

Interconnection of stochastic systems

JAN C. WILLEMS KU Leuven, Flanders, Belgium

16-th IFAC Symposium on System Identification

Brussels, July 11, 2012

Interconnection is a basic system operation.

It is not dealt with (very well) in probability theory.

Interconnection = variable sharing

Example

 $w = \begin{bmatrix} V \\ I \end{bmatrix}$

Interconnection of deterministic systems

Formalization

A deterministic system $\Sigma = (W, \mathscr{B})$, with

 \mathbb{W} the 'outcome space' $\mathscr{B} \subseteq \mathbb{W}$ the 'behavior'

Formalization

A deterministic system $\Sigma = (W, \mathscr{B})$, with

 \mathbb{W} the 'outcome space' $\mathscr{B} \subseteq \mathbb{W}$ the 'behavior'

Interconnection of $\Sigma_1 = (\mathbb{W}, \mathscr{B}_1)$ and $\Sigma_2 = (\mathbb{W}, \mathscr{B}_2)$ $\Sigma_1 \wedge \Sigma_2 := (\mathbb{W}, \mathscr{B}_1 \cap \mathscr{B}_2)$

Interconnection of stochastic systems

A stochastic system
$$\Sigma := (\mathbb{W}, \mathscr{E}, P)$$
, with

- W the 'outcome space'
- $\mathscr E$ a σ -algebra of subsets of $\mathbb W$ the 'events'
- $P: \mathscr{E} \to [0,1]$ the 'probability'
- *&* and *P* satisfy theKolmogorov axioms.

 $P(\mathscr{B})$: the probability that the behavior is $\mathscr{B} \subseteq \mathbb{W}, \mathscr{B} \in \mathscr{E}$.

Example σ **-algebras**

- W finite, $\mathscr{E} =$ all subsets of W.
- $W = \mathbb{R}^n$, \mathscr{E} the 'Borel' sets \cong all subsets of \mathbb{R}^n .
- measurable sets \cong union of partitioning sets

 ${\mathscr E}$ in terms of a partition of ${\mathbb W}.$

Difficulty with stochastic interconnection

We have to avoid getting in a jam because of things as $P_1(E) \neq P_2(E)$ for some $E \subseteq \mathbb{W}$

Complementarity of σ **-algebras**

 \mathscr{E}_1 and \mathscr{E}_2 are complementary σ -algebras : \Leftrightarrow for all nonempty $E_1, E'_1 \in \mathscr{E}_1, E_2, E'_2 \in \mathscr{E}_2$

$$\llbracket E_1 \cap E_2 = E'_1 \cap E'_2 \rrbracket \Rightarrow \llbracket E_1 = E'_1 \text{ and } E_2 = E'_2 \rrbracket.$$

Intersection \Rightarrow **intersectants.**

Complementarity of stochastic systems

 $(\mathbb{W}, \mathscr{E}_1, P_1)$ and $(\mathbb{W}, \mathscr{E}_2, P_2)$ are **complementary** systems : \Leftrightarrow for all $E_1, E'_1 \in \mathscr{E}_1, E_2, E'_2 \in \mathscr{E}_2$

$$\llbracket E_1 \cap E_2 = E'_1 \cap E'_2 \rrbracket \Rightarrow \llbracket P_1(E_1)P_2(E_2) = P_1(E'_1)P_2(E'_2) \rrbracket.$$

Intersection \Rightarrow **product** of **probabilities** of **intersect**<u>ant</u>**s**.

Let $(\mathbb{W}, \mathscr{E}_1, P_1)$ and $(\mathbb{W}, \mathscr{E}_2, P_2)$ be *independent* and *complementary* stochastic systems.

 $\mathscr{E} :=$ the σ -algebra generated by the *'rectangles'* $\{E_1 \cap E_2 \mid E_1 \in \mathscr{E}_1, E_2 \in \mathscr{E}_2\},\$

Their *interconnection* is defined as $(\mathbb{W}, \mathscr{E}, P)$

and *P* defined for rectangles by

$$P(E_1 \cap E_2) := P_1(E_1)P_2(E_2).$$

and extended to \mathscr{E} via the Hahn-Kolmogorov thm.

with

Interconnection of complementary systems

$$\Sigma_1 = (\mathbb{W}, \mathscr{E}_1, P_1), \quad \Sigma_2 = (\mathbb{W}, \mathscr{E}_2, P_2)$$

 $\Sigma_1 \wedge \Sigma_2 = (\mathbb{W}, \mathscr{E}, P)$

with $\mathscr{E} =$ the σ -algebra generated by $\mathscr{E}_1 \cup \mathscr{E}_2$ and P generated by $P(E_1 \cap E_2) = P_1(E_1)P_2(E_2)$.

Example

Noisy resistor terminated by a voltage source

Outcomes $\begin{bmatrix} V \\ I \end{bmatrix}$, outcome space $\mathbb{W} = \mathbb{R}^2$; events: subsets of \mathbb{R}^2

The voltage source

 $\Sigma_{1} = (\mathbb{R}^{2}, \mathscr{E}_{1}, P_{1}),$ $\mathscr{E}_{1} = (\emptyset, \mathscr{B}_{1}, \mathscr{B}_{1}^{\text{complement}}, \mathbb{R}^{2}),$ $P_{1}(\mathscr{B}_{1}) = 1.$ $\Sigma_{1} \text{ is a deterministic system.}$

Noisy (or 'hot', or 'Johnson-Nyquist') resistor

$$\sigma \sim \sqrt{RT}$$

T = temperature

Noisy (or 'hot', or 'Johnson-Nyquist') resistor

Noisy (or 'hot', or 'Johnson-Nyquist') resistor

$\Sigma_2 = (\mathbb{R}^2, \mathscr{E}_2, P_2); \text{ events in } \mathscr{E}_2 = \text{the subsets of } \mathbb{R}^2 \text{ as}$ $\left\{ \begin{bmatrix} V \\ I \end{bmatrix} \in \mathbb{R}^2 \mid V - RI \in A \text{ with } A \text{ a (Borel) subset of } \mathbb{R} \right\}$

Neither $\begin{bmatrix} V \\ I \end{bmatrix}$, *I*, nor *V* possess a distribution or a pdf!

Equivalent circuits

$$V = RI + \varepsilon_V$$

 ε_V gaussian

zero mean

variance $\sim RT$

Note: $\{\varepsilon_V \in A \subseteq \mathbb{R}, \text{ Borel}\} = \{V - RI \in A\}$ Shows that $\varepsilon_V \in \mathbb{R}$ σ -algebra is Borelbut $(V, I) \in \mathbb{R}^2$ σ -algebra is coarse, \neq Borel.

Equivalent circuits

$$I = V/R + \varepsilon_I$$

 \mathcal{E}_I gaussian zero mean variance $\sim T/R$

Noisy resistor terminated by a voltage source

Noisy resistor terminated by a voltage source

 $\Sigma_1 \wedge \Sigma_2 = (\mathbb{R}^2, \mathscr{E}, P)$, with $P(E) = P_2(E_2)$ (*P* is concentrated on $V = V_0$) and the completion of \mathscr{E} = the Borel σ -algebra on \mathbb{R}^2 .

Open stochastic systems

Open versus closed

Consider $\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1).$

If \mathscr{E}_1 = the Borel σ -algebra, then Σ_1 is basically only interconnectable with the trivial stochastic system $\Sigma_2 = (\mathbb{R}^n, \{\emptyset, \mathbb{R}^n\}, P_2).$ **Open versus closed**

Consider $\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1).$

If \mathscr{E}_1 = the Borel σ -algebra, then Σ_1 is basically only interconnectable with the trivial stochastic system

$$\Sigma_2 = (\mathbb{R}^n, \{\emptyset, \mathbb{R}^n\}, P_2).$$

 \Rightarrow classical $\Sigma_1 =$ **'closed' system.**

Coarse \mathscr{E}_1

 $\Rightarrow \Sigma_1$ is interconnectable.

 \Rightarrow **'open' stochastic system.**

Conclusions

Stochastic systems

Complementary systems can be interconnected:
 two laws imposed on one set of variables.

Open stochastic systems require a coarse
 σ-algebra.

Classical random vectors imply closed systems.

- Open stochastic systems require a coarse
 σ-algebra.
- **b** Borel σ -algebra inadequate for applications.

- Open stochastic systems require a coarse
 σ-algebra.
 - Borel σ -algebra inadequate for applications.

- Open stochastic systems require a coarse
 σ-algebra.
 - **Borel** σ -algebra inadequate for applications.

The presentation slides and an associated full article can be found on my website.

http://homes.esat.kuleuven.be/~jwillems/

The presentation slides and an associated full article can be found on my website.

http://homes.esat.kuleuven.be/~jwillems/

