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Orthodox probability




Mathematical probability

A stochastic system is a triple (W, &, P)

A.N. Kolmogorov

» W the outcome space, 1903 - 1987

» & aclass of subsets a¥V, elements calledevents,

» P:& —[0,1] aprobability measure.
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Mathematical probability

A stochastic system is a triple (W, &, P)

A.N. Kolmogorov

» W the outcome space, 1903 - 1987

» & aclass of subsets a¥V, elements calledevents,

» P:& —[0,1] aprobability measure.

&. the subsets ofW that are assigned a probability.
Probability that outcomeisinE, E € &, isP(E).

Model = & and P.
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A.N. Kolmogorov
1903 — 1987

& =the subsets of}¥ that are assigned a probability.
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AXioms

The eventsé form a o-algebra <
> Wedb,
» [E e &) = [Ecomplementc o]

» [Exc&keN]|=[NEeé&, UEe&].
keN keN




AXioms

The eventsé form a o-algebra <
> Wedb,
» [E e &) = [Ecomplementc o]

» [Exc&keN]|=[NEeé&, UEe&].
keN keN

P:& — [0,1] is aprobability measure <
» P(W)=1,

» Piscountably additive <

|Ex € &, ke N, disjoint] = [P( U Ex) = Y P(Ex)].
keN keN

—p. 5/47



Borel

In expositions,introductory & advanced,
with W = R", the events are often taken
as theBorel g-algebra.

Emile Borel
1871 — 1956

& then contains‘basically every’ subset ofR".
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Borel

In expositions,introductory & advanced,
with W = R", the events are often taken

Emile Borel

as theBorel g-algebra. 18711956

& then contains‘basically every’ subset ofR".
Allows to take probabillity distributions and pdf’s as
the primitive concepts.

& 1s Inherited from the topological structure of the
outcome space, avoids modeling of.
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Probability (as commonly taught)

‘Classical’ stochastic system:
W = R", & = Borel g-algebra= ‘all’ subsets ofR".




Probability (as commonly taught)

‘Classical’ stochastic system:
W = R", & = Borel g-algebra= ‘all’ subsets ofR".

Borel is assumed for many basic concepts, such as
» mean, variance, moments, correlation,
random variable, random vector,

marginal probability,

random process, autocorrelation,

entropy, mutual information,

vV v.v. v VY

Brownian motion, Markov process, etc.
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Theme

Emile Borel
1871 — 1956

Borel isunduly restrictive,
even for elementary applications.

& 1S an essential part of the model!
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In the Kolmogorov setting

A.N. Kolmogorov
1903 — 1987

(Q, .o, P) f) (R®, # (R™),P’)




In the Kolmogorov setting

A.N. Kolmogorov
1903 — 1987




In the Kolmogorov setting

A.N. Kolmogorov
1903 — 1987

Tt — s (@ # () )

f
(Q7d7 P) ) (Rn?é&7 P/)

Requires modelingé anyway.



Examples
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Ohm resistor




Noisy (or ‘hot’, or ‘Johnson-Nyquist’ ) resistor
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heat bath
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Noisy (or ‘hot’, or ‘Johnson-Nyquist’ ) resistor
Vv event

|
heat bath . -7 V =Rl

=WV -

- < —+




Noisy (or ‘hot’, or ‘Johnson-Nyquist’ ) resistor

event

I A
heat bath /,«"'/ V =Rl

- < —=+
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Probability
N
v 1
A ““_, 4 2 2
/ dx Probabillity = oo e 202 dX.
V=R o~ VRT
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" T = temperature
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Equivalent circuits

V=Rl +¢y

&y gaussian
Zero mean
variance ~ RT



Equivalent circuits

F V=Rl +¢&y
T ~) EV _

V . &v gaussian
l_ Zelfo mean

variance ~ RT

1
| = =V + & |
R —
€ gaussian T
£ 3
Zero mean l
T '

variance ~ —
R
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V=Rl + &y
Outcomes|Y |, W = R?; events: subsets oR? as

[TY] € R?|V —RI € Awith Aa Borel subset ofR}.

v event

Neither |Y |, nor I, nor V possess a pdf.
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A

Deterministic price/demand/supply

demand

pricél

supply

pricéz



Stochastic price/demand/supply

demand

~— events

price; price

&,&" = the regions that are assigned a probability.

D1, P2, d, sare not classical real random variables.
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1. Linearity
2. Interconnection

3. Constrained probability




Linearity




Linearity

linear stochastic system<

JAN

R™/IL real vector space of dimensionn — dim(L).

Borel probability on R"/L,
with . C R" a linear subspace, théfiber’ .




Linearity

linear stochastic system<

JAN

R™/IL real vector space of dimensionn — dim(L).

Borel probability on R"/L,

Events: cylinders with sides parallel tolL.
Subsets ofR®* asA+ 1L, AC R"® Borel.

with . C R" a linear subspace, théfiber’ .
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Linearity

linear stochastic system.< eventE

fiber IL

LoM=R*M=R"/L.
Borel probability on M.
P(E) =Pm(M).



Linearity

linear stochastic system:< eventE

fiber IL

LoM =R M =R"/L.
Borel probability on M.
P(E) =Pm(M).

Example: the noisy resistor.

Classical= linear!

gaussian < linear, probability on R"/IL gaussian.
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Deterministic system

(W, &, P) is said to be deterministic if
& = {0,B, Bt w1l and P(B) = 1.

B = the ‘behavior’.



Deterministic examples

Ohmic resistor:




Deterministic examples

Ohmic resistor:

Economic example:

A

\

demand

/B

price;

supply

price,
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Interconnection




Noisy resistor terminated by a voltage source

Vo E
2 | =

How do we deal with interconnection?
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Stochastic price/demand/supply

A

demand

pricél

supply

pricéz

How do we deal with equilibrium?

Equilibrium : price; = prices, demand= supply.
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Interconnection

SYSTEM 1 . . SYSTEM 2

SYSTEM 1 SYSTEM 2




SYSTEM 1

Interconnection

SYSTEM 2

SYSTEM 1

SYSTEM 2

W =Wy = W>



SYSTEM 1

Interconnection

SYSTEM 2

SYSTEM 1

SYSTEM 2

W =Wy = W>

Example:

]
V
|




Interconnection

SYSTEM 1 . . SYSTEM 2

SYSTEM 1 SYSTEM 2

I LN
W=W1 =W>

Can two distinct probabilistic laws
be imposed on the same set of variables?
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Complementarity of o-algebras

&1 and &> are complementary o-algebras
.« for all nonempty Ej,E] € &1,E2,E;, € &

[[El NEy = Ei M Eé]] — [[El — Ei and B, = Eé]]

EiNEs




Complementarity of o-algebras

&1 and &> are complementary o-algebras
.« for all nonempty Ej,E] € &1,E2,E;, € &

[[El NEy = Ei M Eé]] — [[El — Ei and B, = Eé]]

EiNEs

Intersection = intersectants.
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Complementarity of stochastic systems

(W, &1,Pr) and (W, &, P,) are complementary systems

< forall Ej,E] € &1,Ep,ES € &

[E1NEx = E1NES] = [Pu(E1)P(Ez) = PL(E7)Po(E))].

probability iéro




Complementarity of stochastic systems

(W, &1,Pr) and (W, &, P,) are complementary systems

< forall Ej,E] € &1,Ep,ES € &

[E1NEx = E1NES] = [Pu(E1)P(Ez) = PL(E7)Po(E))].

probability iéro b

Intersection = product of probabilities of intersectants.



Linear example
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complementarity < Li+Ly=R"
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Interconnection of complementary systems

Let (W,&1,Pr) and (W, &%, ) be stochastic systems
(iIndependent). Assume complementarity.
Their interconnection is defined as
(W, &, P)
with & .= the g-algebra generated byrectangles’
{EaNEyx | E1 € &, Bz € &2},
and P defined through the rectangles by

P(E]_ M Ez) = P]_(E]_) P2(E2).

& and P via Hahn-Kolmogorov extension theorem.



Interconnection of complementary systems

EiNEs

P(E]_ fa Ez) = P]_(E]_) P2(E2).
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\§ H. Hahn A.N. Kolmogorov
! ’ 1879 - 1934 1903 — 1987

Union of finite # of disjoint rectangles is closed under
complementation, intersection, and union.

Hence forms analgebra of subsets ofWV.



~ H. Hahn A.N. Kolmogorov
; } ’ 1879 — 1934 1903 — 1987

P Is defined on this algebra by finite additivity.

Hahn-Kolmogorov extension thm
=- J(!) extension too-algebra generated by&; U é5.
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Noisy resistor terminated by a voltage source

+
we | ey Probability of [Y]?
g, Vv
R’g =N




Noisy resistor terminated by a voltage source

—F
we L O Probability of [¥]?
g, V
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\/ eventk; € &1
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Equilibrium price/demand/supply

demand supply S
eventks € 65
S
eventE, € 81— >
s eventE € &
—
price

P(E) =Pi(E1)P(Ep).
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Constrained probability

Imposew € S




Constrained probability

Let 2 = (W, &, P) be a stochastic system.

Impose the constraintjw € S

with S C W.

What i1s the stochastic nature of the outcomesin S ?

Is this a meaningful question?
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Noisy resistor

10V0|t

-
Z

ImposeV = 10", What is the distribution of 1?

10 ¢

V=R +¢eV=10°" = | = .
T R R
| Is a well-defined gaussian random variable!
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Noisy resistor

P
4

Imposel = 107™MP. What is the distribution of V?
V=R +¢|=10""° = V=10R-=¢.

V Is a well-defined gaussian random variable!
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Price/demand/supply example

demand

y

€1 price;

Impose price =€ 1. Probability of demand?



Price/demand/supply example

>

€1 prices

Impose price =€ 1. Probability of supply?
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Constrained probability

Constraining ~ interconnection ofZ = (W, &, P)
with the deterministic system with behaviors.

Complementarity: <

|IE1,Ep € &andE;NS = ExNS]| = [P(E1) = P(Ep)].



Constrained probability

Constraining ~ interconnection of> = (W, &, P)
with the deterministic system with behaviors.

Complementarity: <

|IE1,Ep e &andE;NS =ExNS] = [P(E1) = P(E2)].

Q Complementarity basically implies|S ¢ &
lcomplementarity andS € & < [P(S) = 1].



Constrained probability

Constraining ~ interconnection ofZ = (W, &, P)
with the deterministic system with behaviors.

Complementarity: <

|IE1,Ep € &andE;NS = ExNS]| = [P(E1) = P(Ep)].

Constraining ~-»

5, = (S,@@mS P ) with  P(ENS) i= P(E).

) ‘ S

P, = “probability of w constrained byw € §”.
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Constraining versus conditioning




Constrained and conditional probability

E c & event
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Constrained and conditional probability

E € & event,
S C W constraining/conditioning set.
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Constrained and conditional probability

=

E € & event,
S C W constraining/conditioning set,
ENS ‘new’ event.
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Constrained and conditional probability

E = event
S = constraining/conditioning set
ENS ENS new event




Constrained and conditional probability

- / E=event
S = constraining/conditioning set
ENS ENS new event

Constraining
S¢ &,

(Sa@m)

J(ENS) =

/ \§Z |




Constrained and conditional probability

- / E=event
S = constraining/conditioning set
ENS ENS new event

Constraining Conditioning
S¢ &, S E &,
(87@@|§7P|S) (S7£S7Pon8)
P(E mS)

J(ENS) =

(EﬁS jz P (ENS)= E“S7Z/
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Open stochastic systems




Open versus closed

Consider2; = (Rn, &1, Pl).

If &1 =the Borel g-algebra, thenz; is basically only
Interconnectable with the trivial stochastic system
(R, {0,R"*} P).



Open versus closed

Consider2q = (Rn, éal, Pl).

If &1 =the Borel g-algebra, thenz; is basically only
Interconnectable with the trivial stochastic system
(R, {0,R"*} P).

= classical21 = ‘closed’ system.



Open versus closed

Considerz; = (R*,&1,Py).

If &1 =the Borel g-algebra, then2 is basically only
Interconnectable with the trivial stochastic system
(R, {0,R"*} P).

= classical¥; = ‘closed’ system.

It don’t mean a thing, if it ain’t interconnecting!




Open versus closed

Consider2q = (Rn, éal, Pl).

If &1 =the Borel g-algebra, thenz; is basically only
Interconnectable with the trivial stochastic system
(R, {0,R"*} P).

= classical21 = ‘closed’ system.

Coarsedéy
= 21 IS Interconnectable.
= ‘open’ stochastic system.
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Conclusions




Stochastic systems

» Borel g-algebra inadequate for elementary applications.



Stochastic systems

» Borel g-algebra inadequate for elementary applications.

va{iable 2

- >
variable 1



Stochastic systems

» Borel g-algebra inadequate for elementary applications.

vaAriabIe 2 variable 2
A

. > ’
variable 1 variable 1

Deterministic ~> stochastic.



Stochastic systems

» Borel g-algebra inadequate for elementary applications.

» Complementary stochastic systems can be interconnected:
two distinct laws imposed on one set of variables.

SYSTEM 1 . . SYSTEM 2

SYSTEM 1 . : | SYSTEM?2




Stochastic systems

Borel g-algebra inadequate for elementary applications.

Complementary stochastic systems can be interconnected:
two distinct laws imposed on one set of variables.

Open stochastic systems require a coarsg-algebra.
Classical random vectors imply closed systems.



Stochastic systems

Borel g-algebra inadequate for elementary applications.

Complementary stochastic systems can be interconnected:
two distinct laws imposed on one set of variables.

Open stochastic systems require a coarsg-algebra.
Classical random vectors imply closed systems.

~» Notion of ‘constrained probability’.
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Presentation slides and associated article are on my websit
http://hones. esat. kul euven. be/ ~jw | | ens/



Presentation slides and associated article are on my websit

http://hones. esat. kul euven. be/ ~jw | | ens/

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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