

Interconnection of stochastic systems

JAN C. WILLEMS
KU Leuven, Flanders, Belgium

Message

Interconnection is a basic system operation.

It is not dealt with (very well) in probability theory.

Interconnection

断

Interconnection $=$ variable sharing

Interconnection

I․

Interconnection

Interconnection of deterministic systems

Formalization

A deterministic system $\quad \Sigma=(\mathbb{W}, \mathscr{B})$, with
\mathbb{W} the 'outcome space'
$\mathscr{B} \subseteq \mathbb{W}$ the 'behavior'

Formalization

A deterministic system $\quad \Sigma=(\mathbb{W}, \mathscr{B})$, with

\mathbb{W} the 'outcome space'
 $\mathscr{B} \subseteq \mathbb{W}$ the 'behavior'

Interconnection of

$$
\begin{aligned}
& \Sigma_{1}=\left(\mathbb{W}, \mathscr{B}_{1}\right) \text { and } \Sigma_{2}=\left(\mathbb{W}, \mathscr{B}_{2}\right) \\
& \Sigma_{1} \wedge \Sigma_{2}:=\left(\mathbb{W}, \mathscr{B}_{1} \cap \mathscr{B}_{2}\right)
\end{aligned}
$$

Example

Interconnection of stochastic systems

Stochastic systems

A stochastic system $\Sigma:=(\mathbb{W}, \mathscr{E}, P)$, with
\mathbb{W} the 'outcome space'
\mathscr{E} a σ-algebra of subsets of \mathbb{W} the 'events'
$P: \mathscr{E} \rightarrow[0,1] \quad$ the 'probability'
\mathscr{E} and P satisfy the
Kolmogorov axioms.
$P(\mathscr{B})$: the probability that the behavior is $\mathscr{B} \subseteq \mathbb{W}, \mathscr{B} \in \mathscr{E}$.

Example σ-algebras

- \mathbb{W} finite, $\mathscr{E}=$ all subsets of \mathbb{W}.
- $\mathbb{W}=\mathbb{R}^{\mathrm{n}}, \mathscr{E}$ the 'Borel' sets \cong all subsets of \mathbb{R}^{n}.
- measurable sets \cong union of partitioning sets

\mathscr{E} in terms of a partition of \mathbb{W}.

Difficulty with stochastic interconnection

쁘․

We have to avoid getting in a jam because of things as

$$
P_{1}(E) \neq P_{2}(E) \text { for some } E \subseteq \mathbb{W}
$$

Complementarity of σ-algebras

\mathscr{E}_{1} and \mathscr{E}_{2} are complementary σ-algebras : \Leftrightarrow for all nonempty $E_{1}, E_{1}^{\prime} \in \mathscr{E}_{1}, E_{2}, E_{2}^{\prime} \in \mathscr{E}_{2}$

$$
\llbracket E_{1} \cap E_{2}=E_{1}^{\prime} \cap E_{2}^{\prime} \rrbracket \Rightarrow \llbracket E_{1}=E_{1}^{\prime} \text { and } E_{2}=E_{2}^{\prime} \rrbracket .
$$

Intersection \Rightarrow intersectants.

Complementarity of stochastic systems

$\left(\mathbb{W}, \mathscr{E}_{1}, P_{1}\right)$ and $\left(\mathbb{W}, \mathscr{E}_{2}, P_{2}\right)$ are complementary systems

$$
: \Leftrightarrow \text { for all } E_{1}, E_{1}^{\prime} \in \mathscr{E}_{1}, E_{2}, E_{2}^{\prime} \in \mathscr{E}_{2}
$$

$$
\llbracket E_{1} \cap E_{2}=E_{1}^{\prime} \cap E_{2}^{\prime} \rrbracket \Rightarrow \llbracket P_{1}\left(E_{1}\right) P_{2}\left(E_{2}\right)=P_{1}\left(E_{1}^{\prime}\right) P_{2}\left(E_{2}^{\prime}\right) \rrbracket .
$$

Intersection \Rightarrow product of probabilities of intersectants.

Interconnection

Let $\left(\mathbb{W}, \mathscr{E}_{1}, P_{1}\right)$ and $\left(\mathbb{W}, \mathscr{E}_{2}, P_{2}\right)$ be independent and complementary stochastic systems.

Their interconnection is defined as $(\mathbb{W}, \mathscr{E}, P)$ with
$\mathscr{E}:=$ the σ-algebra generated by the 'rectangles'

$$
\left\{E_{1} \cap E_{2} \mid E_{1} \in \mathscr{E}_{1}, E_{2} \in \mathscr{E}_{2}\right\}
$$

and P defined for rectangles by

$$
P\left(E_{1} \cap E_{2}\right):=P_{1}\left(E_{1}\right) P_{2}\left(E_{2}\right)
$$

and extended to \mathscr{E} via the Hahn-Kolmogorov thm.

Interconnection of complementary systems

$$
\begin{gathered}
\Sigma_{1}=\left(\mathbb{W}, \mathscr{E}_{1}, P_{1}\right), \quad \Sigma_{2}=\left(\mathbb{W}, \mathscr{E}_{2}, P_{2}\right) \\
\Sigma_{1} \wedge \Sigma_{2}=(\mathbb{W}, \mathscr{E}, P)
\end{gathered}
$$

with $\mathscr{E}=$ the σ-algebra generated by $\mathscr{E}_{1} \cup \mathscr{E}_{2}$ and $\quad P$ generated by $P\left(E_{1} \cap E_{2}\right)=P_{1}\left(E_{1}\right) P_{2}\left(E_{2}\right)$.

Example

Noisy resistor terminated by a voltage source

Outcomes $\left[\begin{array}{c}V \\ I\end{array}\right]$, outcome space $\mathbb{W}=\mathbb{R}^{2}$; events: subsets of \mathbb{R}^{2}

The voltage source

$\Sigma_{1}=\left(\mathbb{R}^{2}, \mathscr{E}_{1}, P_{1}\right)$,
$\mathscr{E}_{1}=\left(\emptyset, \mathscr{B}_{1}, \mathscr{B}_{1}^{\text {complement }}, \mathbb{R}^{2}\right)$,
$P_{1}\left(\mathscr{B}_{1}\right)=1$.
Σ_{1} is a deterministic system.

Noisy (or 'hot', or 'Johnson-Nyquist') resistor

Probability $=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x$.
$\sigma \sim \sqrt{R T}$
$T=$ temperature

Noisy (or 'hot', or 'Johnson-Nyquist') resistor

Noisy (or 'hot', or 'Johnson-Nyquist') resistor

$\Sigma_{2}=\left(\mathbb{R}^{2}, \mathscr{E}_{2}, P_{2}\right) ;$ events in $\mathscr{E}_{2}=$ the subsets of \mathbb{R}^{2} as
$\left\{\left.\left[\begin{array}{c}V \\ I\end{array}\right] \in \mathbb{R}^{2} \right\rvert\, V-R I \in A\right.$ with A a (Borel) subset of $\left.\mathbb{R}\right\}$

$$
P_{2}(\text { event })=\frac{1}{\sqrt{2 \pi} \sigma} \int_{A} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x
$$

Neither $\left[\begin{array}{c}V \\ I\end{array}\right]$, I, nor V possess a distribution or a pdf!

Equivalent circuits

$$
V=R I+\varepsilon_{V}
$$

ε_{V} gaussian
zero mean
variance $\sim R T$

Note: $\quad\left\{\varepsilon_{V} \in A \subseteq \mathbb{R}\right.$, Borel $\}=\{V-R I \in A\}$
Shows that $\quad \varepsilon_{V} \in \mathbb{R} \quad \sigma$-algebra is Borel
but $\quad(V, I) \in \mathbb{R}^{2} \quad \sigma$-algebra is coarse, \neq Borel.

Equivalent circuits

$$
V=R I+\varepsilon_{V}
$$

ε_{V} gaussian
zero mean
variance $\sim R T$

$$
I=V / R+\varepsilon_{I}
$$

ε_{I} gaussian
zero mean
variance $\sim T / R$

Noisy resistor terminated by a voltage source

The σ-algebras are
indeed complementary.

Noisy resistor terminated by a voltage source

The σ-algebras are indeed complementary.

$\Sigma_{1} \wedge \Sigma_{2}=\left(\mathbb{R}^{2}, \mathscr{E}, P\right)$, with
$P(E)=P_{2}\left(E_{2}\right)\left(P\right.$ is concentrated on $V=V_{0}$) and the completion of $\mathscr{E}=$ the Borel σ-algebra on \mathbb{R}^{2}.

Open stochastic systems

Open versus closed

Consider $\Sigma_{1}=\left(\mathbb{R}^{\mathrm{n}}, \mathscr{E}_{1}, P_{1}\right)$.

If $\mathscr{E}_{1}=$ the Borel σ-algebra, then Σ_{1} is basically only interconnectable with the trivial stochastic system

$$
\Sigma_{2}=\left(\mathbb{R}^{\mathrm{n}},\left\{\emptyset, \mathbb{R}^{\mathrm{n}}\right\}, P_{2}\right)
$$

Open versus closed

Consider $\Sigma_{1}=\left(\mathbb{R}^{\mathrm{n}}, \mathscr{E}_{1}, P_{1}\right)$.

If $\mathscr{E}_{1}=$ the Borel σ-algebra, then Σ_{1} is basically only interconnectable with the trivial stochastic system

$$
\Sigma_{2}=\left(\mathbb{R}^{\mathrm{n}},\left\{\emptyset, \mathbb{R}^{\mathrm{n}}\right\}, P_{2}\right)
$$

\Rightarrow classical $\Sigma_{1}=$ 'closed' system.

Coarse \mathscr{E}_{1}
$\Rightarrow \Sigma_{1}$ is interconnectable.
\Rightarrow 'open' stochastic system.

Conclusions

Stochastic systems

Complementary systems can be interconnected: two laws imposed on one set of variables.

Stochastic systems

Open stochastic systems require a coarse σ-algebra.
Classical random vectors imply closed systems.

- Open stochastic systems require a coarse σ-algebra.

Borel σ-algebra inadequate for applications.

Stochastic systems

- Open stochastic systems require a coarse σ-algebra.

Borel σ-algebra inadequate for applications.

Deterministic

Stochastic systems

- Open stochastic systems require a coarse σ-algebra.

Borel σ-algebra inadequate for applications.

Deterministic
stochastic.

The presentation slides and an associated full article can be found on my website.

http://homes.esat.kuleuven.be/~jwillems/

The presentation slides and an associated full article can be found on my website.

http://homes.esat.kuleuven.be/~jwillems/

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

