

STOCHASTIC EVENTS

JAN C. WILLEMS

K.U. Leuven, Flanders, Belgium

On the occasion of the inaugural lecture of Siep Weiland

In honor of Siep Weiland on the occasion of his inauguration

Dissertation

Dept. of Mathematics, University of Groningen, Jan. 4, 1991.

Stochastic events

Classical probability (as it is commonly taught)

Model a phenomenon stochastically; outcomes in \mathbb{R}^n .

Usual framework:

- probability distributions, probability density functions;
- ightharpoonup 'Every' subset of \mathbb{R}^n is assigned a probability.

Classical probability (as it is commonly taught)

Model a phenomenon stochastically; outcomes in \mathbb{R}^n .

Usual framework:

- probability distributions, probability density functions;
- ightharpoonup 'Every' subset of \mathbb{R}^n is assigned a probability.

Thesis

This is unduly restrictive, even for elementary applications.

What this lecture does/does not do

It tries to

explain some basic probability ideas that should be taught.

What this lecture does/does not do

It tries to

explain some basic probability ideas that should be taught.

It does not address

- mathematical foundations of probability,
- interpretation of probability.

Events

A.N. Kolmogorov 1903 – 1987

A probability $P(E) \in [0,1]$ is assigned to certain subsets E ('events') of the outcome space \mathbb{W} .

 \mathscr{E} = the sets that are assigned a probability,

:= the class of 'measurable' subsets of \mathbb{W} .

Main (not all) axioms

The events \mathscr{E} form a " σ -algebra" of subsets of $\mathbb{W}:\Rightarrow$

- $[E \in \mathscr{E}] \Rightarrow [E^{\text{complement}} \in \mathscr{E}]$

 $P:\mathscr{E}\to [0,1]$ is a probability measure : \Rightarrow

- $ightharpoonup P(\mathbb{W}) = 1,$

Borel

In applications the events often consist of the *Borel* σ -algebra.

Émile Borel 1871 – 1956

Borel

In applications the events often consist of the *Borel* σ -algebra.

Émile Borel 1871 – 1956

 $\mathscr E$ contains 'basically every' subset of $\mathbb R^n$.

Allows to take probability distributions as the primitive concept, and avoids introducing \mathcal{E} .

Thesis

Borel is unduly restrictive for system theoretic applications.

Motivating examples

Ohmic resistor

$$V = RI$$

V: voltage across

I current through

R: resistance (≥ 0)

'Ohmic resistor'

Noisy (or 'hot') resistor

$$V = RI + \varepsilon$$

arepsilon gaussian zero mean variance $\sim \sqrt{RT}$

'Johnson-Nyquist resistor'

Noisy (or 'hot') resistor

$$V = RI + \varepsilon$$

arepsilon gaussian zero mean variance $\sim \sqrt{RT}$

'Johnson-Nyquist resistor'

What is $\begin{bmatrix} V \\ I \end{bmatrix}$ as a mathematical entity?

Noisy resistor terminated by a voltage source

How do we deal with interconnection?

Deterministic price/demand/supply

Deterministic price/demand/supply

'Interconnection'

$$price_1 = price_2$$
, $demand = supply$.

Stochastic price/demand/supply

(Only) certain regions of the $\begin{bmatrix} price_1 \\ demand \end{bmatrix}$ and $\begin{bmatrix} price_2 \\ supply \end{bmatrix}$ planes are assigned a probability.

Stochastic price/demand/supply

(Only) certain regions of the $\begin{bmatrix} price_1 \\ demand \end{bmatrix}$ and $\begin{bmatrix} price_2 \\ supply \end{bmatrix}$ planes are assigned a probability.

How do we deal with equilibrium: supply = demand?

Formal definitions

Definition

A *stochastic system* is a probability triple $(\mathbb{W}, \mathcal{E}, P)$

- **▶** W a non-empty set, the *outcome space*,
- \triangleright ε a σ-algebra of subsets of \mathbb{W} : the *events*,
- $ightharpoonup P: \mathscr{E} \to [0,1]$ a probability measure.
- \mathcal{E} : the subsets that are assigned a probability.

Probability that outcomes $\in E, E \in \mathscr{E}$, is P(E).

Model \cong \mathscr{E} and P;

 \mathscr{E} is an essential part!

 \mathcal{E} should not be taken for granted.

Definition

A stochastic system is a probability triple $(\mathbb{W}, \mathcal{E}, P)$

- **▶** W a non-empty set, the *outcome space*,
- \blacktriangleright & a σ -algebra of subsets of \mathbb{W} : the *events*,
- $ightharpoonup P: \mathscr{E} \to [0,1]$ a probability measure.

'Classical' stochastic system:

 $\mathbb{W} = \mathbb{R}^n$ and $\mathscr{E} =$ 'all' subsets of \mathbb{R}^n .

P specified by a probability distribution or a pdf.

Noisy resistor

Events: $\left\{ \begin{bmatrix} V \\ I \end{bmatrix} \in \mathbb{R}^2 \mid V - RI \in A \text{ with } A \text{ a Borel subset of } \mathbb{R} \right\}$.

P(event) = gaussian measure of A.

Neither $\begin{bmatrix} V \\ I \end{bmatrix}$ nor I nor V possess a pdf.

Stochastic price/demand/supply

 $\mathscr{E}, \mathscr{E}'$ = the regions that are assigned a probability.

p, d, nor s are not classical real random variables.

Linearity

Linear stochastic system

linear stochastic system

 $:\Leftrightarrow$ Borel probability on \mathbb{R}^n/\mathbb{L} ,

 $\mathbb{L} \subseteq \mathbb{R}^n$ a linear subspace, called the 'fiber'.

Note: \mathbb{R}^n/\mathbb{L} is a real vector space of dimension

 $n-dimension(\mathbb{L})$.

Events: cylinders with sides parallel to \mathbb{L} .

Subsets of \mathbb{R}^n as $A + \mathbb{L}$, \mathbb{L} linear subspace, A Borel.

Linearity

linear stochastic system

Borel probability on \mathbb{M} .

Example: the noisy resistor.

Classical \Rightarrow linear!

gaussian : \Leftrightarrow linear, probability on $\mathbb M$ gaussian.

Deterministic system

 $(\mathbb{W}, \mathcal{E}, P)$ is said to be *deterministic* if

$$\mathscr{E} = \{\emptyset, \mathbb{B}, \mathbb{B}^{complement}, \mathbb{W}\} \text{ and } P(\mathbb{B}) = 1.$$

Deterministic examples

Ohmic resistor:

Economic example:

The need for 'coarse' σ -algebras

For a classical random vector, the deterministic limit \simeq a (singular) probability distribution. Awkward from the modeling point of view.

Interconnection

Open and connected

Open and connected

Open

Connectable

Interconnection

Interconnection

Example:

Interconnection

Can two distinct probabilistic laws

be imposed on the same set of variables?

Complementarity of σ -algebras

 \mathscr{E}_1 and \mathscr{E}_2 are complementary σ -algebras : \Leftrightarrow for all nonempty sets $E_1, E_1' \in \mathscr{E}_1, E_2, E_2' \in \mathscr{E}_2$

$$[\![E_1 \cap E_2 = E_1' \cap E_2']\!] \Rightarrow [\![E_1 = E_1' \text{ and } E_2 = E_2']\!].$$

Complementarity of σ -algebras

 \mathscr{E}_1 and \mathscr{E}_2 are *complementary* σ -algebras : \Leftrightarrow for all nonempty sets $E_1, E_1' \in \mathscr{E}_1, E_2, E_2' \in \mathscr{E}_2$

$$[\![E_1 \cap E_2 = E_1' \cap E_2']\!] \Rightarrow [\![E_1 = E_1' \text{ and } E_2 = E_2']\!].$$

The intersection determines the intersectants.

Linear example

$$\mathbb{L}_1 + \mathbb{L}_2 = \mathbb{R}^n$$

Interconnection of complementary systems

Let $(\mathbb{W}, \mathcal{E}_1, P_1)$ and $(\mathbb{W}, \mathcal{E}_2, P_2)$ be stochastic systems (independent). Assume complementarity.

Their *interconnection* is defined as

$$(\mathbb{W},\mathscr{E},P)$$

with $\mathscr{E} :=$ the σ -algebra generated by 'rectangles'

$$\{E_1 \cap E_2 \mid E_1 \in \mathscr{E}_1, E_2 \in \mathscr{E}_2\},\$$

and P defined through the rectangles by

$$P(E_1 \cap E_2) := P_1(E_1)P_2(E_2).$$

for $E_1 \in \mathscr{E}_1, E_2 \in \mathscr{E}_2$.

Interconnection of complementary systems

$$P(E_1 \cap E_2) := P_1(E_1)P_2(E_2).$$

Noisy resistor terminated by a voltage source

Noisy resistor terminated by a voltage source

$$P(E) = P_1(E_1)P_2(E_2)$$

Equilibrium price/demand/supply

$$P(E) = P_1(E_1)P_2(E_2).$$

Open stochastic systems

Open versus closed

Consider $\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$.

If \mathscr{E}_1 = the Borel σ -algebra, and $\operatorname{support}(P_1) = \mathbb{R}^n$, then Σ_1 is interconnectable only with the free system $(\mathbb{R}^n, \mathscr{E}_2, P_2)$, $\mathscr{E}_2 = \{\emptyset, \mathbb{R}^n\}$. \Rightarrow classical $\Sigma_1 =$ 'closed' system.

Open versus closed

Consider $\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$.

If \mathscr{E}_1 = the Borel σ -algebra, and $\operatorname{support}(P_1) = \mathbb{R}^n$, then Σ_1 is interconnectable only with the free system $(\mathbb{R}^n, \mathscr{E}_2, P_2)$, $\mathscr{E}_2 = \{\emptyset, \mathbb{R}^n\}$. \Rightarrow classical $\Sigma_1 =$ 'closed' system.

Coarse \mathcal{E}_1

 $\Rightarrow \Sigma_1$ is interconnectable.

 \Rightarrow 'open' system.

Open versus closed

In the Kolmogorov philosophy, random variables, random vectors, and random processes are (measurable) functions defined on the probability space (Ω, \mathcal{A}, P) .

We view the randomness as 'internal' to the system.

So, once the Gods choose $\omega \in \Omega$, all the random variables are determined.

The environment has no influence on the outcomes.

 \Rightarrow 'closed' systems.

Conditional and constrained probability

Conditional probability

Given $\Sigma = (\mathbb{W}, \mathscr{E}, P)$.

Look at outcomes $w \in \mathbb{S}$ with $\mathbb{S} \subseteq \mathbb{W}$.

For \mathbb{S} an event, $\mathbb{S} \in \mathscr{E}$, \sim conditional probability.

Assume P(S) > 0. Then

$$\Sigma_{|\mathbb{S}} := \left(\mathbb{S},\mathscr{E}\cap\mathbb{S},P_{|\mathbb{S}}
ight), ext{ with } P_{|\mathbb{S}}(E\cap\mathbb{S}) := rac{P(E\cap\mathbb{S})}{P(\mathbb{S})}.$$

The construction of $P_{|\mathbb{S}}$ is more complicated when $P(\mathbb{S})=0,$ but well-known.

Conditional probability

Conditional probability

Let
$$\Sigma = (\mathbb{W}, \mathscr{E}, P)$$
.

Impose the constraint
$$w \in \mathbb{S}$$
 with $\mathbb{S} \subset \mathbb{W}$, $\mathbb{S} \notin \mathcal{E}$.

What is the stochastic nature of the outcomes in \mathbb{S} ?

Is this a meaningful question?

Noisy resistor

Impose $V = 10^{\text{volt}}$. What is the distribution of I?

$$V = RI + \varepsilon, V = 10^{\text{volt}} \Rightarrow I = \frac{V_0}{10} - \frac{\varepsilon}{10}.$$

I is a well-defined random variable!

Price/demand/supply example

Impose price $= \le 1$. Probability of demand, supply?

Let
$$\Sigma = (\mathbb{W}, \mathscr{E}, P)$$
.

Impose the constraint $w \in \mathbb{S}$ with $\mathbb{S} \subset \mathbb{W}$, $\mathbb{S} \notin \mathscr{E}$.

What is the stochastic nature of the outcomes in \mathbb{S} ?

Is this a meaningful question? Yes, it is!

Constraining \simeq interconnection of $\Sigma = (\mathbb{W}, \mathscr{E}, P)$ and the deterministic system with behavior \mathbb{S} .

Assume complementarity:

$$\llbracket E_1, E_2 \in \mathscr{E} \text{ and } E_1 \cap \mathbb{S} = E_2 \cap \mathbb{S} \rrbracket \Rightarrow \llbracket E_1 = E_2 \rrbracket$$

Interconnection \sim

$$\Sigma_{\cap \mathbb{S}} = (\mathbb{S}, \mathscr{E} \cap \mathbb{S}, P_{\cap \mathbb{S}})$$
 with $P_{\cap \mathbb{S}}(E \cap \mathbb{S}) := P(E)$.

 $P_{0S} =$ "probability of w constrained by $w \in S$ ".

Conclusions

The Borel σ -algebra is inadequate even for elementary applications.

Complementary stochastic systems can be interconnected: two distinct laws imposed on one set of variables.

 Open stochastic systems require a coarse σ-algebra.

Classical random vectors imply closed systems.

 Open stochastic systems require a coarse σ-algebra.

Classical random vectors imply closed systems.

ightharpoonup notion of 'constrained probability'.

Future work

Urgent:

Generalization to stochastic processes.

Where to find more

Reference: Open stochastic systems, IEEE Tr. AC, submitted.

Copies of the lecture frames available from/at

http://www.esat.kuleuven.be/~jwillems

Professor Siep, het ga je goed!

Thank you

Thank you