





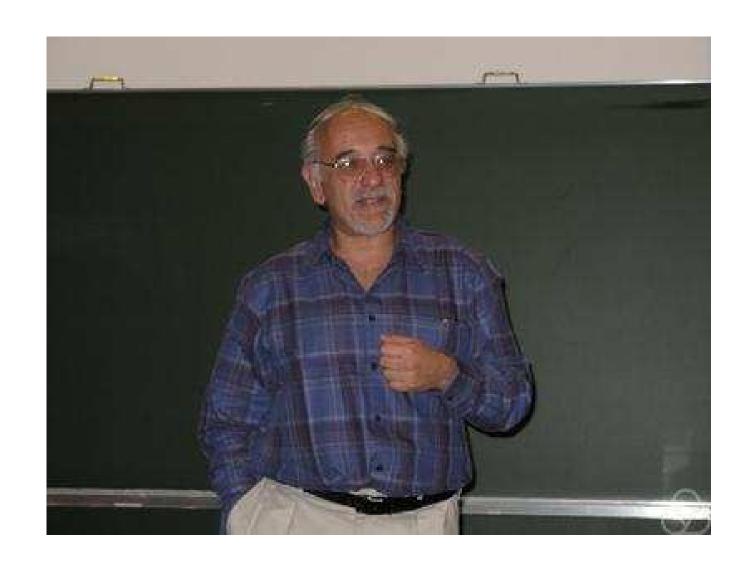
# **OPEN STOCHASTIC SYSTEMS**



# THEIR INTERCONNECTION

JAN C. WILLEMS
K.U. Leuven, Flanders, Belgium

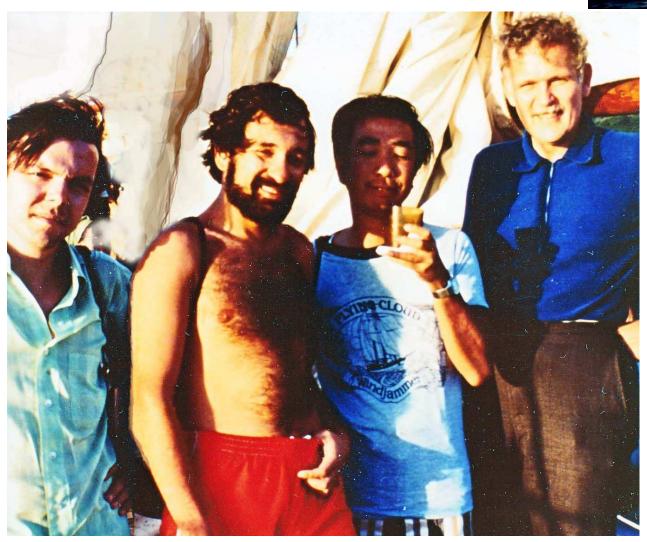
SontagFest May 23, 2011

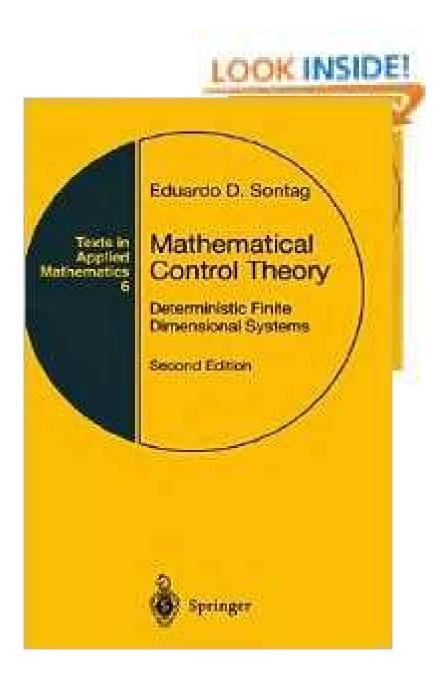


In honor of Eduardo Sontag on the occasion of his 60-th birthday.

## When & where & how we first met







# Stochastic systems

### **Outline**

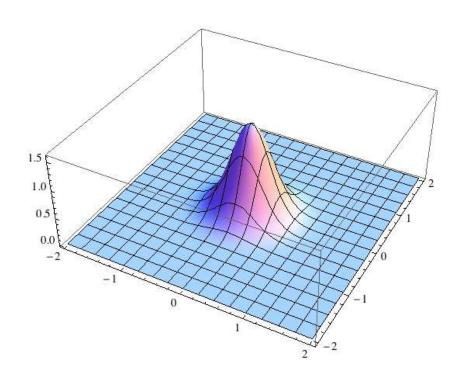
- **►** Motivation
- Definitions
- Interconnection
- [Variable sharing versus input/output]
- **▶** [Identification]
- **►** Conclusions

### **Theme**

Model a phenomenon stochastically; outcomes in  $\mathbb{R}^n$ .

#### **Usual framework:**

- probability distributions, probability density functions;
- $\blacktriangleright$  means that the event  $\sigma$ -algebra consists of the Borel sets.
  - $\rightarrow$  'Every' subset of  $\mathbb{R}^n$  is assigned a probability.



### **Theme**

Model a phenomenon stochastically; outcomes in  $\mathbb{R}^n$ .

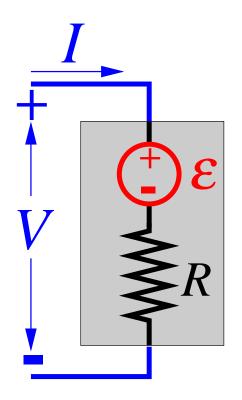
#### **Usual framework:**

- probability distributions, probability density functions;
- $\blacktriangleright$  means that the event  $\sigma$ -algebra consists of the Borel sets.
  - $\rightarrow$  'Every' subset of  $\mathbb{R}^n$  is assigned a probability.

### **Thesis:**

This is unduly restrictive, even for elementary applications.

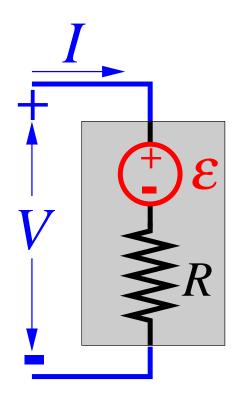
# Motivating examples



$$V = RI + \varepsilon$$

arepsilon gaussian zero mean variance  $\sigma \sim \sqrt{RT}$ 

'Johnson-Nyquist resistor'

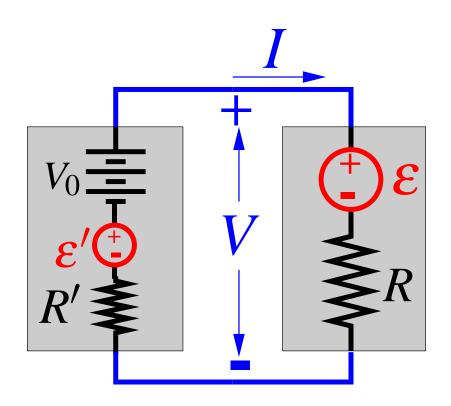


$$V = RI + \varepsilon$$

arepsilon gaussian zero mean variance  $\sigma \sim \sqrt{RT}$ 

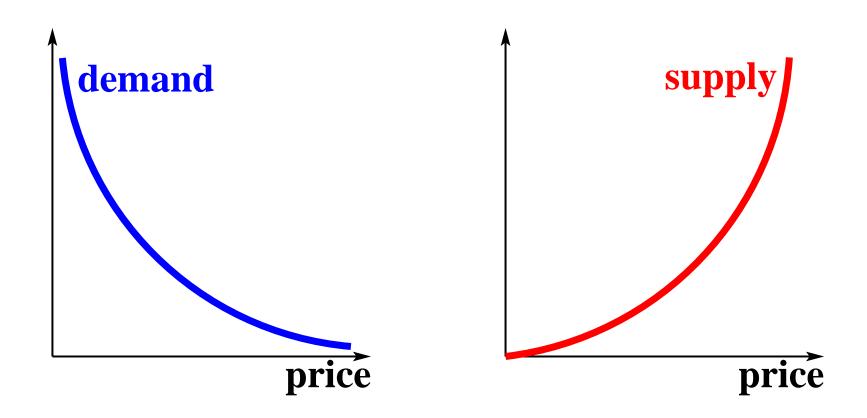
'Johnson-Nyquist resistor'

What is  $\begin{bmatrix} V \\ I \end{bmatrix}$  as a mathematical object?

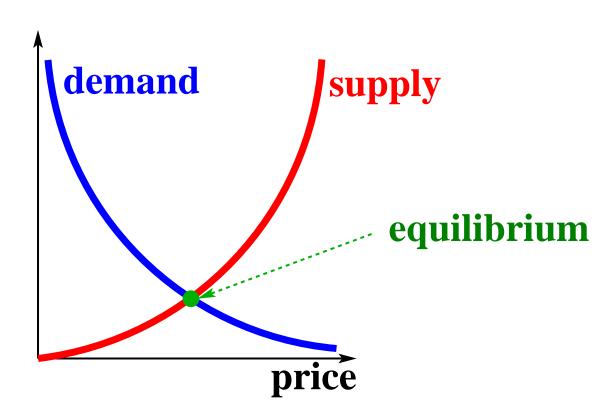


How do we deal with interconnection?

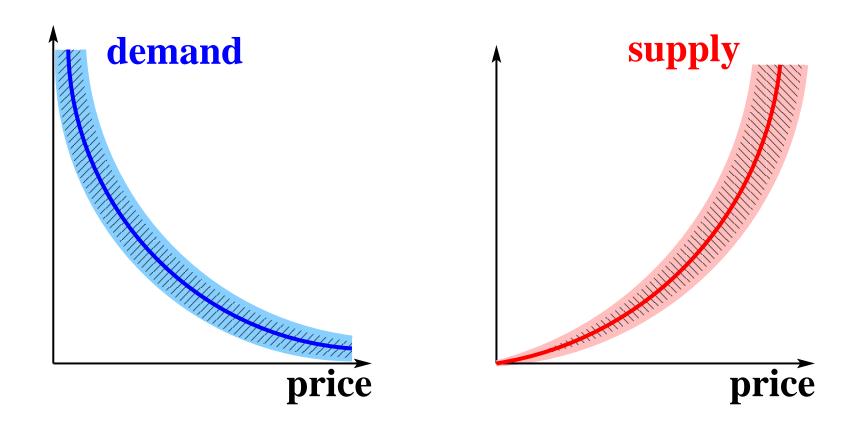
# **Deterministic price/demand/supply**



## **Deterministic price/demand/supply**

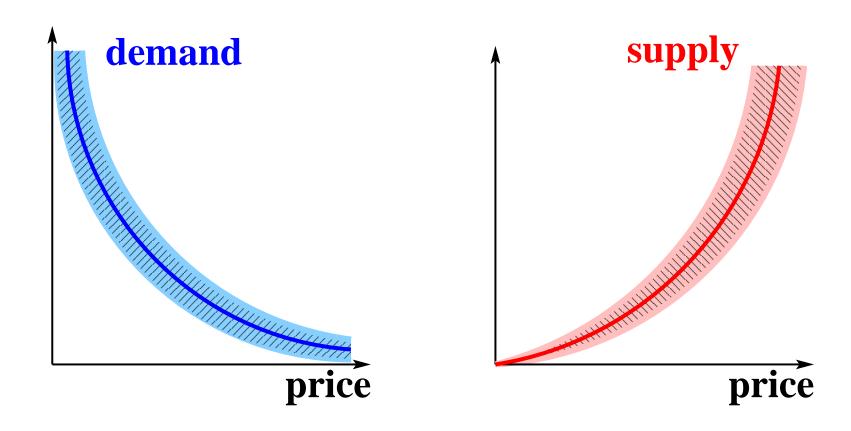


### **Stochastic price/demand/supply**



Only certain regions of the  $\begin{bmatrix} price \\ demand \end{bmatrix}$  and  $\begin{bmatrix} price \\ supply \end{bmatrix}$  planes are assigned a probability.

### **Stochastic price/demand/supply**



Only certain regions of the **price** demand and **price** supply planes are assigned a probability.

How do we deal with equilibrium supply = demand?

# Formal definitions

#### **Definition**

A *stochastic system* is a probability triple  $(\mathbb{W}, \mathcal{E}, P)$ 

- **▶** W a non-empty set, the *outcome space*,
- $\blacktriangleright$  & a  $\sigma$ -algebra of subsets of  $\mathbb{W}$ : the *events*,
- $ightharpoonup P: \mathscr{E} \to [0,1]$  a probability measure.
- $\mathscr{E}$ : the subsets that are assigned a probability.

Probability that outcomes  $\in E, E \in \mathscr{E}$ , is P(E).

Model  $\cong$   $\mathscr{E}$  and P;  $\mathscr{E}$  is an essential part.

### **Definition**

# A *stochastic system* is a probability triple $(\mathbb{W}, \mathcal{E}, P)$

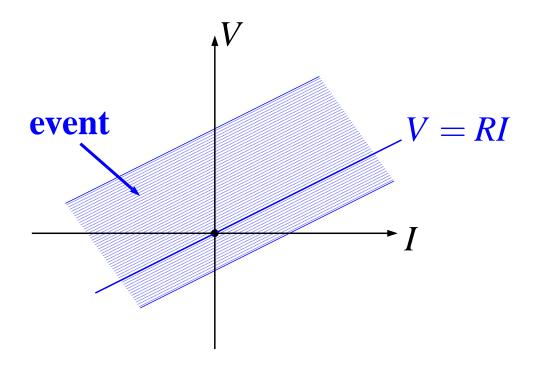
- **▶** W a non-empty set, the *outcome space*,
- $\blacktriangleright$  & a  $\sigma$ -algebra of subsets of  $\mathbb{W}$ : the *events*,
- $ightharpoonup P: \mathscr{E} \to [0,1]$  a probability measure.

## 'Classical' stochastic system:

 $\mathbb{W} = \mathbb{R}^n$  and  $\mathscr{E} =$  the Borel subsets of  $\mathbb{R}^n$ .

 $\mathscr E$  is inherited from topology on  $\mathbb R^n$ .

P can then be specified by a probability distribution.



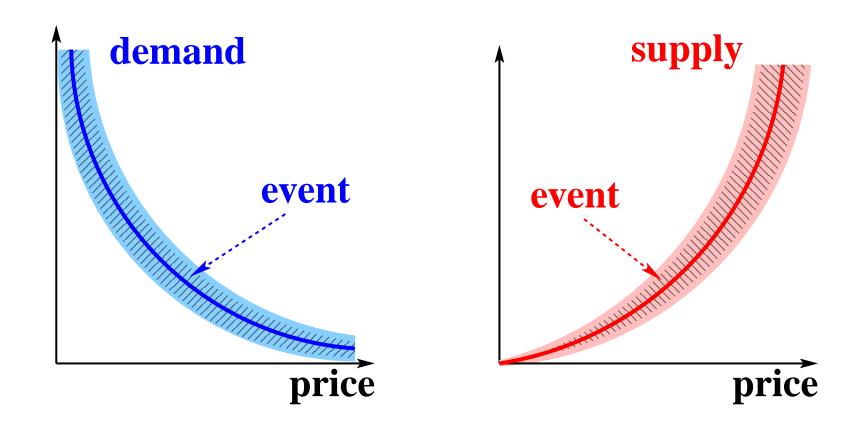
$$V=RI+arepsilon$$
: stoch. system,  $\mathbb{W}=\mathbb{R}^2$ , outcomes  $\left[ egin{array}{c} V \\ I \end{array} 
ight]$ .

**Events:**  $\left\{ \begin{bmatrix} V \\ I \end{bmatrix} \in \mathbb{R}^2 \mid V - RI \in A \text{ with } A \text{ a Borel subset of } \mathbb{R} \right\}$ .

P(event) = gaussian measure of A.

V and I are not classical real random variables.

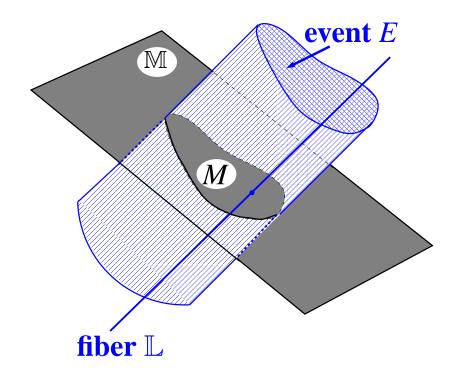
### **Stochastic price/demand/supply**



 $\mathcal{E}$  = the regions that are assigned a probability. p, d, and s are not classical real random variables.

### Linearity

*linear*:  $\Leftrightarrow$  Borel probability on  $\mathbb{R}^n/\mathbb{L}$ ,  $\mathbb{L}$  linear, 'fiber'.



Borel probability on  $\mathbb{M}\cong\mathbb{R}^n/\mathbb{L}$ .

gaussian : \iff linear, Borel probability gaussian.

Classical  $\Rightarrow$  linear.

### **Deterministic**

 $(\mathbb{W}, \mathcal{E}, P)$  is said to be *deterministic* if

$$\mathscr{E} = \{\emptyset, \mathbb{B}, \mathbb{B}^{complement}, \mathbb{W}\} \text{ and } P(\mathbb{B}) = 1.$$

If  $\mathbb{B} = \mathbb{W}$ , the variables are *free*.

noisy resistor: linear, gaussian, fiber V = RI.

w = V - RI is a classical random variable.

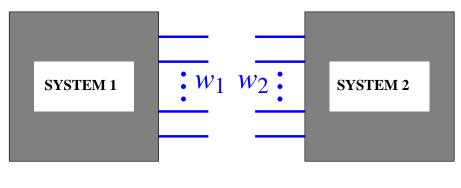
V and I are free.

Only statements  $P(\{V \in \mathbb{R}\}) = 1$ ,  $P(\{I \in \mathbb{R}\}) = 1$ .

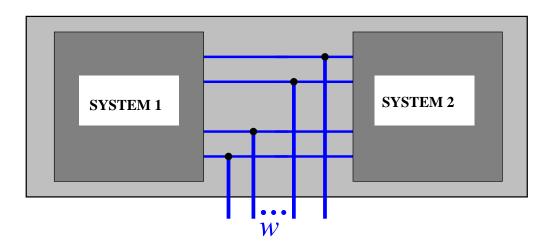
 $\begin{bmatrix} V \\ I \end{bmatrix}$  no pdf, no cumulative, no conditional distr'ions.

# Interconnection

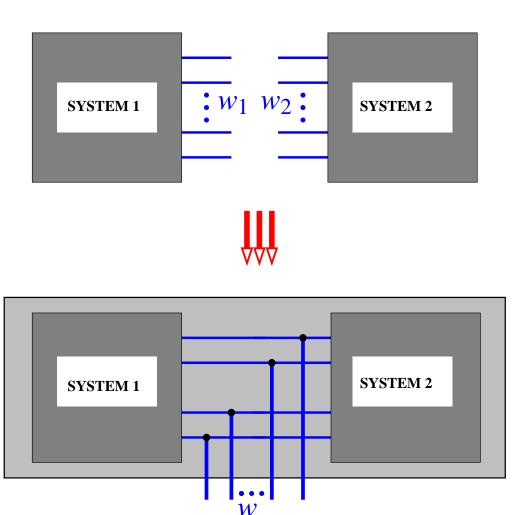
## Interconnection







#### Interconnection



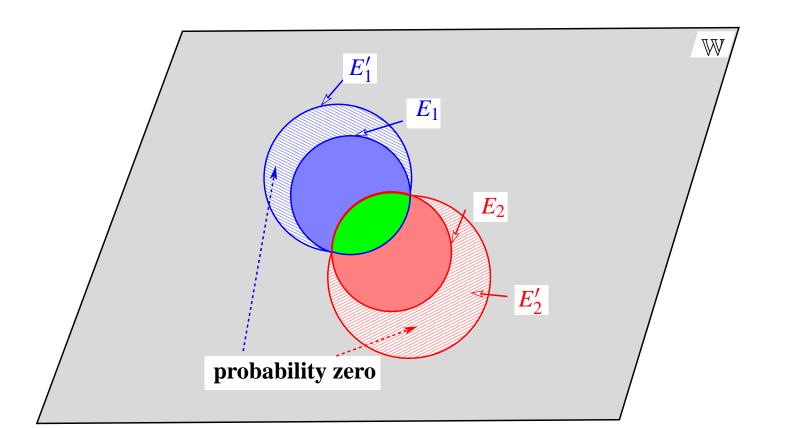
Can we impose two distinct probabilistic laws

on the same set of variables?

### **Complementarity**

 $\Sigma_1 = (\mathbb{W}, \mathscr{E}_1, P_1)$  and  $\Sigma_2 = (\mathbb{W}, \mathscr{E}_2, P_2)$  are said to be complementary : $\Leftrightarrow$  for  $E_1, E_1' \in \mathscr{E}_1$  and  $E_2, E_2' \in \mathscr{E}_2$ :

$$\llbracket E_1 \cap E_2 = E_1' \cap E_2' \rrbracket \Rightarrow \llbracket P_1(E_1)P_2(E_2) = P_1(E_1')P_2(E_2') \rrbracket.$$



### **Complementarity**

 $\Sigma_1 = (\mathbb{W}, \mathscr{E}_1, P_1)$  and  $\Sigma_2 = (\mathbb{W}, \mathscr{E}_2, P_2)$  are said to be complementary : $\Leftrightarrow$  for  $E_1, E_1' \in \mathscr{E}_1$  and  $E_2, E_2' \in \mathscr{E}_2$ :

$$\llbracket E_1 \cap E_2 = E_1' \cap E_2' \rrbracket \Rightarrow \llbracket P_1(E_1)P_2(E_2) = P_1(E_1')P_2(E_2') \rrbracket.$$

Implied by  $\mathscr{E}_1$  and  $\mathscr{E}_2$  are complementary : $\Leftrightarrow$  for all nonempty sets  $E_1, E_1' \in \mathscr{E}_1, E_2, E_2' \in \mathscr{E}_2$ 

$$[\![E_1 \cap E_2 = E_1' \cap E_2']\!] \Rightarrow [\![E_1 = E_1' \text{ and } E_2 = E_2']\!].$$

### **Interconnection of complementary systems**

Let  $\Sigma_1 = (\mathbb{W}, \mathscr{E}_1, P_1)$  and  $\Sigma_2 = (\mathbb{W}, \mathscr{E}_2, P_2)$  be complementary stochastic systems (assumed stochastically independent). Their *interconnection* is

$$(\mathbb{W},\mathscr{E},P)$$

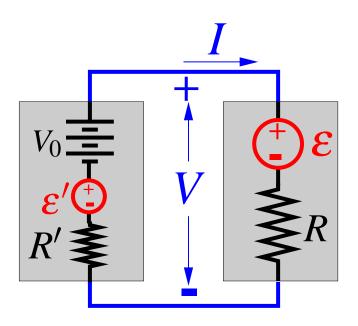
with  $\mathscr{E} :=$  the  $\sigma$ -algebra generated by the 'rectangles'

$$\{E_1 \cap E_2 \mid E_1 \in \mathscr{E}_1, E_2 \in \mathscr{E}_2\},\$$

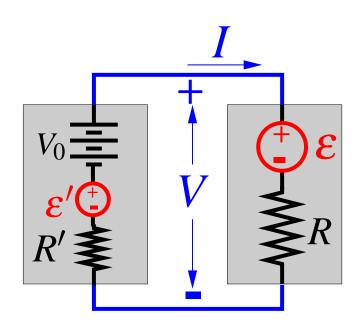
and P defined through the rectangles by

$$P(E_1 \cap E_2) := P_1(E_1)P_2(E_2).$$

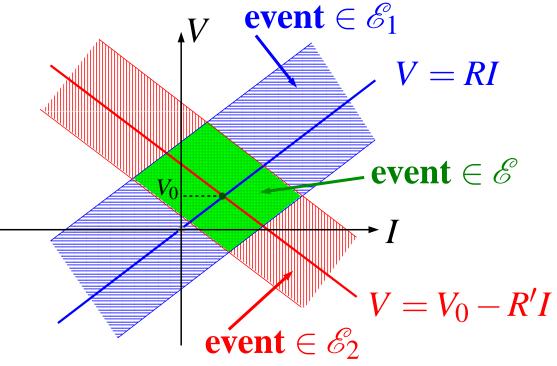
# Noisy resistor terminated by voltage source



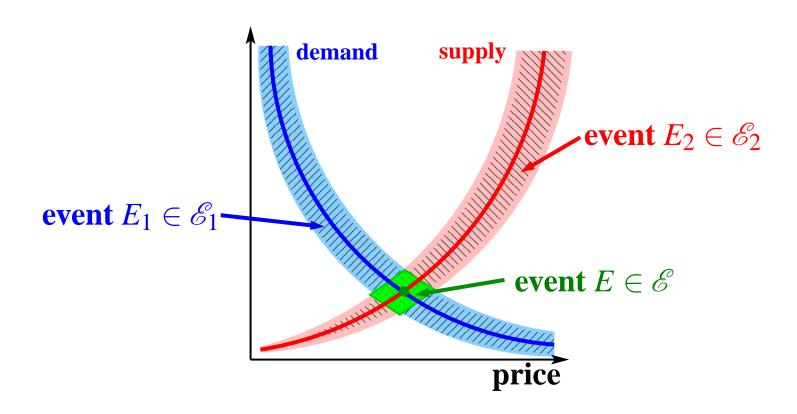
### Noisy resistor terminated by voltage source



$$P(E) = P_1(E_1)P_2(E_2)$$



### **Equilibrium price/demand/supply**



$$P(E) = P_1(E_1)P_2(E_2).$$

### **Open versus closed**

$$\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$$
.

Parsimonious  $\mathcal{E}_1 \Rightarrow \Sigma_1$  is interconnectable.

 $\Rightarrow$  'open' system.

### **Open versus closed**

$$\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$$
.

Parsimonious  $\mathscr{E}_1 \Rightarrow \Sigma_1$  is interconnectable.

 $\Rightarrow$  'open' system.

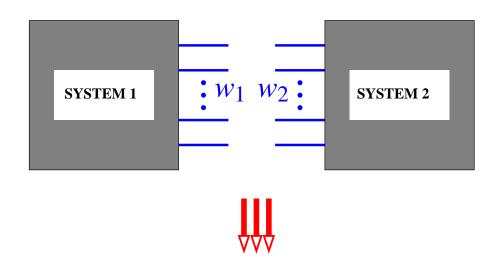
If  $\mathscr{E}_1$  = the Borel  $\sigma$ -algebra, and  $\operatorname{support}(P_1) = \mathbb{R}^n$ , then  $\Sigma_1$  interconnectable only with the free system

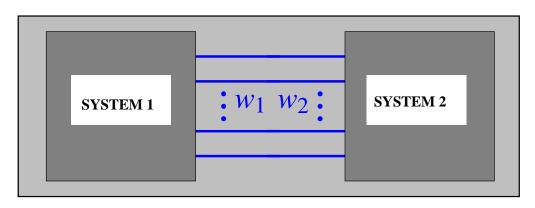
$$\Sigma_2 = (\mathbb{R}^n, \mathscr{E}_2, P_2), \mathscr{E}_2 = \{\emptyset, \mathbb{R}^n\}.$$

$$\Rightarrow \mathbf{classical} = \mathbf{`closed'} \mathbf{system}.$$

# Interconnection $\Leftrightarrow$ variable sharing

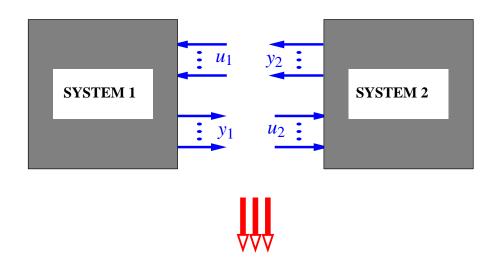
## Variable sharing

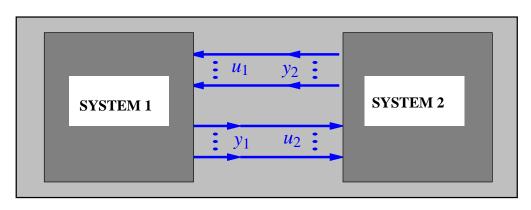




$$w_1 = w_2$$

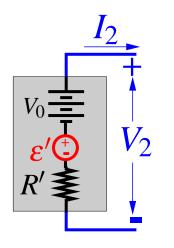
# **Output-to-input assignment**

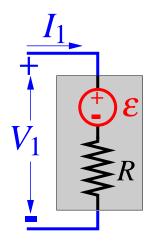




$$u_1 = y_2, \quad u_2 = y_1$$

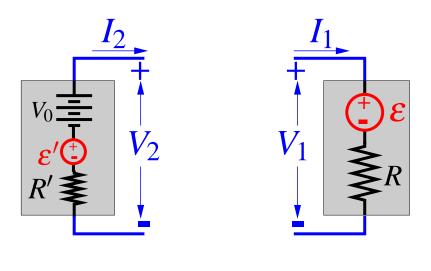
# **Resistor interconnection**



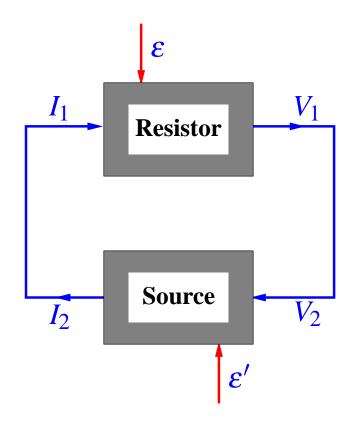


$$V_1=V_2, \quad I_1=I_2$$

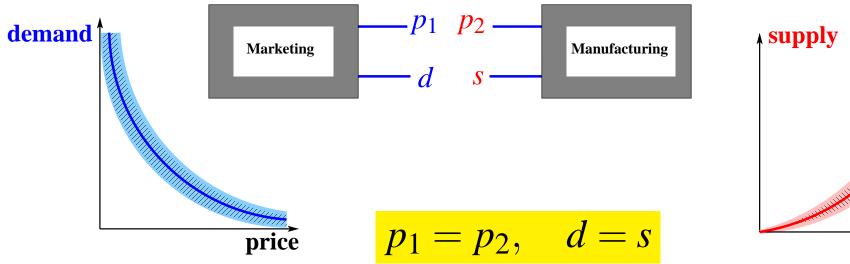
#### **Resistor interconnection**

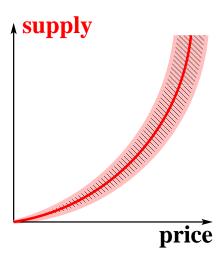


$$V_1=V_2, \quad I_1=I_2$$

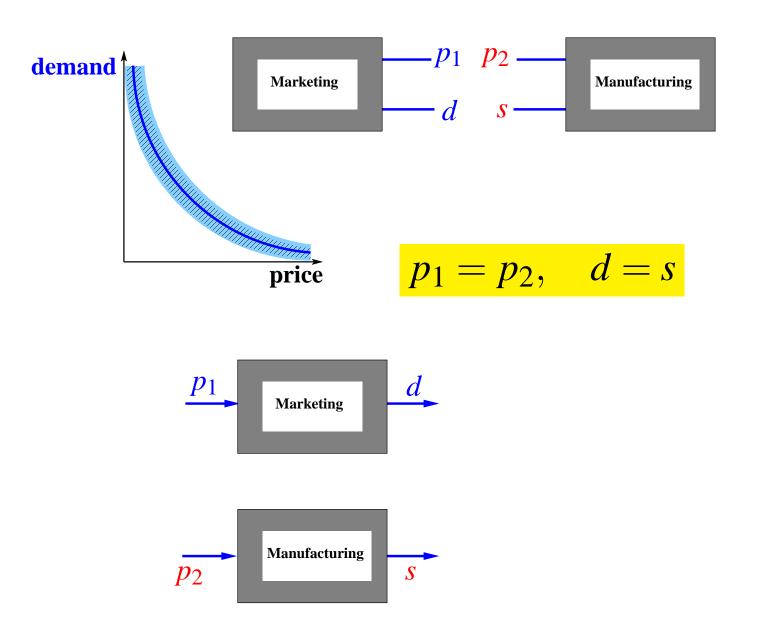


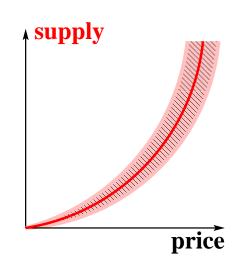
# **Price/demand/supply interconnection**



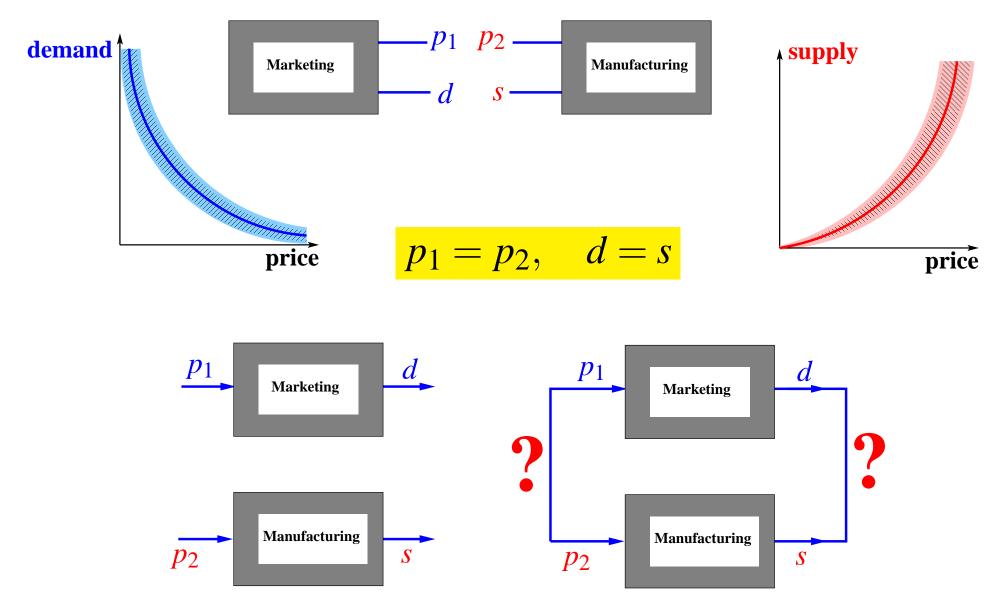


# **Price/demand/supply interconnection**





## **Price/demand/supply interconnection**



# Identification

#### **Measurements**

Data collection requires observing a stochastic system *in interaction with an environment*.

Is it possible to disentangle the laws of a system from the laws of the environment?

#### **Measurements**

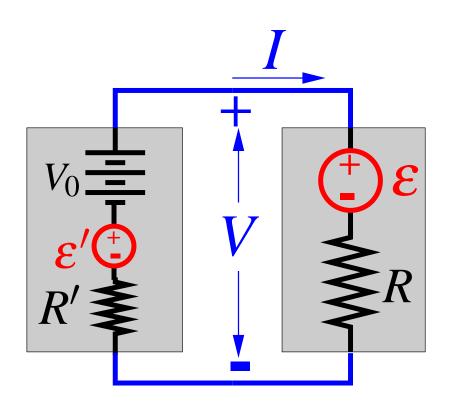
Data collection requires observing a stochastic system *in interaction with an environment*.

Is it possible to disentangle the laws of a system from the laws of the environment?

In engineering, it may be possible to set the experimental conditions.

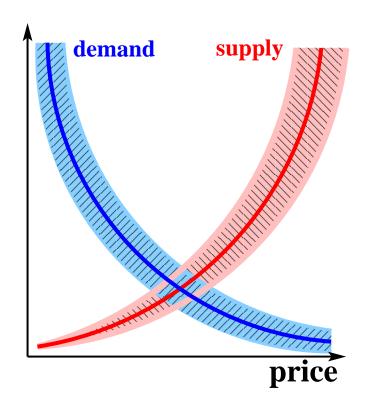
In economics and the social sciences (and biology?), data often gathered passively 'in vivo'.

# **Disentangling**



Can R and  $\sigma$  be deduced by sampling (V,I)?

# **Disentangling**



Can the price/demand characteristic be deduced

by sampling (p,d) in equilibrium?

## **SYSID** for gaussian systems

Let  $\Sigma_1$  and  $\Sigma_2$  be complementary gaussian systems and assume that the interconnection  $\Sigma_1 \wedge \Sigma_2$  is a classical random system.

Sampling  $\rightsquigarrow$  the mean and covariance of  $\Sigma_1 \wedge \Sigma_2$ .

## **SYSID** for gaussian systems

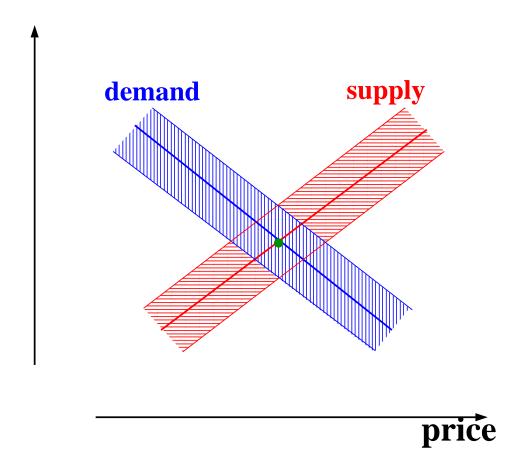
Let  $\Sigma_1$  and  $\Sigma_2$  be complementary gaussian systems and assume that the interconnection  $\Sigma_1 \wedge \Sigma_2$  is a classical random system.

Sampling  $\rightsquigarrow$  the mean and covariance of  $\Sigma_1 \wedge \Sigma_2$ .

Given the fiber of  $\Sigma_1$  or  $\Sigma_2$ , all the other parameters of  $\Sigma_1$  and  $\Sigma_2$  can be deduced from  $\Sigma_1 \wedge \Sigma_2$ .

The fiber of  $\Sigma_1$  or  $\Sigma_2$  can be chosen freely.

## Linearized gaussian price/demand/supply



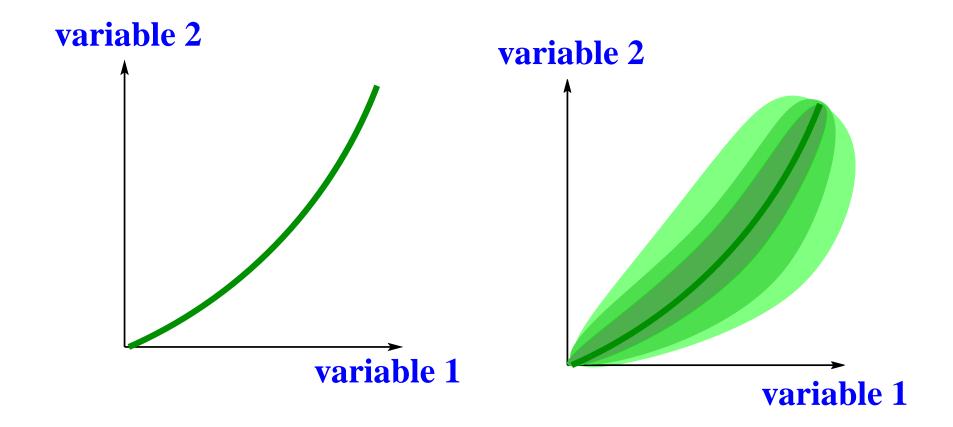
Identifiability provided one of the fibers is known.

Sampling alone does not give the elasticities.

# Conclusions

## **Stochastic systems**

The Borel  $\sigma$ -algebra is inadequate even for elementary applications.



#### **Stochastic systems**

- The Borel  $\sigma$ -algebra is inadequate even for elementary applications.
- Complementary stochastic systems can be interconnected:

two distinct laws imposed on one set of variables.

Open stochastic systems require a parsimonious  $\sigma$ -algebra.

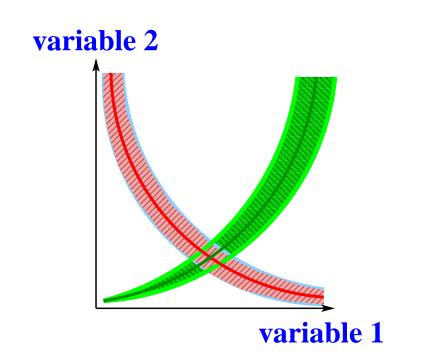
Classical stochastic systems are closed systems.

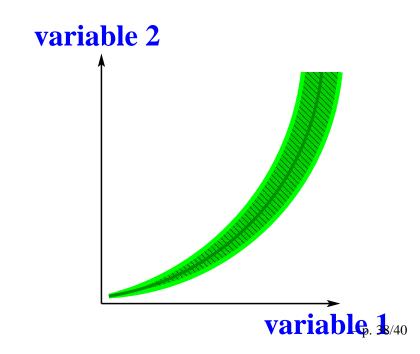
#### **SYSID**

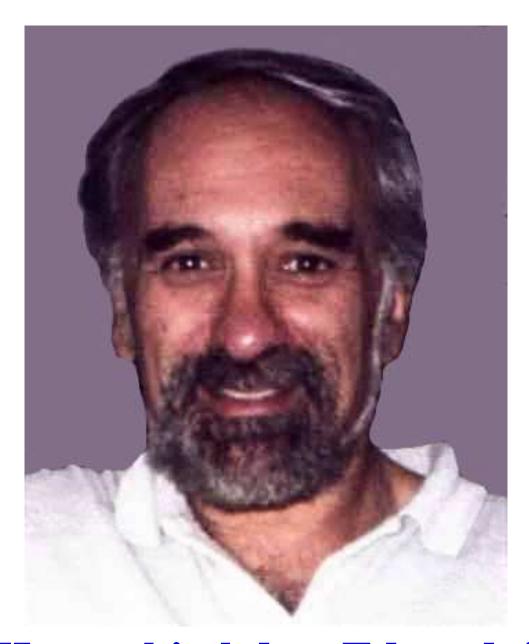
➤ Measurements are the result of interaction with an environment.

Modeling from data requires disentangling.

The data alone are insufficient for identifiability.







Happy birthday, Eduardo! Ad multos annos felices!

Reference: Open stochastic systems, IEEE AC, submitted.

#### Copies of the lecture frames available from/at

http://www.esat.kuleuven.be/~jwillems

