\mathcal{P}_{\text{full}}$ is represented by

$$\left[egin{array}{c} R_{11}(rac{d}{dt}) & R_{12}(rac{d}{dt}) \ R_{21}(rac{d}{dt}) & 0 \end{array}
ight] \left[egin{array}{c} w \ c \end{array}
ight] = 0.$$

with R_{12} full row rank.

Plant behavior \mathcal{P} : eliminate $c \Rightarrow R_{21}(\frac{d}{dt})w = 0$,

Hidden behavior \mathcal{N} : set *c* equal to zero \Rightarrow

$$\Rightarrow \left[egin{array}{c} R_{11}(rac{d}{dt}) \ R_{21}(rac{d}{dt}) \end{array}
ight] w = 0.$$

(only if) \mathcal{K} regularly implementable $\Rightarrow \mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$. \mathcal{K} stable $\Rightarrow \mathcal{N}$ stable.

There exists $C \in \mathfrak{L}^{c}$ that implements \mathcal{K} . Minimal kernel representation $C(\frac{d}{dt})c = 0$.

Minimal kernel representation of \mathcal{K}_{full} :

$$egin{array}{ccc} R_{11}(rac{d}{dt}) & R_{12}(rac{d}{dt}) \ R_{21}(rac{d}{dt}) & 0 \ 0 & C(rac{d}{dt}) \end{array}
ight] \left[egin{array}{c} w \ c \end{array}
ight]$$

Latent variable representation of \mathcal{K} :

$$\left[egin{array}{c} R_{11}(rac{d}{dt}) \ R_{21}(rac{d}{dt}) \ 0 \end{array}
ight] w = - \left[egin{array}{c} R_{12}(rac{d}{dt}) \ 0 \ C(rac{d}{dt}) \end{array}
ight] c$$

(latent variable *c*).

Note: $\mathcal{K} = \mathcal{P} \cap \mathcal{P}'$, with $\mathcal{P}' \in \mathfrak{L}^{w}$ represented by

$$\left[egin{array}{c} R_{11}(rac{d}{dt}) \ 0 \end{array}
ight] w = - \left[egin{array}{c} R_{12}(rac{d}{dt}) \ C(rac{d}{dt}) \end{array}
ight] c$$

(latent variable *c*).

Interconnection of \mathcal{P}_{full} and \mathcal{C} regular \Rightarrow Interconnection $\mathcal{P} \cap \mathcal{P}'$ regular.

 $\mathcal{P} \cap \mathcal{P}'$ stable $\Rightarrow \mathcal{P}$ stabilizable.

(if)
$$\mathcal{N}$$
 is represented by $\begin{bmatrix} R_{11}(\frac{d}{dt}) \\ R_{21}(\frac{d}{dt}) \end{bmatrix} w = 0$,
 \mathcal{P} is represented by $R_{21}(\frac{d}{dt})w = 0$.
 \mathcal{N} stable $\Rightarrow \begin{bmatrix} R_{11} \\ R_{21} \end{bmatrix} = \begin{bmatrix} R'_{11} \\ R'_{21} \end{bmatrix} G$, with $\begin{bmatrix} R'_{11}(\lambda) \\ R'_{21}(\lambda) \end{bmatrix}$ full column rank for all $\lambda \in \mathbb{C}$, and G Hurwitz.

Hence: \mathcal{P}_{full} has a representation of the form

$$\left[egin{array}{cc} G(rac{d}{dt}) & R_{12}^{\prime}(rac{d}{dt}) \ 0 & R_{22}^{\prime}(rac{d}{dt}) \end{array}
ight] \left[egin{array}{c} w \ c \end{array}
ight] = 0.$$

Note:
$$(w,c) \in \mathcal{P}_{\text{full}} \Rightarrow \boxed{G(\frac{d}{dt})w = -R'_{12}(\frac{d}{dt})c}$$

(reconstruction of $G(\frac{d}{dt})w$ using c).

 \mathcal{P} stabilizable and $R_{21} = R'_{21}G$, G Hurwitz $\Rightarrow R'_{21}(\lambda)$ full row rank for $\lambda \in \mathbb{C}^+ \Rightarrow$ there exists $C_0 \in \mathbb{R}^{\bullet \times w}[\xi]$ such that $\begin{bmatrix} R'_{21} \\ C_0 \end{bmatrix}$

is Hurwitz.

Hence
$$\begin{bmatrix} R_{21} \\ C_0 G \end{bmatrix}$$
 is Hurwitz.

Define now $\mathcal{K} := \mathcal{P} \cap \mathcal{P}'$, with \mathcal{P}' repr. by $C_0(\frac{d}{dt})G(\frac{d}{dt})w = 0$.

Then \mathcal{K} is stable.

Since $G(\frac{d}{dt})w = -R'_{12}(\frac{d}{dt})c$ for $(w, c) \in \mathcal{P}_{\text{full}}, \mathcal{K}$ is regularly implemented by the controller $\mathcal{C} \in \mathfrak{L}^c$ represented by $C_0(\frac{d}{dt})R'_{12}(\frac{d}{dt})c = 0.$

SOLUTION OF THE POLE PLACEMENT PROBLEM

Recall: given $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$, the pole placement problem is to find, for every monic polynomial $r \in \mathbb{R}[\xi]$, a behavior $\mathcal{K} \in \mathfrak{L}^{w}$ such that \mathcal{K} is regularly implementable and $\chi_{\mathcal{K}} = r$.

<u>Theorem</u>: Let $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$. For every $r \in \mathbb{R}[\xi]$ there exists a regularly implementable $\mathcal{K} \in \mathfrak{L}^{w}$ such that $\chi_{\mathcal{K}} = r$ if and only if

- $\mathcal{N}=0,$
- \mathcal{P} is controllable.

ZERO HIDDEN BEHAVIOR ⇔ OBSERVABILITY

Note: $\mathcal{N} = 0$ if and only if

$$(w,0)\in\mathcal{P}_{\mathrm{full}}\Rightarrow w=0.$$

By linearity, this is equivalent with:

$$(w_1,c),(w_2,c)\in\mathcal{P}_{\mathrm{full}}\Rightarrow w_1=w_2.$$

Conclusion: $\mathcal{N} = 0 \Leftrightarrow \text{in } \mathcal{P}_{\text{full}}, w \text{ is observable from } c.$

Reformulation of the theorem:

Let $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$. For every $r \in \mathbb{R}[\xi]$ there exists a regularly implementable $\mathcal{K} \in \mathfrak{L}^{w}$ such that $\chi_{\mathcal{K}} = r$ if and only if

- in $\mathcal{P}_{\mathrm{full}}, w$ is observable from c,
- the system obtained by eliminating c from \mathcal{P}_{full} is controllable.

FROM GENERAL RESULT TO PARTICULAR REPRESENTATIONS

Statement of the main results do not use representations of \mathcal{N} and \mathcal{P} . Hence: applicable to any particular representation of the full plant $\mathcal{P}_{\text{full}}$. Procedure:

- for a given representation of $\mathcal{P}_{\text{full}}$, compute representations of its hidden behavior \mathcal{N} and its manifest plant behavior \mathcal{P} .
- Next: express the representation-free conditions of the main result in terms of the parameters of these representations.
- Use the general construction of the controlled behavior \mathcal{K} to set up algorithms in terms of the parameters of these representations.

Example: applying this procedure to $\mathcal{P}_{\text{full}}$ represented by $\frac{d}{dt}x = Ax + Bu, \ y = Cx$, with w = (x, u, y) and c = (u, y) yields the well-known conditions on A, B and C.

FEEDBACK IMPLEMENTABILITY OF STABILIZING CONTROLLERS

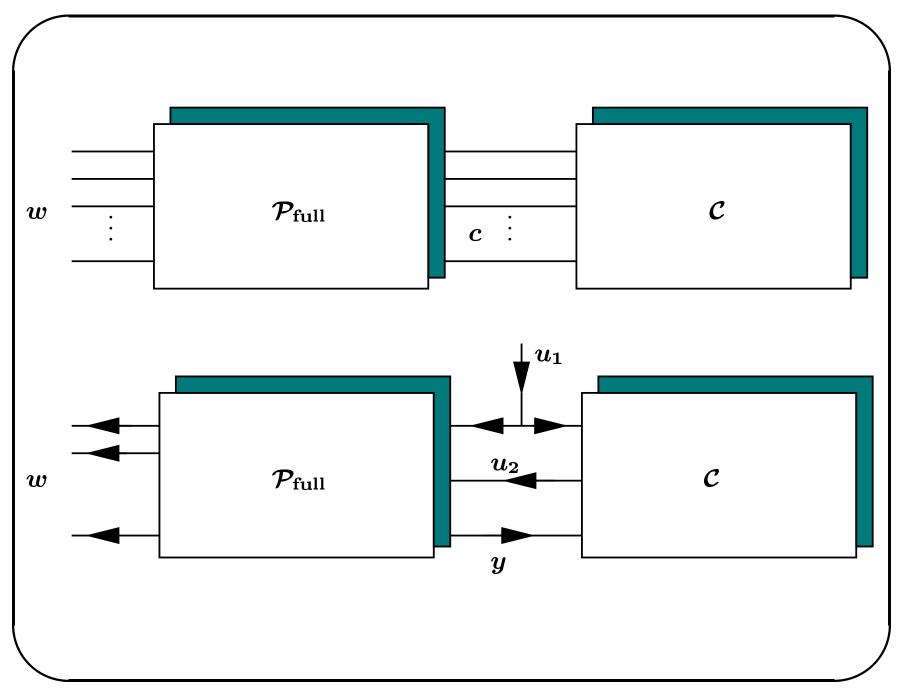
Recall: regular interconnection \Leftrightarrow **feedback interconnection.**

In the stabilization problem, the manifest controlled behavior \mathcal{K} becomes autonomous, so in the full controlled behavior $\mathcal{K}_{\text{full}}$, w does not contain free components.

Hence:

<u>**COROLLARY:</u>** Let $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$. Let $\mathcal{C} \in \mathfrak{L}^c$ be a controller such that the interconnection of $\mathcal{P}_{\text{full}}$ and \mathcal{C} is regular and such that \mathcal{K} is stable. Then there exists (modulo reordering of components) a partition of the control variable, $c = (u_1, u_2, y)$, such that</u>

- in $\mathcal{P}_{\mathrm{full}}, (u_1, u_2)$ is input and (y, w) is output,
- in \mathcal{C} , (u_1, y) is input and u_2 is output,
- in $\mathcal{K}_{\mathrm{full}}, u_1$ is input and (y, u_2, w) is output.



RECAP

- We have given definitions of interconnection of dynamical systems.
- The interconnection of two linear differential systems is called regular if the output cardinality of the interconnection is equal to the sum of the output cardinalities of the two systems.
- Feedback interconnection is a special kind of interconnection
- Feedback interconnection ⇔ regular interconnection.
- We consider control problems as problems to achieve interconnections that satisfy the design specifications.
- Given a plant P_{full}, a behavior K is implementable if there exists a controller C such that K is equal to the manifest behavior of the interconnection of P_{full} and C.

- A behavior is implementable if and only if it is wedged in between the hidden behavior \mathcal{N} and the manifest plant behavior \mathcal{P} .
- For a given plant \mathcal{P}_{full} , the stabilization problem is to find a regularly implementable, stable behavior \mathcal{K} .
- For a given plant \$\mathcal{P}_{full}\$, the pole placement problem is to find, for every monic polynomial \$r\$, a regularly implementable, autonomous behavior \$\mathcal{K}\$ whose characteristic polynomial equals \$r\$.
- The stabilization problem admits a solution if and only if, in the full plant \$\mathcal{P}_{full}\$, the manifest variable \$w\$ is detectable from the control variable \$c\$, and the manifest plant behavior \$\mathcal{P}\$ is stabilizable.
- The pole placement problem admits a solution if and only if in the full plant $\mathcal{P}_{\text{full}}$, w is observable from c, and \mathcal{P} is controllable.