

OPEN STOCHASTIC SYSTEMS

JAN C. WILLEMS KU Leuven, Flanders, Belgium

Workshop on

Control Theory: Mathematical Perspectives on Complex Networked Systems

Mathematisches Forschungsinstitut Oberwolfach February 28, 2012

Orthodox probability

Mathematical probability

A *stochastic system* is a triple $(\mathbb{W}, \mathcal{E}, P)$

A.N. Kolmogorov 1903 – 1987

- **▶** W the *outcome space*,
- \blacktriangleright & a class of subsets of \mathbb{W} , elements called *events*,
- $ightharpoonup P: \mathscr{E} \to [0,1]$ a probability measure.

Mathematical probability

A *stochastic system* is a triple $(\mathbb{W}, \mathcal{E}, P)$

A.N. Kolmogorov 1903 – 1987

- **▶** W the *outcome space*,
- \blacktriangleright & a class of subsets of \mathbb{W} , elements called *events*,
- $ightharpoonup P: \mathscr{E} \to [0,1]$ a probability measure.

 \mathscr{E} : the subsets of \mathbb{W} that are assigned a probability. Probability that outcome is in $E, E \in \mathscr{E}$, is P(E).

Model \cong \mathscr{E} and P.

Events

A.N. Kolmogorov 1903 – 1987

 \mathscr{E} = the subsets of \mathbb{W} that are assigned a probability.

Axioms

The events \mathscr{E} form a σ -algebra : \Leftrightarrow

- \blacktriangleright $\mathbb{W} \in \mathscr{E}$,
- $\blacktriangleright \quad \llbracket E \in \mathscr{E} \rrbracket \Rightarrow \llbracket E^{\text{complement}} \in \mathscr{E} \rrbracket,$

Axioms

The events \mathscr{E} form a σ -algebra : \Leftrightarrow

- \blacktriangleright $\mathbb{W} \in \mathscr{E}$,
- $\blacktriangleright \quad \llbracket E \in \mathscr{E} \rrbracket \Rightarrow \llbracket E^{\text{complement}} \in \mathscr{E} \rrbracket,$
- $P: \mathscr{E} \to [0,1]$ is a probability measure $:\Leftrightarrow$
- $ightharpoonup P(\mathbb{W}) = 1,$
- ightharpoonup P is countably additive : \Leftrightarrow

$$\llbracket E_k \in \mathscr{E}, k \in \mathbb{N}, \ \mathbf{disjoint} \rrbracket \Rightarrow \llbracket P(\bigcup_{k \in \mathbb{N}} E_k) = \sum_{k \in \mathbb{N}} P(E_k) \rrbracket.$$

Borel

In expositions, introductory & advanced, with $\mathbb{W}=\mathbb{R}^n$, the events are often taken as the Borel σ -algebra.

Émile Borel 1871 – 1956

 $\mathscr E$ then contains 'basically every' subset of $\mathbb R^n$.

Borel

In expositions, introductory & advanced, with $\mathbb{W}=\mathbb{R}^n$, the events are often taken as the Borel σ -algebra.

Émile Borel 1871 – 1956

 $\mathscr E$ then contains 'basically every' subset of $\mathbb R^n$. Allows to take probability distributions and pdf's as the primitive concepts.

 $\mathscr E$ is inherited from the topological structure of the outcome space, avoids modeling of $\mathscr E$.

Probability (as commonly taught)

'Classical' stochastic system:

$$\mathbb{W} = \mathbb{R}^n$$
, $\mathscr{E} = \mathbf{Borel} \ \sigma$ -algebra \cong 'all' subsets of \mathbb{R}^n .

for $A \subseteq \mathbb{R}^n$

$$P(A) = \int_A p(x) \, dx$$

Probability (as commonly taught)

'Classical' stochastic system:

 $\mathbb{W} = \mathbb{R}^n$, $\mathscr{E} = \mathbf{Borel} \ \sigma$ -algebra \cong 'all' subsets of \mathbb{R}^n .

Borel is assumed for many basic concepts, such as

- **▶** mean, variance, moments, correlation,
- random variable, random vector,
- marginal probability,
- random process, autocorrelation,
- **▶** entropy, mutual information,
- **▶** Brownian motion, Markov process, etc.

Theme

Émile Borel 1871 – 1956

Borel is unduly restrictive, even for elementary applications.

 \mathscr{E} is an essential part of the model!

In the Kolmogorov setting

A.N. Kolmogorov 1903 – 1987

$$(\Omega, \mathscr{A}, P) \stackrel{f}{\longrightarrow} (\mathbb{R}^{\mathrm{n}}, \mathscr{B}(\mathbb{R}^{\mathrm{n}}), P')$$

In the Kolmogorov setting

A.N. Kolmogorov 1903 – 1987

$$(\Omega,\mathscr{A},P) \xrightarrow{f} (\mathbb{R}^{\mathbf{n}},\mathscr{B}(\mathbb{R}^{\mathbf{n}}),P'))$$

In the Kolmogorov setting

A.N. Kolmogorov 1903 – 1987

$$(\Omega,\mathscr{A},P) \xrightarrow{f} (\mathbb{R}^{\mathbf{n}},\mathscr{B}(\mathbb{R}^{\mathbf{n}}),P'))$$

$$(\Omega, \mathscr{A}, P) \stackrel{f}{\longrightarrow} (\mathbb{R}^{\mathtt{n}}, \mathscr{E}, P')$$

Requires modeling $\mathscr E$ anyway.

Examples

Ohm resistor

Noisy (or 'hot', or 'Johnson-Nyquist') resistor

Noisy (or 'hot', or 'Johnson-Nyquist') resistor

Noisy (or 'hot', or 'Johnson-Nyquist') resistor

Probability =
$$\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} dx$$
.

$$\sigma \sim \sqrt{RT}$$

$$T = temperature$$

- p. 12/47

Equivalent circuits

$$V = RI + \varepsilon_V$$

 \mathcal{E}_V gaussian zero mean variance $\sim RT$

Equivalent circuits

$$V = RI + \varepsilon_V$$

 \mathcal{E}_V gaussian zero mean variance $\sim RT$

$$I = \frac{1}{R}V + \varepsilon_I$$

 ε_I gaussian zero mean variance $\sim \frac{T}{R}$

$$V = RI + \varepsilon_V$$

Outcomes $\begin{bmatrix} V \\ I \end{bmatrix}$, $\mathbb{W} = \mathbb{R}^2$; events: subsets of \mathbb{R}^2 as

$$\left\{ \begin{bmatrix} V \\ I \end{bmatrix} \in \mathbb{R}^2 \mid V - RI \in A \text{ with } A \text{ a Borel subset of } \mathbb{R} \right\}.$$

Neither $\begin{bmatrix} V \\ I \end{bmatrix}$, nor I, nor V possess a pdf.

Deterministic price/demand/supply

Stochastic price/demand/supply

 $\mathscr{E}, \mathscr{E}'$ = the regions that are assigned a probability.

 p_1, p_2, d, s are not classical real random variables.

- 1. Linearity
- 2. Interconnection
- 3. Constrained probability

linear stochastic system :⇔

Borel probability on \mathbb{R}^n/\mathbb{L} ,

with $\mathbb{L} \subseteq \mathbb{R}^n$ a linear subspace, the 'fiber'.

 \mathbb{R}^n/\mathbb{L} real vector space of dimension $n-\dim(\mathbb{L})$.

linear stochastic system :⇔

Borel probability on \mathbb{R}^n/\mathbb{L} , with $\mathbb{L}\subseteq\mathbb{R}^n$ a linear subspace, the 'fiber'.

 \mathbb{R}^n/\mathbb{L} real vector space of dimension $n-\dim(\mathbb{L})$.

Events: cylinders with sides parallel to \mathbb{L} .

Subsets of \mathbb{R}^n as $A + \mathbb{L}$, $A \subseteq \mathbb{R}^n$ Borel.

linear stochastic system :⇔

 $\mathbb{L} \oplus \mathbb{M} = \mathbb{R}^n, \mathbb{M} \cong \mathbb{R}^n/\mathbb{L}_{ullet}$

Borel probability on M.

$$P(E) = P_{\mathbb{M}}(M).$$

linear stochastic system :⇔

 $\mathbb{L} \oplus \mathbb{M} = \mathbb{R}^n, \mathbb{M} \cong \mathbb{R}^n/\mathbb{L}_{ullet}$

Borel probability on \mathbb{M} .

$$P(E) = P_{\mathbb{M}}(M)$$
.

Example: the noisy resistor.

Classical \Rightarrow linear!

gaussian : \Leftrightarrow linear, probability on \mathbb{R}^n/\mathbb{L} gaussian.

Deterministic system

 $(\mathbb{W}, \mathcal{E}, P)$ is said to be deterministic if

$$\mathscr{E} = \{\emptyset, \mathbb{B}, \mathbb{B}^{complement}, \mathbb{W}\} \text{ and } P(\mathbb{B}) = 1.$$

 \mathbb{B} = the 'behavior'.

Deterministic examples

Ohmic resistor:

Deterministic examples

Ohmic resistor:

Economic example:

Interconnection

Noisy resistor terminated by a voltage source

How do we deal with interconnection?

Stochastic price/demand/supply

How do we deal with equilibrium?

Equilibrium: $price_1 = price_2$, demand = supply.

SYSTEM 2

SYSTEM 1

Example:

Can two distinct probabilistic laws

be imposed on the same set of variables?

Complementarity of σ -algebras

 \mathcal{E}_1 and \mathcal{E}_2 are complementary σ -algebras

 $:\Leftrightarrow$ for all nonempty $E_1,E_1'\in\mathscr{E}_1,E_2,E_2'\in\mathscr{E}_2$

$$[\![E_1 \cap E_2 = E_1' \cap E_2']\!] \Rightarrow [\![E_1 = E_1' \text{ and } E_2 = E_2']\!].$$

Complementarity of σ -algebras

 \mathcal{E}_1 and \mathcal{E}_2 are complementary σ -algebras

 $:\Leftrightarrow$ for all nonempty $E_1,E_1'\in\mathscr{E}_1,E_2,E_2'\in\mathscr{E}_2$

$$[\![E_1 \cap E_2 = E_1' \cap E_2']\!] \Rightarrow [\![E_1 = E_1' \text{ and } E_2 = E_2']\!].$$

Intersection \Rightarrow intersectants.

Complementarity of stochastic systems

 $(\mathbb{W},\mathscr{E}_1,P_1)$ and $(\mathbb{W},\mathscr{E}_2,P_2)$ are complementary systems

 $:\Leftrightarrow$ for all $E_1,E_1'\in\mathscr{E}_1,E_2,E_2'\in\mathscr{E}_2$

$$\llbracket E_1 \cap E_2 = E_1' \cap E_2' \rrbracket \Rightarrow \llbracket P_1(E_1)P_2(E_2) = P_1(E_1')P_2(E_2') \rrbracket.$$

L

Complementarity of stochastic systems

 $(\mathbb{W},\mathscr{E}_1,P_1)$ and $(\mathbb{W},\mathscr{E}_2,P_2)$ are complementary systems

$$:\Leftrightarrow$$
 for all $E_1,E_1'\in\mathscr{E}_1,E_2,E_2'\in\mathscr{E}_2$

$$\llbracket E_1 \cap E_2 = E_1' \cap E_2' \rrbracket \Rightarrow \llbracket P_1(E_1)P_2(E_2) = P_1(E_1')P_2(E_2') \rrbracket.$$

Intersection \Rightarrow product of probabilities of intersectants.

Linear example

complementarity
$$\Leftrightarrow$$
 $\mathbb{L}_1 + \mathbb{L}_2 = \mathbb{R}^n$

Interconnection of complementary systems

Let $(\mathbb{W}, \mathscr{E}_1, P_1)$ and $(\mathbb{W}, \mathscr{E}_2, P_2)$ be stochastic systems (independent). Assume complementarity.

Their *interconnection* is defined as

$$(\mathbb{W},\mathscr{E},P)$$

with $\mathscr{E} :=$ the σ -algebra generated by 'rectangles'

$$\{E_1 \cap E_2 \mid E_1 \in \mathscr{E}_1, E_2 \in \mathscr{E}_2\},\$$

and P defined through the rectangles by

$$P(E_1 \cap E_2) := P_1(E_1)P_2(E_2).$$

 \mathscr{E} and P via Hahn-Kolmogorov extension theorem.

Interconnection of complementary systems

$$P(E_1 \cap E_2) := P_1(E_1)P_2(E_2).$$

Hahn-Kolmogorov construction of *P*

A.N. Kolmogorov 1903 – 1987

Union of finite # of disjoint rectangles is closed under complementation, intersection, and union.

Hence forms an algebra of subsets of W.

Hahn-Kolmogorov construction of *P*

A.N. Kolmogorov 1903 – 1987

P is defined on this algebra by finite additivity.

Hahn-Kolmogorov extension thm

 $\Rightarrow \exists (!)$ extension to σ -algebra generated by $\mathscr{E}_1 \cup \mathscr{E}_2$.

Noisy resistor terminated by a voltage source

Probability of $\begin{bmatrix} V \\ I \end{bmatrix}$?

Noisy resistor terminated by a voltage source

Probability of $\begin{bmatrix} V \\ I \end{bmatrix}$?

$$P(E) = P_1(E_1)P_2(E_2)$$

Equilibrium price/demand/supply

$$P(E) = P_1(E_1)P_2(E_2).$$

Let $\Sigma = (\mathbb{W}, \mathscr{E}, P)$ be a stochastic system.

Impose the constraint $w \in \mathbb{S}$ with $\mathbb{S} \subset \mathbb{W}$.

What is the stochastic nature of the outcomes in S?

Is this a meaningful question?

Noisy resistor

Impose $V = 10^{\text{volt}}$. What is the distribution of I?

$$V = RI + \varepsilon, V = 10^{\text{volt}} \Rightarrow I = \frac{10}{R} - \frac{\varepsilon}{R}.$$

I is a well-defined gaussian random variable!

Noisy resistor

Impose $I = 10^{\text{amp}}$. What is the distribution of V?

$$V = RI + \varepsilon, I = 10^{\text{amp}} \Rightarrow V = 10R - \varepsilon.$$

V is a well-defined gaussian random variable!

Price/demand/supply example

Impose price = 1. Probability of demand?

Price/demand/supply example

Impose price $= \le 1$. Probability of supply?

Constraining \simeq interconnection of $\Sigma = (\mathbb{W}, \mathscr{E}, P)$ with the deterministic system with behavior \mathbb{S} .

Complementarity:⇔

$$\llbracket E_1, E_2 \in \mathscr{E} \text{ and } E_1 \cap \mathbb{S} = E_2 \cap \mathbb{S} \rrbracket \Rightarrow \llbracket P(E_1) = P(E_2) \rrbracket.$$

Constraining \simeq interconnection of $\Sigma = (\mathbb{W}, \mathscr{E}, P)$ with the deterministic system with behavior \mathbb{S} .

Complementarity: ⇔

$$\llbracket E_1, E_2 \in \mathscr{E} \text{ and } E_1 \cap \mathbb{S} = E_2 \cap \mathbb{S} \rrbracket \Rightarrow \llbracket P(E_1) = P(E_2) \rrbracket.$$

Complementarity basically implies $\|\mathbb{S} \notin \mathcal{E}!\|$

$$S \notin \mathcal{E}!$$

[complementarity and $\mathbb{S} \in \mathscr{E}$ **]** \Leftrightarrow **[** $P(\mathbb{S}) = 1$ **]**.

Constraining \simeq interconnection of $\Sigma = (\mathbb{W}, \mathscr{E}, P)$ with the deterministic system with behavior \mathbb{S} .

Complementarity: ⇔

$$\llbracket E_1, E_2 \in \mathscr{E} \text{ and } E_1 \cap \mathbb{S} = E_2 \cap \mathbb{S} \rrbracket \Rightarrow \llbracket P(E_1) = P(E_2) \rrbracket.$$

Constraining \sim

$$\Sigma_{|\mathbb{S}} = \left(\mathbb{S}, \mathscr{E} \cap \mathbb{S}, P_{|\mathbb{S}}\right) \quad \text{with} \quad P_{|\mathbb{S}}(E \cap \mathbb{S}) := P(E).$$

 $P_{|\mathbb{S}}$ = "probability of w constrained by $w \in \mathbb{S}$ ".

Constraining versus conditioning

$$E \in \mathscr{E}$$
 event

 $E \in \mathscr{E}$ event,

 $\mathbb{S} \subset \mathbb{W}$ constraining/conditioning set.

 $E \in \mathscr{E}$ event,

 $\mathbb{S} \subset \mathbb{W}$ constraining/conditioning set,

 $E \cap \mathbb{S}$ 'new' event.

E = event

S = constraining/conditioning set

 $E \cap \mathbb{S}$ new event

E = event

S = constraining/conditioning set

 $E \cap \mathbb{S}$ new event

Constraining

$$\mathbb{S}
otin\mathcal{E}_{|\mathbb{S}},P_{|\mathbb{S}}$$
 ,

$$P_{\mathbb{S}}(E \cap \mathbb{S}) = P(E).$$

E = event

S = constraining/conditioning set

 $E \cap \mathbb{S}$ new event

Constraining

$$\mathbb{S}
otin\mathbb{C}, \mathscr{E}_{|\mathbb{S}}, P_{|\mathbb{S}}$$
 ,

$$P_{\mathbb{S}}(E \cap \mathbb{S}) = P(E).$$

Conditioning

$$\begin{split} \mathbb{S} \in \mathscr{E}, \\ \left(\mathbb{S}, \mathscr{E}_{|\mathbb{S}}, P_{\mathbf{on}\,\mathbb{S}}\right), \\ P_{\mathbf{on}\,\mathbb{S}}(E \cap \mathbb{S}) &= \frac{P(E \cap \mathbb{S})}{P(\mathbb{S})}. \end{split}$$

Open stochastic systems

Consider $\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$.

If \mathscr{E}_1 = the Borel σ -algebra, then Σ_1 is basically only interconnectable with the trivial stochastic system $(\mathbb{R}^n, \{\emptyset, \mathbb{R}^n\}, P_2)$.

Consider $\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$.

If \mathscr{E}_1 = the Borel σ -algebra, then Σ_1 is basically only interconnectable with the trivial stochastic system $(\mathbb{R}^n, \{\emptyset, \mathbb{R}^n\}, P_2)$.

 \Rightarrow classical Σ_1 = 'closed' system.

Consider $\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$.

If \mathscr{E}_1 = the Borel σ -algebra, then Σ_1 is basically only interconnectable with the trivial stochastic system $(\mathbb{R}^n, \{\emptyset, \mathbb{R}^n\}, P_2)$.

 \Rightarrow classical Σ_1 = 'closed' system.

It don't mean a thing, if it ain't interconnecting!

Consider
$$\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$$
.

If \mathcal{E}_1 = the Borel σ -algebra, then Σ_1 is basically only interconnectable with the trivial stochastic system

$$(\mathbb{R}^{\mathbf{n}}, \{\emptyset, \mathbb{R}^{\mathbf{n}}\}, P_2)$$
.

 \Rightarrow classical Σ_1 = 'closed' system.

Coarse \mathcal{E}_1

 $\Rightarrow \Sigma_1$ is interconnectable.

⇒ 'open' stochastic system.

Conclusions

► Borel σ -algebra inadequate for elementary applications.

► Borel σ -algebra inadequate for elementary applications.

► Borel σ -algebra inadequate for elementary applications.

- ▶ Borel σ -algebra inadequate for elementary applications.
- ► Complementary stochastic systems can be interconnected: two distinct laws imposed on one set of variables.

- ► Borel σ -algebra inadequate for elementary applications.
- ➤ Complementary stochastic systems can be interconnected: two distinct laws imposed on one set of variables.
- Open stochastic systems require a coarse σ-algebra.
 Classical random vectors imply closed systems.

- ▶ Borel σ -algebra inadequate for elementary applications.
- ► Complementary stochastic systems can be interconnected: two distinct laws imposed on one set of variables.
- Open stochastic systems require a coarse σ-algebra.
 Classical random vectors imply closed systems.
- ightharpoonup Notion of 'constrained probability'.

Presentation slides and associated article are on my website.

http://homes.esat.kuleuven.be/~jwillems/

Presentation slides and associated article are on my website.

http://homes.esat.kuleuven.be/~jwillems/

