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Questions

What do we mean by a dissipative system ?

It involves the storage function. How is it constructed?

How does this theory look like for PDE’s ? What does it
mean e.g. in Maxwell’s equations?

Where does it enter is stability analysis? In robust control?

How is it applied in thermodynamics? In circuit synthesis?
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Lyapunov functions

—p.AI5T



Lyapunov functions

Consider the classical dynamical system, the ‘flow’,

= f(x)
with x € X =R" the state, and f : X — X the vectorfield.

Denote the set of solutions x: R — X by &4, the ‘behavior’.
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Lyapunov functions

Consider the classical dynamical system, the ‘flow’,

= f(x)

with x € X =R" the state, and f : X — X the vectorfield.

Denote the set of solutions x: R — X by &4, the ‘behavior’.

V. X—=R

is said to be a Lyapunov function for ¥ if along x € A

Equivalently, if \;Z =VV.f<O0.
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Typical Lyapunov theorem

Lyapunov |V
function

system
trajectory

V(x)>0and‘;z(x)<0f0r07éx€X

=

V x € 4, there holds x(t) — 0 for r — «  ‘global stability’
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Lyapunov

Lyapunov {’ns play a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov’s ‘second method’ in his thesis (1899).
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The classical notion of a dissipative systems
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Open systems

‘Open’ systems are a much more appropriate starting point

for the study of dynamics. For example,

~»  the dynamical system

Y: Lx=f(xu), y=h(xu).

ueU=R"ye Y =RP x e X=DR": input, output, state.

Behavior % = allsol’'ns (u,y,x):R—>UxY xX.
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Dissipative dynamical systems

Let s:UxY —R beafunction, called the supply rate.

V. X—= R,

called the storage function , such that

GV () <s@(),y())
vo(u(),y(),x()) € 2.
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Dissipation inequality

GV () <s@()y()
vo(u(),y(),x(-)) € B.

This inequality is called the dissipation inequality.

Equivalent to

VE(x,u) = VV (x)- f(x,u) <s(u,h(x,u))
for all (u,x) € UxX.

If equality holds: ‘conservative’ system.
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Dissipation inequality .,
MIA

Y)Y
STORAGE\\AQ‘
| SYSTEM

¢ YYvY !
DISSIPATION

s (u,y) models something like the power delivered to the
system when the input value is z and output value is y.

V (x) then models the internally stored energy.

Dissipativity &
rate of increase of internal energy < power delivered.
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Dissipation inequality

Special case: ‘closed’ system: s =0 then

dissipativeness <> V is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closed systems ~ Dissipativity for open systems.
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The construction of storage functions

Basic question:

Given (a representation of ) X, the dynamics,
and given s, the supply rate,
is the system dissipative w.r.t. s, i.e.
does there exist a storage function V such that
the dissipation inequality holds?

input

SYSTEM

—

supply

output

Monitor power in, known dynamics, what is the stored energy?
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov

functions, 7., and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.
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The construction of storage functions

The construction of storage £’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov

functions, 7., and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.

The storage function V is in general far from unique. There
are two ‘canonical’ storage functions:

the available storage and the required supply .

For conservative systems, V is unique. There are other cases.
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Dissipative systems

Dissipative systems and storage functions play a remarkably
central role in the field.
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Shortcomings
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Shortcomings

The classical framework falls short in very important
situations, for example,

9

o o

o o

it assumes an (often fictitious) input/output partition,
and a state representation to start with.

it covers thermodynamics only in simple cases;

it deals with electrical circuit syntesis in an awkward
ways;
it does not apply to distributed systems;

etc., etc.
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Thermodynamics

(heatflow, temperature)

Q,.T)

hot sid \

€

mechanical side

cold side
A

(Qc, To)

(heatflow, temperature)

Not all histories W, Q;,,T,,0.,1. are possible. Must satisfy:

1. The first law: conservation of energy

2. The second law:
heat and work are nevertheless not exchangeable
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Thermodynamics

(heatflow, temperature)

Q,.T)

hot sid \

€

mechanical side

cold side
A

(Qc, To)

(heatflow, temperature)

Thermodynamics is the only theory of a general nature of

which I am convinced that it will never be overthrown.
Albert Einstein

The law that entropy always increases — the second law of
thermodynamics — holds, I think, the supreme position among
the laws of nature. Arthur Eddington
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Thermodynamics

(heatflow, temperature)

Q,.T)

hot side\;

mechanical side

cold side
A

(Qc, To)

(heatflow, temperature)

Paradigmatic example of open, dissipative, dynamical

® Deals with histories .

® The first and second law express something about the
interaction with an ‘arbitrary’ environment .

#® The first law expresses conservativeness , in a the second
law dissipativeness in a certain sense.
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Thermodynamics

(heatflow, temperature)

Q,.T)

hot sid \

€

mechanical side

cold side
A

(Qc, To)

(heatflow, temperature)

Not all histories W, O;,, 1}, O., T. are possible. Must satisfy:
1. The first law: conservation of energy

2. The second law: heat and work are nevertheless not
exchangeable

How can we express these laws in an non-ambiguous way?

Inappropriateness of inputs, outputs; unavailability of states.
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The realization problem

Given a set of building blocks,
and a way to interconnect these building blocks,
what behaviors can be obtained?

Example 1: State representation algorithmes.

Building blocks: adders, amplifiers, forks, integrators
(as in analog computers)

~ LTIDS x =Ax+Bu, y=Cx+Du.

Example 2: Electrical circuit synthesis. Building blocks:

resistors, capacitors, inductors, connectors,
transformers, gyrators.
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Circuit synthesis

Realizability: Which external behaviors can be obtained by
interconnecting a finite number of R’s, C’s, L’s, & T’s ?
(or without T’s, or with also G’s?)

" Interconnected
RLCT’s

Synthesis: If a behavior is realizable, give a wiring diagram
(an architecture) that leads to the desired external behavior.
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Circuit synthesis

This problem is best dealt with, if we do not consider a state
representation, nor an input/output partition.

In fact, the input/output partition is a resulit.

Hybridicity
There exists an 1/O repr. for which the input and output var.

(u17u27- --7u|E|)7 (}’1,)’2,"‘ 7y\E|)

{u, ey = { V&, I }

In other words, each terminal is either
current controlled or voltage controlled.

pair as follows:
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Hybridicity

INPUTS

Circuit synthesis

. | Interconnected . i
. RLCT’s : 1

OUTPUTS
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Distributed systems

First principles motivating example: heat diffusion

q(x,t)

)

The PDE

describes the evolution of the temperature 7 (x,7)
(x € R position, 7 € R time) in a medium and the heat g(x,T)
supplied to / radiated away from it.

—p.22/57



Distributed systems

o __ 9?2

For all sol’ns 7', g with T (x,7) = constant > 0 (and therefore
g = 0) outside a compact set, there holds:

First law:

Jr2eq(x,t) dxdt = 0,

Second law:

q(x1)
g2 T (o.t) dx dt

VAN
-
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Distributed systems

First law:

Jreq(x,t)dxdt = O,

Second law:

q(x,t)
2 dxdtr < 0.
Iz T (x,t) =

=
max, {7 (x,?) | g(x,¢) > 0} > min, {7 (x,7) | g(x,t) < O0}.

Cannot transport heat from a ‘cold source’ to a ‘hot sink’.
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Distributed systems

4t Joa < o,
T (x,t)

f]R2Q(x7t) dx dt = 07 f]R2

Can these ‘global’ laws be expressed as ‘local’ laws?

SUPPLY

iy
FLUX g/ W /,SF—» FLUX

sl
STORAGE

rate of change in storage + spatial flux < supply rate
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Distributed systems

To be invented:
an ‘extensive’ quantity for the first law: internal energy
an ‘extensive’ quantity for the second law: entropy
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Distributed systems

Define the following variables:

E=T . the stored energy density,
S= In(T) . the entropy density,
2,
Fp=——=—T . the energy flux,
o0x
Fs = L 0 T : the entropy flux
S — T ax : py 9
1 d

Ds= (==T)* : the rate of entropy production.
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Distributed systems

dr 92
= Local versions of the first and second law:

rate of change in storage + spatial flux < supply rate

Conservation of energy:

o E 4+ o Fr =
or Tox ET 7
Entropy production:
d d q d d q
—S+—Fy==4+Dy = =—8S+—=—F > —.
9> T ox ST T TS 3> ox S°T
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Distributed systems

Our problem:

#® Extend notion of dissipative system to cover this case

# theory behind ad hoc constructions of E,Fr and S, Fs.
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Systems described by PDE’s



PDE’s: polynomial notation

Consider, for example, the PDE:

e 0

Z 7 — 0
wi (x1,x2) + ax%W (x1,x2) + o wy (x1,x2)

0> 04
wy (x1,x2) + == w1 (x1,%2) + =—wa (x1,x2) = O

3 4
(9x2 (9x1
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PDE’s: polynomial notation

Consider, for example, the PDE:

w (1,32) + S (e, ) 2w (etrmr) = 0
: —w1 (X1,X%2) + =—wa (x1,x2) =
1 (x1,x2 PR L (X1502) 2w (X1,
d° J*
Wz(xhxz)—i—&—xgm(XI7X2)+8—)c‘I‘W2(X17xz) = 0

)

Notation:

e, %, w 14 &7
§1<_>—7 §2<_>—7WZ 1 9 R(élagz): 62 51
8x1 8x2 Wo 23 1_1_514
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Linear differential distributed systems

T = R", the set of independent variables,

typically n = 4: time and space,
W = R", the set of dependent variables,
% = the solutions of a linear constant coefficient PDE.
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Linear differential distributed systems

T = R", the set of independent variables,

typically n = 4: time and space,
W = R", the set of dependent variables,
% = the solutions of a linear constant coefficient PDE.

Let R € R**V[&, -+, &ynl, and consider

R( i ) w=0. ()

Define the associated behavior

B = {we ¢ (R, R") | (+) holds }.

Notation for n-D linear differential systems:
(R*R", AB) e L7, or B €L
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Examples

Heat diffusion in a bar

q(x,t)
V]
7, |
: > |
T(x.t)
~» the PDE
Ir= a—2T +
o o2 1

(x € R, position, r € R, time), (2-D system)
describes the evolution of the temperature 7 (x,7)
and the heat ¢ (x, T') supplied to / radiated away.
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Examples

The voltage V (x,7) and current / (x,7) in a coaxial cable

1(x,t)

v ) —=
iV — RI—LQI
ox ot '’
25— gv-clv
ox ot

R the resistance, L the inductance, C the capacitance of the cable,

G the conductance of the dielectric medium, all per unit length.
(2-D system)
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Maxwell’s equations

Examples

<
wyll

l

VXE

<
o]l

2V x B
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Examples

Maxwell’s equations , 1
\% = —pP,
&0
— & —
VxE = ——B
ot ’
V.-B = 0,
2) ;
VxB = —j+ —=—E.
¢ 8()]+ ot

T =R xR} (time and space) ~»n =4 (4-D system),

w = (E : E, f, p) (electric field, magnetic field, current, charge),
W=R>xR>xR*xR,~ w=10,

%A = set of solutions to these PDE’s. ~» % € £/°.

Note: 10 variables, 8 equations! =- d free variables.
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Elimination theorem

Theorem:

If the behavior of (w,...,wi,wr 1,...,wy)
obeys a constant coefficient linear PDE,
then so does the behavior of (w1,...,wy)!

27157



Elimination theorem

Theorem:

If the behavior of (w,...,wi,wr 1,...,wy)
obeys a constant coefficient linear PDE,
then so does the behavior of (w1,...,wy)!

Which PDE’s describe (p,l_f : f) in ME’s? Eliminate B ~»

S 1
V.E —
&m
eavﬁ+v7 = 0
Oal_ .] - 9
% J .
— _E+4+ec*VXVXE = 0.
€528+ &c 5/

27157



Image representation

d d _
R(2 ) w0

is called a kernel representation of the associated % € ..
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Image representation

0 0 _
R( ) w=0

is called a kernel representation of the associated % € ..
Another representation: image representation

_ d J
TRy

Eliminationthm = 1m (M (aixlv T ,%ﬂ)) c L7

Do all behaviors admit an image representation???
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Image representation

0 0 _
R( ) w=0

is called a kernel representation of the associated % € ..
Another representation: image representation

_ d J
TRy

Eliminationthm = 1m (M (aixlv T ,%ﬂ)) c L7

Do all behaviors admit an image representation???

XA € £ admits an image representation iff it is ‘controllable’.
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Controllability

Def’n in pictures:
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Controllability

Def’n in pictures:

w ‘patches’ wi,w, € A.

& ‘patchability’.

dweAB Y w,wy, € %: Controllability
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Controllability

Theorem: The following are equivalent:

1. e £ is controllable
2. % admits an image representation
3. ...
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Are Maxwell’s equations controllable ?
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Are Maxwell’s equations controllable ?

The following equations
in the scalar potential ¢ : R x R’ — R and

the vector potential A:RxR? 5 R
generate exactly the solutions to Maxwell’s equations:

S 0 -
E = - Z4A-v
—5 9,
B = V><A,
* = el A adVite V(V A’)+g o Vo
= c c : —
J 8t2 0 O8t )
%,
— —g—V-A—gV?
p 05, oV°0.

Proves controllability. Illustrates the interesting connection

controllability < 3 potential!
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Observability

Observability of the image representation

? dx,

is defined as: 7/ can be deduced from w,

i.e. M (%, ce vai) should be injective.
1 Xn
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Observability

Observability of the image representation

w:M(aixl,--- o )Z

? dx,
is defined as: 7/ can be deduced from w,

i.e. M (%, ce vai) should be injective.
1 Xn

Not all controllable systems admit an observable im. repr’n.

For n = 1, they do. For n > 1, exceptionally so.

The latent variable 7 in an im. repr’n may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation with an observable potential.
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Dissipative distributed systems
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Notation

Multi-index notation:

x=(X1,...,%0), k= (ki,...,kn) , L= (l1,...,4n),
&:(517"'7§n)7§:(§17°"7gn)7n:(nla"'ann)v

d _ [ J d¢ _ [ o o
dx ~— 8x1""78xn Y dxk T axllcla"w&xﬁn y

dx =dxidx,...dxy,

R(L)w=0 for R(,, 2 )w=0,
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Notation

.__ _d J
V. '_8_x1+'”+8xn'

For simplicity of notation, and for concreteness, we often take
n = 4, independent variables, 7, time, and x, y, z, space.

V.= gx + aay + gz, ‘spatial flux’
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QDF’s
The quadratic map acting on w : R* — R" and its derivatives,

defined by
dk T d@
W Y g (ﬁw> Dy ¢ (WW)

is called quadratic differential form (QDF) on €= (R*,R").
q)k’g c R"": WLOG: Cbk,g = CI)Zk.
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QDF’s

The quadratic map acting on w : R* — R" and its derivatives,

defined by
dk T d@
W Y g (ﬁw> Dy ¢ (WW)

is called quadratic differential form (QDF) on €= (R*,R").
q)k’g c R"": WLOG: Cbk,g = CI)Zk.

Introduce the 2n-variable polynomial matrix ¢

o (C,n) =%¢k,eékn€.

Denote the QDF as Q5. QDF’s are parametrized by R[(, n].
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Dissipative distributed systems

We henceforth consider only controllable linear differential
systems and QDE’s for supply rates.
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Dissipative distributed systems

We henceforth consider only controllable linear differential
systems and QDE’s for supply rates.

Definition: # € £, controllable, is said to be

dissipative with respect to the supply rate QOg
(a QDF) if

fRn QCI) (W) dx 2 0

for all w € & of compact support, i.e., for all w € #Z N 2.

9 .= €~ and ‘compact support’.
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Dissipative distributed systems

Assume n = 4:
independent variables x,y,z;7: space and time.

Idea: Q¢ (W) (x,v,2;t) dxdydz dt:
‘energy’ supplied to the system
in the space-cube [x,x+ dx| X |y,y+ dy| X [z,z+ dZ]

during the time-interval [z,7 + dr|.

Dissipativity : <

fo [fas O (W) (x,y,2, t) dxdydz] dt >0| Ywe BNY.

A dissipative system absorbs net energy.
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Example: EM fields

Maxwell’s eq’ns define a dissipative (in fact, a conservative)
system w.r.t. the QDF —E f

Indeed, if E ,f are of compact support and satisfy

d S
atVE—l—V] = 0,
(92 dJd -

2E+€002V><V><E +

©7; or’

then

f]R [f]Reﬁ <—Ej) dxdydz] dt =0.
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The storage and the flux
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Local dissipation law

Dissipativity : &

Jr |Jps Qo (W) dxdydz] dt >0  forallw e BN J.
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Local dissipation law

Dissipativity : &
Jr |Jps Qo (W) dxdydz] dt >0  forallw e BN J.

Can this be reinterpreted as:

As the system evolves, some of the energy supplied is locally
stored, some locally dissipated, and some redistributed over
space?
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Local dissipation law

!! Invent storage and flux, locally defined in time and space,
such that in every spatial domain there holds:

SUPPLY

il

< Storage + Spatial flux < Supply.
%— FLUX

74

STORAGE

Yyy

DISSIPATION

Supply = partly stored + partly radiated + partly dissipated.
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Main result (stated for n = 4)

Thm: n =4: x,y,z;t : space/time; % € £, controllable.

Then [ [[r: Oo (W) dxdydz] dt >0  forallwe ZNY

0
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Main result (stated for n = 4)
Thm: n =4: x,y,z;t : space/time; % € £, controllable.

Then [ [[r: Oo (W) dxdydz] dt >0  forallwe ZNY

0

: _ 0 9 9 d
3 an im. repr. W_M(8x’8y’8z78t)€ of A,
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Main result (stated for n = 4)
Thm: n =4: x,y,z;t : space/time; % € £, controllable.

Then [ [[r: Oo (W) dxdydz] dt >0  forallwe ZNY

0

Janim. repr. w=M (8ax’ gy, gz, %) ¢ of A,
and QDF’s S, the storage, and F.,F,, I, the flux,
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Main result (stated for n = 4)
Thm: n =4: x,y,z;t : space/time; % € £, controllable.

Then [ [[r: Oo (W) dxdydz] dt >0  forallwe ZNY

0

: _ 0 9 9 d
3 an im. repr. W_M(8x’8y’8z78t)€ of A,

and QDF’s S, the storage, and F.,F,, I, the flux,
such that the local dissipation law

5S(0)+ ZF (D) + 5F, (0) + 5:F.(£) < Qo (W)

holds for all (w, /) that satisfy w = M (a&xv gy, gz, %) l.

—p.41/57



Hidden variables

The local law involves
possibly unobservable, - i.e., hidden!
latent variables (the /’s).

This gives physical notions as stored energy, entropy, etc., an
enigmatic physical flavor.
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Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative)
with respect to — E- f, the rate of energy supplied.
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Energy stored in EM fields
Maxwell’s equations are dissipative (in fact, conservative)
with respect to — E- f, the rate of energy supplied.

Introduce the stored energy density, S, and
the energy flux density (the Poynting vector), F,

F (E,E) = gyc’E x B.

Local conservation law for Maxwell’s equations:

= -

95 (E,B)+V-F (E,B) =-E

Involves B, unobservable from E and f

—p.43/57



The proof



Outline of the proof

Using controllability and image representations, we may
assume, WLOG: 4 = ¢~ (R*,R")

To be shown

Global dissipation : &

Qo (w)>0forallwe 2
Rn

0

4 ¥ VQ\y(W)SQq)(W) forallwe ¢~

& Local dissipation
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Qg (w) >0forallwe ¥
Rn

{ (Parseval)

d(—iw,iw) > 0 for all ® € R*
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Qg (w) >0forallwe ¥
Rn

 (Parseval)

d(—iw,iw) > 0 for all ® € R*

) (Factorization equation)

3 D: ®(—&,E)=D' (—&)D(&)
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/ Qg (w) >0forallwe ¥
Rn

 (Parseval)

d(—iw,iw) > 0 for all ® € R*

) (Factorization equation)

3 D: ®(—&,E)=D' (—&)D(&)
T (easy)

(E+n) P(,n)=2(,n)-D"({)D(n)
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/ Qg (w) >0forallwe ¥
Rn

 (Parseval)

d(—iw,iw) > 0 for all ® € R*

) (Factorization equation)

3 D: ®(—&,E)=D' (—&)D(&)
T (easy)
J¥: (&+n) P(&.n)=®(,n)-D"(5)D(n)

T (clearly)

= VQ\y(W)SQq)(W) forallw e ¢~

— p.A46/57



Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : &

Qg (w) >0forallwe ¥
Rn

0

I W¥: V-Qu(w)<Q¢(w) forallw e ¢~

& Local dissipation
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Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : &

Qg (w) >0forallwe ¥
Rn

0

I W¥: V-Qu(w)<Q¢(w) forallw e ¢~

& Local dissipation

However, ... this argument is valid only for n = 1...

—pATI5T



The factorization equation (FE)
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The factorization equation

Consider

X' (=6)X(8)=Y(S) (FE)

with Y € R***[£] given, and X the unknown. Solvable??
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The factorization equation

Consider

X' (=6)X(8)=Y(S) (FE)

with Y € R***[£] given, and X the unknown. Solvable??

12

X'(8)Xx (&)=Y (&)

with Y € R***[Z] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?
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The factorization equation

Consider

X' (=6)X(8)=Y(S) (FE)

with Y € R***[£] given, and X the unknown. Solvable??

12

X'(8)Xx (&)=Y (&)

with Y € R***[Z] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?

Scalar case: write the real polynomial Y as a sum of squares

Y =xt x5+ +xz.
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X"(8)X()=Y(§) (FE)

Y is a given polynomial matrix; X is the unknown.

For n=1 andY € R[], solvable (with X € R*[&]) iff

Y (o) >0 for all ¢ € R.
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X"(8)X()=Y(§) (FE)

Y is a given polynomial matrix; X is the unknown.

For n=1 andY € R[], solvable (with X € R*[&]) iff

Y (o) >0 for all ¢ € R.

For n=1 and Y € R***[], it is well-known (but non-trivial)
that (FE) is solvable (with X € R*** [{] !) iff

Y()=Y' () >0  forall x € R.

—p.50/57



X"(8)X()=Y(§) (FE)

Y is a given polynomial matrix; X is the unknown.

For n=1 and Y € R***[£], it is well-known (but non-trivial)
that (FE) is solvable (with X € R*** [£] !) iff

Y (o)=Y () >0 for all @ € R.

For n > 1 and under the symmetry and positivity condition

Y(o)=Y" () >0 for all @ € R",

this equation can nevertheless in general not be solved over
the polynomial matrices, for X € R***[£],
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X"(8)X()=Y(§) (FE)

Y is a given polynomial matrix; X is the unknown.

For n=1 and Y € R***[£], it is well-known (but non-trivial)
that (FE) is solvable (with X € R*** [£] !) iff

Y (o)=Y () >0 for all @ € R.

For n > 1 and under the symmetry and positivity condition

Y(o)=Y" () >0 for all @ € R",

this equation can nevertheless in general not be solved over
the polynomial matrices, for X € R***[£],

but it can be solved over the matrices of rational functions,
i.e., for X € R**° (&).
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

" Solve p=pi+p5+---+pi, pgiven
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

" Solve p=pi+p5+---+pi, pgiven

A polynomial p € R[§;,---,&,], with p(ay,...,a,) >0 for
all (a,...,0,) € R® can in general not be expressed as a SOS
of polynomials, with the p;’s € R[S, -+, &,

—p.51/57



Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

" Solve p=pi+p5+---+pi, pgiven

A polynomial p € R[§;,---,&,], with p(ay,...,a,) >0 for
all (a,...,0,) € R® can in general not be expressed as a SOS
of polynomials, with the p;’s € R[S, -+, &,

But a rational function (and hence a polynomial)

P E R(gla 7§n)7With p(ala“wan) > 07 for all
(0,...,0,) € R®, can be expressed as a SOS of (k =2")
rational functions, with the p;’s € R(&;,---,&y).
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Outline of the proof

= solvability of the factorization eq’n

d(—iw,iw) > 0 for all w € R*

{ |(Factorization equation)

3 D: D(—E,E)=D"(-&)D(&)

over the rational functions, i.e., with D a matrix with elements

in R(gl, 7§n)-
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Outline of the proof

= solvability of the factorization eq’n

d(—iw,iw) > 0 for all w € R*

{ |(Factorization equation)

3 D: D(—E,E)=D"(-&)D(&)

over the rational functions, i.e., with D a matrix with elements

in R(gl, 7§n)-

The need to introduce rational f’ns in this factorization and
an image repr. of % (to reduce the pbm to %) are the causes
of the unavoidable presence of (possibly unobservable, i.e.,
‘hidden’) latent variables in the local dissipation law.
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Uniqueness
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable / in various
(non-observable) image representations of %4.

2. of D in the factorization equation
®(-E£,6)=D"'(-&)D(E)

3. (in the case n > 1) of the solution ¥ of

(C+n) " P(,n)=2(,n)-D" (§)D(n)
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable / in various
(non-observable) image representations of %4.

2. of D in the factorization equation
®(-E£,6)=D"'(-&)D(E)

3. (in the case n > 1) of the solution ¥ of

(C+n) " P(,n)=2(,n)-D" (§)D(n)

For conservative systems, ® (—¢, &) = 0, whence D = 0,

but, when n > 1, the third source of non-uniqueness remains.
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Uniqueness

The non-uniqueness is very real, even for EM fields.
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Uniqueness

The non-uniqueness is very real, even for EM fields. Cir.

The ambiguity of the field energy

... There are, in fact, an infinite number of different possibilities
for u [the internal energy] and S [the flux] ... It is sometimes
claimed that this problem can be resolved using the theory of
gravitation ... as yet nobody has done such a delicate
experiment ... So we will follow the rest of the world - besides,
we believe that it [our choice] is probably perfectly right.

The Feynman Lectures on Physics,
Volume II, page 27-6.
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Summary

The theory of dissipative systems centers around the
construction of the storage function

global dissipation < 3 local dissipation law

Involves possibly hidden latent variables
(e.g. B in Maxwell’s eq’ns)
The proof = Hilbert’s 17-th problem

Neither controllability nor observability are good generic
system theoretic assumptions for physical models
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End of lecture 6

The DDS work was done jointly with
Harish Pillai from the II'T Bombay.

Reference: H.P. and J.C. Willems, Dissipative distributed
systems, SIAM Journal on Control and Optimization volume 40,
pages 1406-1430, 2002.

Details & copies of the lecture frames are available from/at
http://www.esat.kuleuven.be/~jwillems
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End of lecture 6

The DDS work was done jointly with
Harish Pillai from the II'T Bombay.

Reference: H.P. and J.C. Willems, Dissipative distributed
systems, SIAM Journal on Control and Optimization volume 40,

pages 1406-1430, 2002.

Details & copies of the lecture frames are available from/at

http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you
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