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Theme

What is the‘right’ pedagogical
paradigm for dynamic modeling?
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SYSTEMS
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Features

◮ Open

◮ Interconnected

◮ Modular

◮ Dynamical
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Open

System Environment

Systems are ‘open’, they interact with their environment.

How are such systems formalized?
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Interconnected

EnvironmentSystem 1
System 2

Environment

Interconnected systems interact.

How is this interaction formalized?
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Modularity

Systems consist of the interconnection of

repeated building blocks.

Essential for computer-assisted modeling.



Modularity

Systems consist of the interconnection of

repeated building blocks.

Essential for computer-assisted modeling.

Examples:
electrical circuits ;

resistors, capacitors, inductors,
transistors, diodes, sources, etc.

mechanical devices;
masses, springs, dampers,
connecting bars, joints, etc.

etc.
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Dynamical

Main interest: the evolution over time.

How do the variables evolve in the long-term?

Are there excessive transients?

Do small variations drastically change the future?

etc.
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TEARING, ZOOMING, & LINKING
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Modeling

The ever-increasing computing power allows to

model complex interconnected systems accurately by

tearing, zooming, and linking.

; Simulation, model based design, ...
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Tearing

¡¡ Model the behavior of selected variables !!

BLACK BOX



Tearing

¡¡ Model the behavior of selected variables !!

BLACK BOX

Tear ;;

GREY BOX
– p. 12/60



Zooming

Zoom;;



Zoom hierarchically ;;

Proceed until subsystems are obtained whose model is known

from first principles, or stored in a database (‘modularity’ ).
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Linking



Linking

Link ;;



Linking

Link ;;

model for component variables + linking equations

⇒ model of behavior of the black box variables.

Tearing, zooming, & linking ⇔ basis for modeling.

– p. 14/60



Theme

This modeling methodology requires the right

mathematical concepts

◮ for dynamical system,

◮ for interconnection,

◮ for interconnection architecture.

What are these concepts?
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HOW IT ALL BEGAN ...
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Planetary motion

Planet ???

How, for heaven’s sake, does it move?
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Kepler’s laws

Variable: the position as a function of time.

PLANET

7 months

1 year

SUN

◮ K1: ellipse, sun in focus,

◮ K2: = areas in = times,

◮ K3: (period)2 = (major axis)3.
Johannes Kepler

(1571–1630)
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Newton’s version
Acceleration = function of position and velocity;

d2

dt2w(t) = A(w(t),
d
dt

w(t)).

Via calculus and calculations: K1, K2, & K3 ⇔

d2

dt2
w(t)+

~1w(t)

||w(t)||2
= 0

Isaac Newton (1643–1727)

Hypotheses 
 non

 fingo
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From Newton to flows

d2

dt2w(t)+
~1w(t)

||w(t)||2
= 0 ; with x =





w

d
dt w





;
d
dtx(t) = f (x(t)) ; x(0)⇒ x(·)

Motion determined by its initial conditions.

; Idea of a ‘flow’.
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Flows, d
dtx(t) = f (x(t))

Motion completely determined by initial conditions.

Henri Poincaré (1854-1912)
George Birkhoff (1884-1944)

Stephen Smale (1930- )

; differential equations, chaos, cellular automata, etc.



Flows, d
dtx(t) = f (x(t))

Motion completely determined by initial conditions.

Inadequate:

How could they forget

about Newton’s second law,
about Maxwell’s equations,

about thermodynamics,
about tearing, zooming, & linking?

Not a good paradigm for teaching dynamic modeling!
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Newton’s laws & interconnection

Gravitation: F1(t) =
~1w(t)

||w(t)||2

Second law: F2(t) =
d2

dt2w(t)

Third law: F1(t)+F2(t) = 0

⇓

d2

dt2w(t)+
~1w(t)

||w(t)||2
= 0

Newton painted by William Blake
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INPUT/OUTPUT VIEW
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Input/output systems

System  outputs  inputs  

Appealing: cause & effect, stimulus & response, etc.



Input/output systems

System  outputs  inputs  

Lord Rayleigh (1842-1919)

Oliver Heaviside
(1850-1925)



Input/output systems

System  outputs  inputs  

Norbert Wiener (1894-1964)
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Input/output systems

System  outputs  inputs  

Appealing: cause & effect, stimulus & response, etc.

I/O maps, developed mainly in electrical engineering

since± 1900, for circuits, signal processing, control, ...

These models do not cope well with initial conditions,
very awkward framework for nonlinear models.
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Input/state/output models

Around 1960, paradigm shift to

d
dt x(t) = f (x(t),u(t)), y(t) = h(x(t),u(t)).

The generation of outputs from inputs is viewed as follows

x(0) and u(·) lead tox(·) through d
dt x(t) = f (x(t),u(t))

x(·) and u(·) lead to y(·) through y(t) = h(x(t),u(t)).



Input/state/output models

Around 1960, paradigm shift to

d
dt x(t) = f (x(t),u(t)), y(t) = h(x(t),u(t)).

The generation of outputs from inputs is viewed as follows

x(0) and u(·) lead tox(·) through d
dt x(t) = f (x(t),u(t))

x(·) and u(·) lead to y(·) through y(t) = h(x(t),u(t)).

Combines d
dt x(t) = f (x(t)) with u(·) 7→ y(·)

; a vigorous program, encompassing all aspects of

dynamical modeling, signal processing, control, ...
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Rudolf Kalman (1930- )
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INTERCONNECTION
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Signal flow graphs

‘Pathways’
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Signal flows graphs

Examples: combinations of

series

parallel feedback
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INADEQUACIES of I/O THINKING
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Problems with I/O

◮ Physical laws dictate the simultaneous

occurrence of events.

No cause/effect is implied.

E.g., the gas law
Gas

(pressure, volume,    
quantity,  temperature)      

PV = NT



Problems with I/O

◮ Physical laws dictate the simultaneous

occurrence of events.

No cause/effect is implied.

◮ Interconnection of physical systems leads to

variable sharing, not signal transmission.

A physical system is not a signal processor.
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Systems with terminals

System
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Electrical terminals

Electrical
circuit

k1

k2

k3

Ik3

Vk1,k2

interaction variables: currents & voltages.

measurable by ammeters and voltmeters.

What is the cause and what is the effect?

What is the stimulus and what is the response? – p. 35/60



Mechanical terminals

Mechanical
system

Mechanical
system

pins
1

2N

k

F1

F2
FN

Fk

q1 q2qN

qk

At each terminal: a position and a force.

More generally, position, force, angle, torque.

What is the cause and what is the effect?

What is the stimulus and what is the response?
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Other domains

◮ Thermal systems:

At each terminal: a temperature and a heat flow.

◮ Hydraulic systems:

At each terminal: a pressure and a mass flow.

◮ Multidomain systems:
Systems with terminals of different types,

as motors, pumps, etc.

At each terminal, there are many simultaneous variables.
Why and how should we separate these

in stimulus and response?
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Connection of terminals

System 1 System 2

By interconnecting, the terminal variables are equated.
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Interconnection of electrical circuits

Electrical Electrical
circuit 1 circuit 2

N

N′

PN = PN′ and IN + IN′ = 0.

The P’s are potentials. We used Kirchhoff’s voltage law.
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Interconnection of mechanical devices

N

N′system 1 system 2
MechanicalMechanical

qN = qN′ and FN +FN′ = 0.
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Other domains

◮ Thermal systems:

At each terminal: a temperature and a heat flow.

TN = TN′ and QN +QN′ = 0.

◮ Hydraulic systems:

At each terminal: a pressure and a mass flow.

pN = pN′ and fN + fN′ = 0.

◮ etc.
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Linking

VN = VN′ and IN + IN′ = 0,

qN = qN′ and FN +FN′ = 0,

TN = TN′ and QN +QN′ = 0,

pN = pN′ and fN + fN′ = 0,

...

Interconnection⇔ variable sharing.

In contrast to output-to-input assignment.



Linking

VN = VN′ and IN + IN′ = 0,

qN = qN′ and FN +FN′ = 0,

TN = TN′ and QN +QN′ = 0,

pN = pN′ and fN + fN′ = 0,

...

An interconnection usually involvesmore than one

variable. Signal flow pathways involvinga single

variable should be scrutinized with skepticism.
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The BEHAVIORAL APPROACH
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The behavior

U

B

allowed, according to the model

a priori possible

forbidden

A model tells which events are allowed.

It does not articulate a cause/effect,

stimulus/response relation.
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The dynamic behavior

Definition: A dynamical system:⇔ (T,W,B), with

◮ T⊆ R the time set,

◮ W the signal space,

◮ B ⊆W
T the behavior.

B = a family of time trajectories.

w ∈ B means: the model allows the trajectoryw,

w /∈ B means: the model forbids the trajectory w.
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Behavioral models

The behavior captures the essence of what a model is.

The behavior is all there is.

Equivalence of models, properties of models,

symmetries, system identification, etc.

must all refer to the behavior.

Every ‘good’ scientific theory is prohibition:

it forbids certain things to happen.

The more it forbids, the better it is.

Karl Popper (1902-1994)
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Technical development

There has been an extensive program that deals with

system theory, control, identification, etc.

from this point of view,

with systems asbehaviors and

interconnection as variable sharing.
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CONTROL as INTERCONNECTION
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Behavioral control

ControllerPlantto-be-controlled control
terminals terminals



Behavioral control

ControllerPlantto-be-controlled control
terminals terminals

control = interconnection.

Plant Controller

controlled system

control = integrated system design.
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Example: A ‘quarter car’

load

road

chassis

axle

damper

wheel
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Example: A ‘quarter car’

load

road

chassis

axle

damper

wheel
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Example: A ‘quarter car’

load

road

chassis

axle

damper

wheel
controller
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Example: A ‘quarter car’

load

road

chassis

axle

damper

wheel
passive controller
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Example: A ‘quarter car’

load

road

chassis

axle

damper

wheel

measurements

actuatorController

active controller
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WHAT NEW DOES THIS BRING?
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Controllability

The dynamical systemΣ = (T,W,B), with

T= R or Z, is said to be controllable :⇔

for all w1,w2 ∈ B, there exist

T ∈ T,T ≥ 0, and w ∈ B, such that

w(t) =







w1(t) for t < 0;

w2(t −T ) for t ≥ T.
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Controllability in pictures

time

W

0

w1

w2

w1,w2 ∈ B



Controllability in pictures

time

W

0

w1

w2

w1,w2 ∈ B

transition 

w
t

time

W W

0

w1 ; w

σ−T w2 ; w

w ∈ B

controllability : ⇔ concatenability of trajectories after a delay
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Controllability in pictures

transition 

w
t

time

W W

0

w1 ; w

σ−T w2 ; w

w ∈ B

controllability : ⇔ concatenability of trajectories after a delay

Makes controllability into an intrinsic property of a system,
rather than a property of a state representation.
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LTIDSs

A linear time-invariant differential system (LTIDS) :⇔

the behaviorB ⊆ (Rw)R is the set of solutions of a system of
linear constant-coefficient ODEs

R0w+R1
d
dt

w+ · · ·+Rn

dn

dtn
w = 0,

with R0,R1, . . . ,Rn ∈ R
•×w real matrices that parametrize the

system, andw : R→ R
w.

In polynomial matrix notation

R
(

d
dt

)

w = 0

with R(ξ ) = R0+R1ξ + · · ·+Rnξ n ∈ R [ξ ]•×w.
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Examples ofR
(

d
dt

)

w = 0

◮
d
dt x = Ax,

◮ p( d
dt )w = 0,

◮
d
dt x = Ax+Bu,y =Cx+Du,

◮ P( d
dt )y = Q( d

dt )u.

R is usually ‘wide’.
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3 theorems for LTIDSs
1. There exists a1↔ 1 relation between the LTIDSs and

the R [ξ ]-submodules ofR [ξ ]•.



3 theorems for LTIDSs
1. There exists a1↔ 1 relation between the LTIDSs and

the R [ξ ]-submodules ofR [ξ ]•.

2. In LTIDSs, variables can be eliminated:

R

(

d
dt

)

w = M

(

d
dt

)

ℓ ⇒ R̃

(

d
dt

)

w = 0.



3 theorems for LTIDSs
1. There exists a1↔ 1 relation between the LTIDSs and

the R [ξ ]-submodules ofR [ξ ]•.

2. In LTIDSs, variables can be eliminated:

R

(

d
dt

)

w = M

(

d
dt

)

ℓ ⇒ R̃

(

d
dt

)

w = 0.

3. A LTIDS is controllable if and only if its behavior can be
expressed as

w = M
(

d
dt

)

ℓ.

Every image is a kernel.
A kernel is an image iff the system is controllable.



3 theorems for LTIDSs
1. There exists a1↔ 1 relation between the LTIDSs and

the R [ξ ]-submodules ofR [ξ ]•.

2. In LTIDSs, variables can be eliminated:

R

(

d
dt

)

w = M

(

d
dt

)

ℓ ⇒ R̃

(

d
dt

)

w = 0.

3. A LTIDS is controllable if and only if its behavior can be
expressed as

w = M
(

d
dt

)

ℓ.

Every image is a kernel.
A kernel is an image iff the system is controllable.

These theorems holdmutatis mutandisfor discrete-time
LTIDSs and for systems described by linear PDEs.
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CONCLUSION
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Reference: The behavioral approach to open and interconnected
systems,Control Systems Magazine, volume 27, pages 46-99, 2007.

Copies of the lecture frames available from/at
http://www.esat.kuleuven.be/∼jwillems

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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