
Lecture 4

INTERCONNECTION AND CONTROL
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OUTLINE

Part I: Interconnection of dynamical systems

1. Interconnection

2. Regular interconnection

3. Feedback interconnection

4. Control as interconnection

5. Implementability
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OUTLINE

Part II: Stabilization and pole placement

1. Problem formulation

2. Stabilizability and controllability

3. Solution of the stabilization and pole placement problem

4. Feedback implementability of the controllers
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PART I

INTERCONNECTION OF DYNAMICAL SYSTEMS
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FULL INTERCONNECTION

Two dynamical systems:

Common time axis , common signal space .

The full interconnection of and is defined by:

Note: the behavior of is the intersection of the behaviors of
and .

The full interconnection consists of those trajectories that are
compatible with both the laws of ánd .
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EXAMPLE

with
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with
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Full interconnection of and :

,

Note: .
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EXAMPLE

with

10



with

11



Full interconnection of and :

,

Note: .
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INTERCONNECTION THROUGH SPECIFIC COMPONENTS

Often the interconnection of systems takes place only through certain
components of the manifest variable:

Common time axis , and common factor in the signal space .

The interconnection of and through is defined by:

where

and
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EXAMPLE: FEEDBACK

, with latent variable representation
(latent variable )

We take and .

, with latent variable representation (latent
variable )

We take , is absent.
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The interconnection of and through is equal to the
usual feedback interconnection, with latent variable representation
(latent variable ):
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Interconnection through specific components can be considered as
full interconnection:

The interconnection of and through is equal to the full
interconnection of and :
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REGULAR INTERCONNECTION

Two linear time-invariant differential systems:

The full interconnection is called a
regular full interconnection if the output cardinality of is
equal to the sum of the output cardinalities of and :
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In the case of interconnection through specific components:

The interconnection is called a regular interconnection
if the output cardinality of is equal to the sum of the
output cardinalities of and :

with

and
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EXAMPLE: FEEDBACK

Recall the previous example on the feedback interconnection of finite
dimensional linear systems.

Conclusion: the usual feedback interconnection of finite dimensional
linear systems is a regular interconnection.

20



FEEDBACK INTERCONNECTION

Two linear differential systems:

The interconnection of and through is called a
feedback interconnection if (modulo permutation of components)
there exist partitions , , and

such that

in , is input and is output,

in , is input and is output,

in , is input and is output.
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...
...

...
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REGULAR FEEDBACK

Obviously, every feedback interconnection is regular:

Also the converse holds:

Theorem: Let , . The interconnection of
and through is a regular interconnection if and only if it is

a feedback interconnection.
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CONTROL AS INTERCONNECTION

Plant to be controlled:

...
...

variablesvariables
to be controlled control

PLANT
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two kinds of variables:

variables to be controlled (taking values in ),

control variables (taking values in ).

The control variables are those variables through which we will
interconnect the plant to a controller.

The plant is a dynamical system

with full plant behavior

satisfies the plant equations
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Controllers:

CONTROLLER
...

control variables

A controller for is a dynamical system

with controller behavior

satisfies the controller equations
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Controlled plant:

...

variablesvariables
to be controlled control

PLANT CONTROLLER
...

The controlled plant is the interconnection of and through :

with full controlled behavior

and
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GENERAL CONTROL PROBLEM

We define the manifest controlled behavior by

there exists such that

General control problem: given the plant

specify a family of admissible controllers,

describe a set of specifications on the controlled plant, i.e. desired
properties of the manifest controlled behavior ,

find a controller such that the manifest controlled
behavior satisfies these specifications.
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EXAMPLE

Door closing mechanism:

hinges

wall

door

spring

damper
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Equation of motion of the door:

No friction in the hinges, mass of the door, force to be exerted
by the door closing device, exogenous force.
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To be controlled variable: .

Control variable:

Plant:

with all that satisfy the equation of
motion of the door.

Door closing mechanism modeled as mass-spring-damper
combination:

mass of the door closing mechanism, damping coefficient,
spring constant.

Controller: , with all that satisfy the
equation of motion of the door closing mechanism.
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Controlled plant: with full
controlled behavior : all that satisfy the
equations of motion of the door ánd the door closing mechanism.

Manifest controlled behavior:

Specifications on the controlled system: the system should have
small overshoot, fast settling time, not-to-high steady state gain from
to .

Finding a suitable controller means finding suitable values for ,
and .
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IMPLEMENTABILITY

Let be a linear differential system, i.e.,
.

Let the controller be a linear differential system,
i.e., .

Let . If is equal to the manifest controlled behavior
obtained by interconnecting and , i.e.

there exists such that

then we say: implements .

Let . If there exists such that implements , then
we say: is implementable .
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Given , we ask ourselves the question:

which ’s in are implementable?

...
... ???
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MANIFEST PLANT BEHAVIOR AND HIDDEN BEHAVIOR

Key concepts in the characterization of the implementable ’s are
the plant behavior and hidden behavior associated with :

Given , the manifest plant behavior is defined as the system
obtained by eliminating the control variable :

there exists such that

The hidden behavior is defined as the system consisting of
the to-be controlled variable trajectories that are compatible with
the control variable set to zero:
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...

...
...
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CONDITIONS FOR IMPLEMENTABILITY

It is easily seen that for all we have .

The plant behavior and the hidden behavior determine whether a
given is implementable. In fact, the implementable ’s are
exactly those that are wedged in between and :

Theorem: Let , . Then we have: is
implementable if and only if
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REGULAR IMPLEMENTABILITY

Let .

Let , . If implements , and if the interconnection
of and is regular, i.e.

then we say: regularly implements .

Let . If there exists such that regularly implements
, then we say: is regularly implementable .
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CONDITIONS FOR REGULAR IMPLEMENTABILITY

If the manifest plant behavior associated with is controllable,
then every implementable is regularly implementable:

Theorem: Let and . Assume that the manifest
plant behavior is controllable. Then is regularly implementable
if and only if .

39



PART II

POLE-PLACEMENT AND STABILIZATION
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Plant to be controlled:

...
...

variablesvariables
to be controlled control

PLANT

41



Our plant has two kinds of variables:

to be controlled variables ,

control variables .

Full plant behavior:

satisfies the plant equations

We assume that is a linear differential system, i.e.,
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CONTROLLER
...

control variables

The control variables are those variables in the full plant that we
are allowed to put constraints on. In particular, we allow constraints
of the form

with .

In other words: a controller is a linear differential system ,
with manifest variable :

satisfies the controller equations
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Given a full plant , and a controller , we have

the full controlled behavior given by

and

the manifest controlled behavior given by

there exists such that

Note: and .

44



DESIGN SPECIFICATIONS

Design specifications are desired properties of the manifest controlled
behavior .

In this lecture:

Stability of : the stabilization problem.

Stability of with arbitrary transient settling time and
frequencies of oscillation: the pole placement problem.
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STABILITY

is called stable if for all we have:

Note: if is stable, then it is autonomous.

Stability in terms of representations:

Proposition: Let . Let be such that
is a kernel representation of . Then is stable if and

only if is Hurwitz, i.e., the polynomial has all its roots in
.
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THE STABILIZATION PROBLEM

Given , the stabilization problem is to find a controller
such that

the interconnection of and is regular, and

the manifest controlled behavior is stable.

In other words:

Given , find such that is regularly
implementable and stable.
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THE CHARACTERISTIC POLYNOMIAL OF A SYSTEM

Let be autonomous. Then there exists ,
, such that is a kernel representation of .

Obviously, for any non-zero , also yields a kernel
representation of .

Hence: we can choose such that is a monic polynomial.
This monic polynomial is denoted by , and is called the

the characteristic polynomial of

only depends on , and not on the polynomial matrix we have
used to define it: if and both represent , then there exists a
unimodular such that . Hence if and

are monic, then .
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THE POLE PLACEMENT PROBLEM

Given , the pole placement problem is to find, for every
monic polynomial , a controller such that

the interconnection of and is regular, and

the characteristic polynomial of the controlled behavior is
equal to .

In other words:

Given , for every monic polynomial find
such that is regularly implementable and .
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STABILIZABILITY

Recall that is called stabilizable if for all there exists
such that

for ,

.

Proposition: Let , and let be such that
is a minimal kernel representation of . Then is

stabilizable if and only if there exists such that

is Hurwitz.

50



Interpretation of stabilizability in terms of full interconnection

is represented by . Let be the system represented
by . The interconnection is then represented
by

If have full row rank then is nonsingular if and only if

Equivalently:
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Thus we get the following characterization of stabilizability in terms
of stabilization by regular full interconnection:

Proposition: Let . Then is stabilizable if and only if there
exists such that the full interconnection is stable
and regular.

Note: the entire manifest variable is used as a control variable.
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CONTROLLABILITY

Recall the definition of controllability: is controllable if for
all there exists and such that

Proposition: Let , and let be such that
is a minimal kernel representation of . Then is

controllable if and only if for every monic polynomial there
exists such that
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Interpretation of controllability in terms of full interconnection

This yields the following characterization of controllability in terms
of pole placement by regular full interconnection:

Proposition: Let . Then is controllable if and only if for
each monic polynomial there exists such that the
full interconnection regular, autonomous, and .

Note again: the entire manifest variable is used as a control
variable.
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SOLUTION OF THE STABILIZATION PROBLEM

Recall: given , the stabilization problem is to find
such that is regularly implementable and stable.

Recall the notions of manifest plant behavior:

there exists such that

and hidden behavior:

Theorem: Let . There exists a regularly implementable,
stable if and only if

is stable,

is stabilizable.
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STABLE HIDDEN BEHAVIOR DETECTABILITY

Note: is stable if and only if

By linearity, this is equivalent with:

Conclusion: is stable in , is detectable from .

Reformulation of the theorem:

Let . There exists a regularly implementable, stable
if and only if

in , is detectable from ,

the system obtained by eliminating from is stabilizable.
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Proof of Theorem:

Minimal kernel representation of : .

By suitable unimodular premultiplication of , is
represented by

with full row rank.

Plant behavior : eliminate ,

Hidden behavior : set equal to zero .
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(only if) regularly implementable .

stable stable.

There exists that implements . Minimal kernel
representation .

Minimal kernel representation of :

Latent variable representation of :

(latent variable ).

58



Note: , with represented by

(latent variable ).

Interconnection of and regular Interconnection
regular.

stable stabilizable.
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(if) is represented by ,

is represented by .

stable , with full

column rank for all , and Hurwitz.

Hence: has a representation of the form

Note:

(reconstruction of using ).
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stabilizable and , Hurwitz full row

rank for there exists such that

is Hurwitz.

Hence is Hurwitz.

Define now , with repr. by .

Then is stable.

Since for , is regularly
implemented by the controller represented by

.
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SOLUTION OF THE POLE PLACEMENT PROBLEM

Recall: given , the pole placement problem is to find, for
every monic polynomial a behavior such that is
regularly implementable and .

Theorem: Let . For every there exists a
regularly implementable such that if and only if

,

is controllable.
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ZERO HIDDEN BEHAVIOR OBSERVABILITY

Note: if and only if

By linearity, this is equivalent with:

Conclusion: in , is observable from .

Reformulation of the theorem:

Let . For every there exists a regularly
implementable such that if and only if

in , is observable from ,

the system obtained by eliminating from is controllable.
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FROM GENERAL RESULT TO PARTICULAR REPRESENTATIONS

Statement of the main results do not use representations of and .
Hence: applicable to any particular representation of the full plant

. Procedure:

for a given representation of , compute representations of its
hidden behavior and its manifest plant behavior .

Next: express the representation-free conditions of the main
result in terms of the parameters of these representations.

Use the general construction of the controlled behavior to set
up algorithms in terms of the parameters of these
representations.

Example: applying this procedure to represented by
, with and

yields the well-known conditions on and .
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FEEDBACK IMPLEMENTABILITY OF STABILIZING CONTROLLERS

Recall: regular interconnection feedback interconnection.

In the stabilization problem, the manifest controlled behavior
becomes autonomous, so in the full controlled behavior , does
not contain free components.

Hence:

COROLLARY: Let . Let be a controller such
that the interconnection of and is regular and such that is
stable. Then there exists (modulo reordering of components) a
partition of the control variable, , such that

in , is input and is output,

in , is input and is output,

in , is input and is output.
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RECAP

We have given definitions of interconnection of dynamical
systems.

The interconnection of two linear differential systems is called
regular if the output cardinality of the interconnection is equal to
the sum of the output cardinalities of the two systems.

Feedback interconnection is a special kind of interconnection

Feedback interconnection regular interconnection.

We consider control problems as problems to achieve
interconnections that satisfy the design specifications.

Given a plant , a behavior is implementable if there exists
a controller such that is equal to the manifest behavior of the
interconnection of and .
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A behavior is implementable if and only if it is wedged in between
the hidden behavior and the manifest plant behavior .

For a given plant , the stabilization problem is to find a
regularly implementable, stable behavior .

For a given plant , the pole placement problem is to find, for
every monic polynomial , a regularly implementable,
autonomous behavior whose characteristic polynomial equals
.

The stabilization problem admits a solution if and only if, in the
full plant , the manifest variable is detectable from the
control variable , and the manifest plant behavior is
stabilizable.

The pole placement problem admits a solution if and only if in
the full plant , is observable from , and is controllable.
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