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Questions

What do we mean by a dissipative system ?

It involves the storage function. How is it constructed?

How does this theory look like for PDE’s ? What does it
mean e.g. in Maxwell’s equations?

Where does it enter is stability analysis? In robust control?

How is it applied in thermodynamics? In circuit synthesis?
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Lyapunov functions
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Lyapunov functions

Consider the classical dynamical system, the ‘flow’,

Σ : d
dt x � f

�

x

�

with x � � � � �

the state, and f :

� � �
the vectorfield.

Denote the set of solutions x :

� � �
by B , the ‘behavior’.

V :

is said to be a Lyapunov function for Σ if along x B

d
dt V x 0

Equivalently, if V Σ : ∇V f 0
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�
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�

V Σ : � ∇V � f
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Typical Lyapunov theorem

Lyapunov

trajectory
system

function
V

X

V

�

x

��� 0 and
�

V Σ �
x

��� 0 for 0

��� x � �

�

�

x �

B � there holds x

�

t

� � 0 for t � ∞ ‘global stability’
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Lyapunov

Lyapunov f’ns play a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov’s ‘second method’ in his thesis (1899).
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The classical notion of a dissipative systems
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Open systems

‘Open’ systems are a much more appropriate starting point
for the study of dynamics. For example,

u1
u2

u

1
y

um

y
2

p

input SYSTEM output

� the dynamical system

Σ : d
dt x � f

�
x � u � � y � h �

x � u ��

u � � �  ! � y � " �  # � x � � �  �

: input, output, state.

Behavior B � all sol’ns

�

u � y � x �

:

 � �%$ " $ ��
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Dissipative dynamical systems

Let s :

�$ " �  

be a function, called the supply rate.

Σ is said to be dissipative w.r.t. the supply rate s if

&

V :

� �  �
called the storage function , such that

d
dt V

�

x

�(' � ��)
s

�
u

�(' � � y �' � �

� �

u

�' � � y �' � � x �(' � � �
B .
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Dissipation inequality

d
dt V

�

x

�(' � ��)

s

�

u

�(' � � y �' � �

� �

u

�' � � y �' � � x �(' � � �

B .

This inequality is called the dissipation inequality.

Equivalent to

�

V Σ �

x � u �

: � ∇V
�

x
� ' f

�
x � u ��)

s

�

u � h �

x � u � �

for all

�

u � x � � �%$ �

.

If equality holds: ‘conservative’ system.

– p.11/57



Dissipation inequality

supply

input

output

SYSTEM

SUPPLY

DISSIPATION

STORAGE

s

�

u � y �

models something like the power delivered to the
system when the input value is u and output value is y.

V

�

x

�

then models the internally stored energy.

Dissipativity : *
rate of increase of internal energy ) power delivered.
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Dissipation inequality

Special case: ‘closed’ system: s � 0 then

dissipativeness + V is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closed systems , Dissipativity for open systems.
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The construction of storage functions

Basic question:

Given (a representation of ) Σ, the dynamics,
and given s, the supply rate,

is the system dissipative w.r.t. s, i.e.
does there exist a storage function V such that

the dissipation inequality holds?

supply

input

output

SYSTEM

Monitor power in, known dynamics, what is the stored energy?
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov
functions, H ∞ and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.

The storage function V is in general far from unique. There
are two ‘canonical’ storage functions:

the available storage and the required supply .

For conservative systems, V is unique. There are other cases.

– p.15/57
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The storage function V is in general far from unique. There
are two ‘canonical’ storage functions:

the available storage and the required supply .

For conservative systems, V is unique. There are other cases.
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Dissipative systems

Dissipative systems and storage functions play a remarkably
central role in the field.
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Shortcomings
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Shortcomings

The classical framework falls short in very important
situations, for example,

it assumes an (often fictitious) input/output partition,
and a state representation to start with.
it covers thermodynamics only in simple cases;
it deals with electrical circuit syntesis in an awkward
way;
it does not apply to distributed systems;
etc., etc.
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Thermodynamics

c         c 

(Q  , T )h        h

(work)
W

mechanical side
hot side

cold side

(heatflow, temperature)

(Q  , T )

(heatflow, temperature)

Not all histories W � Qh � Th � Qc � Tc are possible. Must satisfy:

1. The first law: conservation of energy

2. The second law:
heat and work are nevertheless not exchangeable
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Thermodynamics

c         c 

(Q  , T )h        h

(work)
W

mechanical side
hot side

cold side

(heatflow, temperature)

(Q  , T )

(heatflow, temperature)

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position among
the laws of nature. Arthur Eddington
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Thermodynamics

c         c 

(Q  , T )h        h

(work)
W

mechanical side
hot side

cold side

(heatflow, temperature)

(Q  , T )

(heatflow, temperature)

Paradigmatic example of open , dissipative , dynamical

Deals with histories .
The first and second law express something about the
interaction with an ‘arbitrary’ environment .

The first law expresses conservativeness , in a the second
law dissipativeness in a certain sense.

– p.19/57



Thermodynamics

c         c 

(Q  , T )h        h

(work)
W

mechanical side
hot side

cold side

(heatflow, temperature)

(Q  , T )

(heatflow, temperature)

Not all histories W � Qh � Th � Qc � Tc are possible. Must satisfy:
1. The first law: conservation of energy
2. The second law: heat and work are nevertheless not

exchangeable

How can we express these laws in an non-ambiguous way?

Inappropriateness of inputs, outputs; unavailability of states.
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The realization problem

Given a set of building blocks,
and a way to interconnect these building blocks,

what behaviors can be obtained?

Example 1: State representation algorithms.
Building blocks: adders, amplifiers, forks, integrators
(as in analog computers)

� LTIDS
�

x � Ax - Bu � y � Cx - Du�

Example 2: Electrical circuit synthesis. Building blocks:
resistors, capacitors, inductors, connectors,
transformers, gyrators.

– p.20/57



Circuit synthesis

Realizability: Which external behaviors can be obtained by
interconnecting a finite number of R’s, C’s, L’s, & T’s ?

(or without T’s, or with also G’s?)

RLCT’s
InterconnectedV

I

I

1
1

|E|

V
|E|

Synthesis: If a behavior is realizable, give a wiring diagram
(an architecture) that leads to the desired external behavior.

Hybridicity
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Circuit synthesis

This problem is best dealt with, if we do not consider a state
representation, nor an input/output partition.

In fact, the input/output partition is a result.

Hybridicity

There exists an I/O repr. for which the input and output var.�

u1 � u2 �� � � � u .
E

. � � �
y1 � y2 � ' ' ' � y .

E

. �

pair as follows: /
u 0 � y 0 1 � /

V 0 � I 0 1

In other words, each terminal is either
current controlled or voltage controlled.
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Circuit synthesis

Hybridicity

OUTPUTS

1IV1

Interconnected
RLCT’s

I V2 2

INPUTS
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Distributed systems

First principles motivating example: heat diffusion

x

q(x,t)

T(x,t)

The PDE

∂
∂ t T

� ∂ 2

∂ x2 T - q
describes the evolution of the temperature T

�

x � t �

(x �  

position, t �  
time) in a medium and the heat q

�

x � T �

supplied to / radiated away from it.

First law:
2 q x t dx dt 0

Second law:

2

q x t
T x t

dx dt 0
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Distributed systems

∂
∂ t T

� ∂ 2

∂ x2 T - q
For all sol’ns T � q with T

�

x � t � � constant� 0 (and therefore
q � 0) outside a compact set, there holds:

First law: 243 2 q

�

x � t �

dx dt � 0 �

Second law:

243 2

q
�

x � t �
T

�
x � t � dx dt

)

0�

– p.22/57



Distributed systems

∂
∂ t T

� ∂ 2

∂ x2 T - q
First law: 253 2 q

�

x � t �

dx dt � 0 �
Second law:

253 2

q

�

x � t �
T

�

x � t � dx dt
)

0�

�

maxx 6t /

T

�

x � t �7

q

�
x � t ��8

0
18 minx 6t /

T

�

x � t �7

q

�

x � t �)

0

1�

Cannot transport heat from a ‘cold source’ to a ‘hot sink’.
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Distributed systems

∂
∂ t T

� ∂ 2

∂ x2 T - q

253 2 q

�

x � t �

dx dt � 0 � 2 3 2

q
�

x � t �

T
�

x � t � dx dt

)

0�

Can these ‘global’ laws be expressed as ‘local’ laws?

FLUX

SUPPLY

STORAGE

FLUX

rate of change in storage + spatial flux) supply rate
– p.22/57



Distributed systems

∂
∂ t T

� ∂ 2

∂ x2 T - q

To be invented:
an ‘extensive’ quantity for the first law: internal energy
an ‘extensive’ quantity for the second law: entropy
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Distributed systems

Define the following variables:

E � T : the stored energy density,

S � ln

�

T

�

: the entropy density,

FE

�:9 ∂
∂x

T : the energy flux �

FS

�:9 1
T

∂
∂x

T : the entropy flux,

DS

� � 1
T

∂
∂x

T
�2 : the rate of entropy production�
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Distributed systems

∂
∂ t T

� ∂ 2

∂ x2 T - q

� Local versions of the first and second law:

rate of change in storage + spatial flux) supply rate

Conservation of energy:

∂
∂ t

E - ∂
∂x

FE

� q �

Entropy production:

∂
∂ t

S - ∂
∂x

FS

� q
T

- DS

� ∂
∂ t

S - ∂
∂x

FS

8 q
T

�
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Distributed systems

Our problem:

Extend notion of dissipative system to cover this case

theory behind ad hoc constructions of E � FE and S � FS.
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Systems described by PDE’s

– p.23/57



PDE’s: polynomial notation

Consider, for example, the PDE:

w1

;

x1 < x2

=?> ∂ 2

∂x2
2

w1

;

x1 < x2

= > ∂
∂x1

w2

;

x1 < x2
= @ 0

w2

;

x1 < x2

=?> ∂ 3

∂x3
2

w1

;

x1 < x2

=?> ∂ 4

∂x4
1

w2
;

x1 < x2

= @ 0

Notation:

ξ1
∂

∂x1
ξ2

∂
∂x2

w
w1

w2

R ξ1 ξ2
1 ξ 2

2 ξ1

ξ 3
2 1 ξ 4

1

R ∂
∂ x1

∂
∂ x2

w 0
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PDE’s: polynomial notation

Consider, for example, the PDE:

w1

;

x1 < x2

=?> ∂ 2

∂x2
2

w1

;

x1 < x2

= > ∂
∂x1

w2

;

x1 < x2
= @ 0

w2

;

x1 < x2

=?> ∂ 3

∂x3
2

w1

;

x1 < x2

=?> ∂ 4

∂x4
1

w2
;

x1 < x2

= @ 0

A
Notation:

ξ1

B ∂
∂x1

< ξ2

B ∂
∂x2

< w @
C

Dw1

w2

E
F < R

;

ξ1 < ξ2

= @
C

D1

> ξ 2
2 ξ1

ξ 3
2 1> ξ 4

1

E
FHG

R ∂
∂ x1

� ∂
∂ x2

w � 0�
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Linear differential distributed systems

I �  � � the set of independent variables,
typically J � 4: time and space,�  K � the set of dependent variables,

B � the solutions of a linear constant coefficient PDE.

Let R ξ1 ξ and consider

R ∂
∂ x1

∂
∂ x w 0

Define the associated behavior

B w C∞ holds

Notation for -D linear differential systems:
B L or B L
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Linear differential distributed systems

I �  � � the set of independent variables,
typically J � 4: time and space,�  K � the set of dependent variables,

B � the solutions of a linear constant coefficient PDE.

Let R �  � L K M

ξ1 � ' ' ' � ξ � N � and consider

R ∂
∂ x1

� ' ' ' � ∂
∂ x O w � 0� �QP �

Define the associated behavior

B � /
w �

C∞ �  � �  K � 7 �P �

holds

1�

Notation for J-D linear differential systems:�  � �  K � B � �

L

K � � or B

�

L

K � �
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Examples

Heat diffusion in a bar

x

q(x,t)

T(x,t)� the PDE
∂
∂ t

T � ∂ 2

∂x2 T - q

(x R S

, position, t R S
, time), (2-D system)

describes the evolution of the temperature T

;

x < t =

and the heat q
;

x < T =
supplied to / radiated away.

Maxwell’s equations
∇ E

1
ε0

ρ

∇ E
∂
∂ t

B

∇ B 0

c2∇ B
1
ε0

j
∂
∂ t

E

3 (time and space) 4 (4-D system) ,
w E B j ρ (electric field, magnetic field, current, charge),

3 3 3 10,
B set of solutions to these PDE’s. B L 10

4 .

Note: 10 variables, 8 equations! free variables.
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Examples

The voltage V

�

x � t �

and current I

�

x � t �

in a coaxial cable

V(x,t)
x

I(x,t)

+

−

∂
∂x

V � RI9 L
∂
∂ t

I �

∂
∂x

I � GV9 C
∂
∂ t

V�

R the resistance, L the inductance, C the capacitance of the cable,
G the conductance of the dielectric medium, all per unit length.
(2-D system)

Maxwell’s equations
∇ E

1
ε0

ρ

∇ E
∂
∂ t

B

∇ B 0

c2∇ B
1
ε0

j
∂
∂ t

E

3 (time and space) 4 (4-D system) ,
w E B j ρ (electric field, magnetic field, current, charge),

3 3 3 10,
B set of solutions to these PDE’s. B L 10

4 .

Note: 10 variables, 8 equations! free variables.
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Examples

Maxwell’s equations
∇ T U

E @ 1
ε0

ρ <
∇ V U

E @ W ∂
∂ t

U
B <

∇ T U
B @ 0 <

c2∇ V U
B @ 1

ε0

U

j> ∂
∂ t

U

EG

3 (time and space) 4 (4-D system) ,
w E B j ρ (electric field, magnetic field, current, charge),

3 3 3 10,
B set of solutions to these PDE’s. B L 10

4 .

Note: 10 variables, 8 equations! free variables.

– p.26/57



Examples

Maxwell’s equations
∇ T U

E @ 1
ε0

ρ <
∇ V U

E @ W ∂
∂ t

U
B <

∇ T U
B @ 0 <

c2∇ V U
B @ 1

ε0

U

j> ∂
∂ t

U

EG

I �  $  3 (time and space) � J � 4 (4-D system) ,
w � � X

E � X

B � X

j � ρ �

(electric field, magnetic field, current, charge),�  3 $  3 $  3 $  � � Y � 10,
B � set of solutions to these PDE’s. �

B

�

L 10
4 .

Note: 10 variables, 8 equations! � &

free variables.
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Elimination theorem

Theorem:

If the behavior of

�

w1 �� � � � w 0 � w 0Z 1 �� � � � w K �

obeys a constant coefficient linear PDE,
then so does the behavior of

�
w1 �� � � � w 0 � !

Which PDE’s describe (ρ E j) in ME’s? Eliminate B

∇ E
1
ε0

ρ

ε0
∂
∂ t

∇ E ∇ j 0

ε0
∂ 2

∂ t2 E ε0c2∇ ∇ E
∂
∂ t

j 0
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Elimination theorem

Theorem:

If the behavior of

�

w1 �� � � � w 0 � w 0Z 1 �� � � � w K �

obeys a constant coefficient linear PDE,
then so does the behavior of

�
w1 �� � � � w 0 � !

Which PDE’s describe (ρ � X
E � X

j) in ME’s? Eliminate

X

B �

∇ T U

E @ 1
ε0

ρ <

ε0
∂
∂ t

∇ T U

E > ∇ T U

j @ 0 <

ε0
∂ 2

∂ t2

U
E> ε0c2∇ V ∇ V U

E > ∂
∂ t

U

j @ 0G

– p.27/57



Image representation

R ∂
∂ x1

� ' ' ' � ∂
∂ x O w � 0

is called a kernel representation of the associated B

�

L

K � .

Another representation: image representation

w M ∂
∂ x1

∂
∂ x

Elimination thm im M ∂
∂ x1

∂
∂ x L !

Do all behaviors admit an image representation???

B L admits an image representation iff it is ‘controllable’.

– p.28/57
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R ∂
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� ' ' ' � ∂
∂ x O w � 0

is called a kernel representation of the associated B

�

L

K � .
Another representation: image representation

w � M ∂
∂ x1

� ' ' ' � ∂
∂ x O [

Elimination thm � im M ∂
∂ x1

� ' ' ' � ∂
∂ x O �

L

K � !
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Image representation

R ∂
∂ x1

� ' ' ' � ∂
∂ x O w � 0

is called a kernel representation of the associated B

�

L

K � .
Another representation: image representation

w � M ∂
∂ x1

� ' ' ' � ∂
∂ x O [

Elimination thm � im M ∂
∂ x1

� ' ' ' � ∂
∂ x O �

L

K � !

Do all behaviors admit an image representation???

B

�

L

K � admits an image representation iff it is ‘controllable’.
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Controllability

Def’n in pictures:

O

1

\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \

] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ]
^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^

_ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _

W

R

R
1

w2

O2

w

w1 � w2

�

B .

Theorem: The following are equivalent:

1. B L is controllable
2. B admits an image representation
3.
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Controllability

Def’n in pictures:

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
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e e e e e e e ee e e e e e e ee e e e e e e ee e e e e e e ee e e e e e e ee e e e e e e ee e e e e e e ee e e e e e e ee e e e e e e ee e e e e e e ee e e e e e e ee e e e e e e e

W

R

R
1 O2

O

w1 w2w

w ‘patches’ w1 � w2

�

B .

&

w �

B
�

w1 � w2

�

B : Controllability : * ‘patchability’.

Theorem: The following are equivalent:

1. B L is controllable
2. B admits an image representation
3.
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Controllability

Def’n in pictures:

Theorem: The following are equivalent:

1. B

�

L

K � is controllable
2. B admits an image representation
3. ' ' '
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Are Maxwell’s equations controllable ?

The following equations
in the scalar potential φ : 3 and
the vector potential A : 3 3

generate exactly the solutions to Maxwell’s equations:

E
∂
∂ t

A ∇φ

B ∇ A

j ε0
∂ 2

∂ t2 A ε0c2∇2A ε0c2∇ ∇ A ε0
∂
∂ t

∇φ

ρ ε0
∂
∂ t

∇ A ε0∇2φ

Proves controllability. Illustrates the interesting connection

controllability potential!

– p.30/57



Are Maxwell’s equations controllable ?

The following equations
in the scalar potential φ :

 %$  3 �  

and
the vector potential

X

A :

 %$  3 �  3
generate exactly the solutions to Maxwell’s equations:

U

E @ W ∂
∂ t

U

A W ∇φ <

U

B @ ∇ V U

A <

U

j @ ε0
∂ 2

∂ t2

U

A W ε0c2∇2
U
A> ε0c2∇

f

∇ T U

A

g > ε0
∂
∂ t

∇φ <

ρ @ Wε0
∂
∂ t

∇ T U
A W ε0∇2φG

Proves controllability. Illustrates the interesting connection

controllability * &

potential!
– p.30/57



Observability

Observability of the image representation

w � M ∂
∂ x1

� ' ' ' � ∂
∂ x O [

is defined as:

[

can be deduced from w,

i.e. M ∂
∂ x1

� ' ' ' � ∂
∂ x O should be injective.

Not all controllable systems admit an observable im. repr’n.
For 1, they do. For 1, exceptionally so.

The latent variable in an im. repr’n may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation with an observable potential.

– p.31/57
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Observability of the image representation

w � M ∂
∂ x1

� ' ' ' � ∂
∂ x O [

is defined as:

[

can be deduced from w,

i.e. M ∂
∂ x1

� ' ' ' � ∂
∂ x O should be injective.

Not all controllable systems admit an observable im. repr’n.
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The latent variable
[

in an im. repr’n may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation with an observable potential.
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Dissipative distributed systems
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Notation

Multi-index notation:

x � �

x1 �� � � � x � � � k � �

k1 �� � � � k � � � [ � � [

1 �� � � � [ � � �
ξ � �

ξ1 � ' ' ' � ξ � � � ζ � �

ζ1 �� � � � ζ � � � η � �

η1 �� � � � η � � �

d
dx

� ∂
∂ x1

�� � � � ∂
∂ x O � dk

dxk

� ∂ k1

∂ xk1
1

�� � � � ∂ k O
∂ xk OO �

dx � dx1dx2� � � dx � �

R

h

d
dx

i

w � 0 for R ∂
∂ x1

� ' ' ' � ∂
∂ x O w � 0 �

w � M h

d
dx

i [

for w � M ∂
∂ x1

� ' ' ' � ∂
∂ x O [ �

etc.

∇ : ∂
∂ x1

∂
∂ x

For simplicity of notation, and for concreteness, we often take
4, independent variables, t, time, and x y z space.

– p.33/57



Notation

∇' : � ∂
∂ x1

- ' ' ' - ∂
∂ x O�

For simplicity of notation, and for concreteness, we often takeJ � 4, independent variables, t, time, and x � y � z � space.

∇' : � ∂
∂ x

- ∂
∂ y

- ∂
∂ z

� ‘spatial flux’

– p.33/57



QDF’s

The quadratic map acting on w :

 � �  K

and its derivatives,
defined by

w j � ∑k 6 k dk

dxk w

l

Φk 6 k d
k

dx
k w

is called quadratic differential form (QDF) on C∞ �  � �  K �

.
Φk 6 k �  K Lw; WLOG: Φk 6 k � Φ lk 6k.

Introduce the 2 -variable polynomial matrix Φ

Φ ζ η ∑
k

Φk ζ kη

Denote the QDF as QΦ. QDF’s are parametrized by ζ η

– p.34/57



QDF’s

The quadratic map acting on w :

 � �  K

and its derivatives,
defined by

w j � ∑k 6 k dk

dxk w

l

Φk 6 k d
k

dx
k w

is called quadratic differential form (QDF) on C∞ �  � �  K �

.
Φk 6 k �  K Lw; WLOG: Φk 6 k � Φ lk 6k.

Introduce the 2 J-variable polynomial matrix Φ

Φ
�

ζ � η � � ∑
k 6 k Φk 6 kζ kη

k�

Denote the QDF as QΦ. QDF’s are parametrized by

 M

ζ � η N �
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Dissipative distributed systems

We henceforth consider only controllable linear differential
systems and QDF’s for supply rates.

Definition: B L , controllable, is said to be

dissipative with respect to the supply rate QΦ

(a QDF) if

QΦ w dx 0

for all w B of compact support, i.e., for all w B D .

D : C∞ and ‘compact support’.

– p.35/57



Dissipative distributed systems

We henceforth consider only controllable linear differential
systems and QDF’s for supply rates.

Definition: B

�

L

K � , controllable, is said to be

dissipative with respect to the supply rate QΦ

(a QDF) if

243 O QΦ

�
w

�

dx

8

0

for all w �

B of compact support, i.e., for all w �

B

m

D .

D : � C∞ and ‘compact support’.
– p.35/57



Dissipative distributed systems

Assume J � 4:
independent variables x � y � z; t : space and time.

Idea: QΦ

�

w

� �

x � y � z; t

�

dxdydz dt :

‘energy’ supplied to the system
in the space-cube

M

x � x - dx

N $ M

y � y - dy
N $ M

z � z - dz

N

during the time-interval

M

t � t - dt
N

.

Dissipativity : *

243 M 243 3 QΦ

�

w

� �
x � y � z � t

�
dxdydz

N

dt

8

0

�

w �

B

m

D�

A dissipative system absorbs net energy.

– p.36/57



Example: EM fields

Maxwell’s eq’ns define a dissipative (in fact, a conservative)
system w.r.t. the QDF 9 X

E ' X

j

Indeed, if

X

E � X

j are of compact support and satisfy

ε0
∂
∂ t

∇ ' X
E - ∇ ' X

j � 0 �

ε0
∂ 2

∂ t2

X

E - ε0c2∇ $ ∇ $ X
E - ∂

∂ t

X

j � 0 �

then 2 3 n 2 3 3

9 X

E ' X

j dxdydz

o

dt � 0 �

– p.37/57



The storage and the flux

– p.38/57



Local dissipation law

Dissipativity : *

2 3 M 253 3 QΦ

�

w

�

dxdydz

N

dt

8

0 for all w �
B

m
D�

Can this be reinterpreted as:
As the system evolves, some of the energy supplied is locally
stored, some locally dissipated, and some redistributed over
space?

– p.39/57



Local dissipation law

Dissipativity : *

2 3 M 253 3 QΦ

�

w

�

dxdydz

N

dt

8

0 for all w �
B

m
D�

Can this be reinterpreted as:
As the system evolves, some of the energy supplied is locally
stored, some locally dissipated, and some redistributed over
space?
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Local dissipation law

!! Invent storage and flux, locally defined in time and space,
such that in every spatial domain there holds:

d
dt Storage + Spatial flux) Supply.

SUPPLY

DISSIPATION

FLUX

STORAGE

Supply = partly stored + partly radiated + partly dissipated.
– p.40/57



Main result (stated for J � 4)

Thm: J � 4 : x � y � z; t : space/time; B

�

L

K

4 , controllable.

Then

2 3 M 2 3 3 QΦ

�

w

�

dxdydz

N

dt

8

0 for all w �

B

m

D

an im. repr. w M ∂
∂ x

∂
∂ y

∂
∂ z

∂
∂ t of B ,

and QDF’s S, the storage, and Fx Fy Fz the flux,
such that the local dissipation law

∂
∂ t S

∂
∂ xFx

∂
∂ yFy

∂
∂ zFz QΦ w

holds for all w that satisfy w M ∂
∂ x

∂
∂ y

∂
∂ z

∂
∂ t

– p.41/57
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�
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4 , controllable.

Then

2 3 M 2 3 3 QΦ

�

w

�

dxdydz

N

dt

8

0 for all w �

B

m

D

&

an im. repr. w � M ∂
∂ x

� ∂
∂ y

� ∂
∂ z
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∂ t

[
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and QDF’s S, the storage, and Fx Fy Fz the flux,
such that the local dissipation law

∂
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∂
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∂
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∂
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∂
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∂
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∂
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4 , controllable.
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�

w

�
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N
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8
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B

m
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&

an im. repr. w � M ∂
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� ∂
∂ t

[
of B ,

and QDF’s S, the storage, and Fx � Fy � Fz � the flux,

such that the local dissipation law

∂
∂ t S

∂
∂ xFx

∂
∂ yFy

∂
∂ zFz QΦ w

holds for all w that satisfy w M ∂
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∂
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Main result (stated for J � 4)

Thm: J � 4 : x � y � z; t : space/time; B

�

L

K

4 , controllable.

Then

2 3 M 2 3 3 QΦ

�

w

�

dxdydz

N

dt

8

0 for all w �

B

m

D

&

an im. repr. w � M ∂
∂ x

� ∂
∂ y

� ∂
∂ z

� ∂
∂ t

[
of B ,

and QDF’s S, the storage, and Fx � Fy � Fz � the flux,
such that the local dissipation law

∂
∂ t S

� [ � - ∂
∂ xFx

� [ � - ∂
∂ yFy

� [ � - ∂
∂ zFz

� [ � )

QΦ

�

w

�

holds for all
�

w � [ �
that satisfy w � M ∂

∂ x

� ∂
∂ y

� ∂
∂ z

� ∂
∂ t

[�

– p.41/57



Hidden variables

The local law involves
possibly unobservable, - i.e., hidden!

latent variables (the

[

’s).

This gives physical notions as stored energy, entropy, etc., an
enigmatic physical flavor.

– p.42/57



Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative)
with respect to 9 X

E ' X

j � the rate of energy supplied.

Introduce the stored energy density, S, and
the energy flux density (the Poynting vector), F ,

S E B :
ε0

2
E E

ε0c2

2
B B

F E B : ε0c2E B

Local conservation law for Maxwell’s equations:

∂
∂ t S E B ∇ F E B E j

Involves B unobservable from E and j.

– p.43/57



Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative)
with respect to 9 X

E ' X

j � the rate of energy supplied.

Introduce the stored energy density, S, and
the energy flux density (the Poynting vector),

X

F ,

S

X

E � X

B : � ε0

2
X

E ' X
E - ε0c2

2

X

B ' X

B �

X

F

X

E � X

B : � ε0c2
X
E $ X

B�

Local conservation law for Maxwell’s equations:

∂
∂ t S

X
E � X

B - ∇ ' X

F

X

E � X

B � 9 X

E ' X

j�

Involves
X

B � unobservable from

X

E and

X

j. – p.43/57



The proof
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Outline of the proof

Using controllability and image representations, we may
assume, WLOG: B � C∞ �  � �  K �

To be shown

Global dissipation : *
3 O QΦ

�

w

� 8

0 for all w �

D

&

Ψ : ∇ ' QΨ
�

w

� )
QΦ

�

w

�

for all w �

C
∞

*: Local dissipation

– p.45/57



3 O QΦ

�

w

� 8

0 for all w �

D

(Parseval)

Φ

�9 iω � iω � 8

0 for all ω �  �

(Factorization equation)

D : Φ ξ ξ D ξ D ξ

(easy)

Ψ : ζ η Ψ ζ η Φ ζ η D ζ D η

(clearly)

Ψ : ∇ QΨ w QΦ w for all w C
∞

– p.46/57
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w

� 8

0 for all w �

D

(Parseval)

Φ

�9 iω � iω � 8

0 for all ω �  �
(Factorization equation)

&

D : Φ

�9 ξ � ξ � � D l �9 ξ

�
D

�

ξ

�

(easy)

Ψ : ζ η Ψ ζ η Φ ζ η D ζ D η

(clearly)

Ψ : ∇ QΨ w QΦ w for all w C
∞
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3 O QΦ

�

w

� 8

0 for all w �

D

(Parseval)

Φ

�9 iω � iω � 8

0 for all ω �  �
(Factorization equation)

&

D : Φ

�9 ξ � ξ � � D l �9 ξ

�
D

�

ξ

�

(easy)

&

Ψ :

�

ζ - η � l
Ψ

�
ζ � η � � Φ �

ζ � η �9 D

l �

ζ

�

D

�

η

�

(clearly)

Ψ : ∇ QΨ w QΦ w for all w C
∞
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3 O QΦ

�

w

� 8

0 for all w �

D

(Parseval)

Φ

�9 iω � iω � 8

0 for all ω �  �
(Factorization equation)

&

D : Φ

�9 ξ � ξ � � D l �9 ξ

�
D

�

ξ

�

(easy)

&

Ψ :

�

ζ - η � l
Ψ

�
ζ � η � � Φ �

ζ � η �9 D

l �

ζ

�

D

�

η

�

(clearly)

&

Ψ : ∇ ' QΨ

�

w

� )

QΦ

�

w

�

for all w �

C
∞
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Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : *
3 O QΦ

�

w

� 8

0 for all w �
D

&

Ψ : ∇ ' QΨ

�

w

� )
QΦ

�
w

�

for all w �

C
∞

*: Local dissipation

However, ... this argument is valid only for 1...
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w
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w
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*: Local dissipation
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The factorization equation (FE)
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The factorization equation

Consider
X

l �9 ξ

�

X

�

ξ

� � Y �

ξ

�

(FE)

with Y �  � L � M

ξ

N

given, and X the unknown. Solvable??

X ξ X ξ Y ξ

with Y ξ given, and X the unknown.

Under what conditions on Y does there exist a solution X?

Scalar case: write the real polynomial Y as a sum of squares

Y x2
1 x2

2 x2

– p.49/57
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The factorization equation

Consider
X

l �9 ξ

�

X

�

ξ

� � Y �

ξ

�

(FE)

with Y �  � L � M

ξ

N

given, and X the unknown. Solvable??

p�

X

l �

ξ

�

X

�

ξ

� � Y �
ξ

�

with Y �  � L � M

ξ

N

given, and X the unknown.

Under what conditions on Y does there exist a solution X?

Scalar case: write the real polynomial Y as a sum of squares

Y � x2
1

- x2
2

- ' ' ' - x2 0�
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X

q �

ξ

�

X

�

ξ

� � Y �

ξ

�

(FE)

Y is a given polynomial matrix; X is the unknown.

For J � 1 and Y �  M

ξ

N

, solvable (with X �  2 M
ξ

N
) iff

Y

�

α

� 8

0 for all α �  �

For 1 and under the symmetry and positivity condition

Y α Y α 0 for all α

this equation can nevertheless in general not be solved over
the polynomial matrices, for X ξ ,
but it can be solved over the matrices of rational functions,
i.e., for X ξ .
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0 for all α �  � �

this equation can nevertheless in general not be solved over
the polynomial matrices, for X �  � L � M

ξ

N

,
but it can be solved over the matrices of rational functions,
i.e., for X �  � L � �

ξ

�
.
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

!! Solve p � p2
1

- p2
2

- ' ' ' - p2 0 � p given

A polynomial p ξ1 ξ with p α1 α 0 for
all α1 α can in general not be expressed as a SOS
of polynomials, with the pi’s ξ1 ξ .
But a rational function (and hence a polynomial)
p ξ1 ξ with p α1 α 0 for all
α1 α , can be expressed as a SOS of ( 2 )

rational functions, with the pi’s ξ1 ξ .

– p.51/57



Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

!! Solve p � p2
1

- p2
2

- ' ' ' - p2 0 � p given

A polynomial p �  M

ξ1 � ' ' ' � ξ � N � with p

�

α1 �� � � � α � � 8 0 for
all

�

α1 �� � � � α � � �  �

can in general not be expressed as a SOS
of polynomials, with the pi’s

�  M

ξ1 � ' ' ' � ξ � N .

But a rational function (and hence a polynomial)
p ξ1 ξ with p α1 α 0 for all
α1 α , can be expressed as a SOS of ( 2 )

rational functions, with the pi’s ξ1 ξ .

– p.51/57



Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

!! Solve p � p2
1

- p2
2

- ' ' ' - p2 0 � p given

A polynomial p �  M

ξ1 � ' ' ' � ξ � N � with p

�

α1 �� � � � α � � 8 0 for
all

�

α1 �� � � � α � � �  �

can in general not be expressed as a SOS
of polynomials, with the pi’s

�  M

ξ1 � ' ' ' � ξ � N .
But a rational function (and hence a polynomial)
p �  �

ξ1 � ' ' ' � ξ � � � with p

�

α1 �� � � � α � � 8 0 � for all�
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Outline of the proof

� solvability of the factorization eq’n

Φ

�9 iω � iω � 8

0 for all ω �  �
(Factorization equation)

&

D : Φ

�9 ξ � ξ � � D l �9 ξ

�

D

�

ξ

�

over the rational functions, i.e., with D a matrix with elements
in

 �

ξ1 � ' ' ' � ξ � � �

The need to introduce rational f’ns in this factorization and
an image repr. of B (to reduce the pbm to C∞) are the causes
of the unavoidable presence of (possibly unobservable, i.e.,
‘hidden’) latent variables in the local dissipation law.
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Uniqueness
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable in various
(non-observable) image representations of B .

2. of D in the factorization equation
Φ ξ ξ D ξ D ξ

3. (in the case 1) of the solution Ψ of

ζ η Ψ ζ η Φ ζ η D ζ D η

For conservative systems, Φ ξ ξ 0, whence D 0,
but, when 1, the third source of non-uniqueness remains.
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Uniqueness

The non-uniqueness is very real, even for EM fields.

Cfr.

The ambiguity of the field energy
... There are, in fact, an infinite number of different possibilities
for u [the internal energy] and S [the flux] ... It is sometimes
claimed that this problem can be resolved using the theory of
gravitation ... as yet nobody has done such a delicate
experiment ... So we will follow the rest of the world - besides,
we believe that it [our choice] is probably perfectly right.

The Feynman Lectures on Physics,
Volume II, page 27-6.

– p.55/57
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Summary

The theory of dissipative systems centers around the
construction of the storage function

global dissipation * &

local dissipation law

Involves possibly hidden latent variables
(e.g.

X
B in Maxwell’s eq’ns)

The proof

p� Hilbert’s 17-th problem
Neither controllability nor observability are good generic
system theoretic assumptions for physical models
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End of lecture 6

The DDS work was done jointly with
Harish Pillai from the IIT Bombay.

Reference: H.P. and J.C. Willems, Dissipative distributed
systems, SIAM Journal on Control and Optimization volume 40,
pages 1406–1430, 2002.

Details & copies of the lecture frames are available from/at
http://www.esat.kuleuven.be/ sjwillems

Thank you
Thank you

Thank you
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