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The idea




Theme

Model a phenomenon stochastically; outcomes IR".

Usual framework:
» probability distributions, probability density function s;

» means that the evento-algebra consists of the Borel sets.
~» ‘Every’ subset of R" Is assigned a probability.

for A C R™ Borel,

P(A) = /A o(x) dx




Theme

Model a phenomenon stochastically; outcomes IR".

Usual framework:
» probability distributions, probability density function s;

» means that the evento-algebra consists of the Borel sets.
~» ‘Every’ subset of R" Is assigned a probability.

Thesis

Thisisunduly restrictive,
even for elementary applications.



What this lecture doesfloes not

It tries to

» explain some probability ideas that should be
taught,

» In the setting of orthodox mathematical
probability theory.



What this lecture doesfloes not

It tries to

» explain some probability ideas that should be
taught,

» In the setting of orthodox mathematical
probability theory.

It does not address
» mathematical foundations of probability,

» Iinterpretation of probability.



Basic probability




Events

A.N. Kolmogorov
1903 — 1987

A probability P(E) € |0, 1]
IS assigned to certain
P /P /P subsetsE (‘events)
of the outcome space W.

& =the sets that are assigned a probabillity,
.= the class of ‘measurable’ subsets ofV.



Main (not all) axioms

The eventsé form a o-algebraof subsets of/¥V .=
> [E € & = [ECcomplement o o]

» [E1.BEoe &= |E1nNExe &, E1UEy € &

P:& — |0,1] is aprobability measure :=
» P(W)=1,

» |Ei1,Ebe&andEiNEy, =10]
= [P(E1UEp) = P(E1) +P(E2)] (P isadditive).



Borel |

e [t 7
Dl g

In applications the measurable sets often
consist of theBorel g-algebra.

Emile Borel
1871 — 1956

A(R™) .= the Borel g-algebra onRR";

random variable: W =R (or C), and & = #(R)
random vector: W =R", and & = #(R")
random process: a family of random variables, etc.

Z(R™) contains ‘basically every’ subset ofR™.



Borel

In applications the measurable sets often | gl s
consist of theBorel o-algebra.

Emile Borel
1871 — 1956

ZA(R™) = the Borel g-algebra onR";

ZA(R™) contains ‘basically every’ subset ofR".
Allows to take probabillity distributions as the
primitive concept, avoids introducing & ab initio.

Thesis

Borel iIsunduly restrictive
for system theoretic applications.




Borel

In applications the measurable sets often
consist of theBorel o-algebra.

Emile Borel
§871 — 1956

Borel is usually assumed for many basic concepts, a
» random variable, random vector,

Independence of random variables,

marginal measure, conditioning,

random process,

vV v v ¥

Brownian motion, Markov process, etc.



Motivating examples




Ohmic resistor

V=Rl

V: voltage across
R | current through
R: resistance (> 0)

==

‘Ohmic resistor’



Noisy (or ‘hot’) resistor

A
V=R +¢
b De
Vv R € gaussian
i Zero mean
- | variance ~ vRT

‘Johnson-Nyquist resistor’



Noisy (or ‘hot’) resistor

A
V=R +¢
b De
Vv R € gaussian
i Zero mean
- | variance ~ vRT

‘Johnson-Nyquist resistor

What is | Y | asa mathematical entity?



Noisy resistor terminated by a voltage source

Vo E
i | e

How do we deal with interconnection?



A

Deterministic price/demand/supply

demand

pricél

supply

pricéz



Deterministic price/demand/supply

demand

supply

.- equilibrium

-
-
-
-
-
-
-

price

‘Interconnection’

price; = price,, demand=supply.



Stochastic price/demand/supply

A
demand A

supply

price; price;

(Only) certain regions of the{ price, } and {pficez}

demand supply
planes are assigned a probabillity.



Stochastic price/demand/supply

demand \ supply

pid=¢& S= &3

&1, & pdf’s on (0, )

e.g.

price; price;

(Only) certain regions of the{ price, } and {pficez}

demand supply
planes are assigned a probabillity.



Deterministic price/demand/supply

demand supply

price:l pl’iCéZ

(p1,d) € characteristic w.p. 1.

(p2,s) € characteristic w.p. 1.



Stochastic price/demand/supply

A
demand A

supply

price; price,

demand supply
planes are assigned a probabillity.

(Only) certain regions of the{ price, } and {pficez}

How do we deal with equilibrium: supply = demand?



Formal definitions




Definition
A stochastic system is a probability triple (W, &, P)
» W anon-empty set, theoutcome space,
» & ao-algebra of subsets oW: the events,
» P:& —[0,1] aprobability measure.

&’. the subsets that are assigned a probability.
Probability that outcomesec E, E € &, isP(E).

Model = & and P; & is an essential part!

& should not be taken for granted.



Definition
A stochastic system is a probability triple (W, &, P)
» W anon-empty set, theoutcome space,

» & ao-algebra of subsets oW: the events,

» P:& —[0,1] aprobability measure.

‘Classical’ stochastic system:
W =R" and & = the Borel subsets ofR".
P specified by a probabillity distribution or a pdf.

& 1S Inherited from the topology of the outcome
space, it does not involve the randomness.



Noisy resistor

v event

V =Rl +¢: stoch. system, outcomes$Y |, W = R?.
Events: {[Y] € R? |V —RI € Awith A a Borel subset ofR}.
P(event) = gaussian measure oA.

V nor | are not classical real random variables.
Neither |V | nor | nor V possess a pdf.



Stochastic price/demand/supply

demand

/

events

v o
price;

y o
prices

&,&" = the regions that are assigned a probability.
P, d, nor sare not classical real random variables.



Stochastic price/demand/supply

demand

€.0. pid =&

pricél

&1, & pdf's on (0, )

) supply

S= &5

prices

Often the events can be parameterized (as here kg1, &5).

o-algebra definition is more elementary/desirable/general



Linearity




Atoms

Let (W,&) be a measurable space.
E € & Is said to beatomic : &

[E'c &,E' CE] = [E'=EorE =10].

Examples

» For (R*, Z(R")) the atoms are the singletons.



Atoms

Let (W, &) be a measurable space.
E € & Is said to beatomic : &

[E'c &,E' CE] = [E'=EorE =10].

» For the noisy resistor the atoms are the lines
paralleltoV =Rl. v

4+ atoms

N
\



Atoms

Let (W, &) be a measurable space.
E € & Is said to beatomic : &

[E'c &,E' CE] = [E'=EorE =10].

» Economic example: atoms arg pq,d)
hyperbolas; (p2,s) parabolas.

4
A supply

-
atoms =——




Linear stochastic system

(R*, &, P) is said to be alinear stochastic system
< d L, alinear subspace ofR®, such that

L IS an atomic event, and

|E € & is atomic] & [E=E+1L].

l.e., all atoms are cylinders with sides parallel tdL.

However, In the remainder of this lecture we will use
the following more restrictive definition.



Linear stochastic system

linear stochastic system
<> Borel probability on R* /L,
. C R* a linear subspace, called thdiber’ .

Note: R"/LL is a real vector space of dimension

n —dimension(L).

Events: cylinders with sides parallel tolL.
Subsets ofR™ asA+ 1L, L linear subspaceA Borel.



Linearity
linear stochastic system

< Borel probability on R* /L,
. C R" a linear subspace, called the ‘fiber’.

fiber IL
Borel probability on M= R*/L., (ML =R").
Classical= linear!
gaussian < linear, Borel probabillity gaussian.



Deterministic system

(W, &, P) is said to bedeterministic if

& = {0,B,BOMPET w1 and P(B) = 1.



Deterministic system

(W, &, P) is said to bedeterministic if
& = {0,B,BOMPET w1 and P(B) = 1.
Atoms of deterministic system:B and g complement

Linear deterministic < B linear subspace ofR".

B Is called the behavior .



Deterministic examples

An Ohmic resistor,

W = R?,

B={[Y] eR*|V=RI}.

A

demand

e :

supply

price;

price,



The need for ‘coarse’c-algebras

variable 2 variable 2
A A

variable 1 variable 1

For a classical random vector, the deterministic limit
~ a (singular) probability distribution.
Awkward from the modeling point of view.



Interconnection




System theoretic musts

Environment

Open



System theoretic musts

Environment

Open | ! T—

Connectable



Interconnection

SYSTEM 1 . . SYSTEM 2
[ ] [ ]

SYSTEM 1 SYSTEM 2




Interconnection

SYSTEM 1

°
: SYSTEM 1

SYSTEM 2

°
SYSTEM 2 :

Consider the following (seemingly) special case.




Interconnection

SYSTEM 1 . . SYSTEM 2
[ ] [ ]

®
SYSTEM 1 SYSTEM 2




Interconnection

SYSTEM 1 . . SYSTEM 2
L4 °

I Example:

I
Vo=
e’g
R

T
V
|




Interconnection

SYSTEM 1 . . SYSTEM 2
[ ] [ ]

®
SYSTEM 1 SYSTEM 2

Can we impose two distinct probabillistic laws
on the same set of variables?



Complementarity of o-algebras

&1 and &> are complementary o-algebras . <
for all nonempty setsk;, E; € &1, Ep, ES € &

[[ElﬂEg — EiﬂEé]] — [[Elz EZ/L and B, = Eé]]

=]

EiNEs




Complementarity of o-algebras

&1 and &> are complementary o-algebras . <
for all nonempty setsk;, E; € &1, Ep, ES € &

[[ElﬂEz — EiﬂEé]] — [[Elz EZ/L and B, = Eé]]

=]

EiNEs

The Intersection determines the intersectants.



Linear example




Complementarity of systems
(W, &1,P1) and (W, &>, P) are said to be
complementary :< for Eg, E] € &1 and Ep, E; € &5

[E1NEx = E1NES] = [Pu(E1)P2(Ez) = PL(E])P(E))].

W

Intersection = product of probabilities of intersectants.




Interconnection of complementary systems

Let (W,&71,P1) and (W, &%, P,) be stochastic systems
(stochastically independent). Assume
complementarity. Their interconnection is defined as
(W, &, P)
with & .= the g-algebra generated by ‘rectangles’
{E1NEx | E1 € &1,BEp € &3,
and P defined through the rectangles by

P(E]_ M Ez) = P]_(E]_) P2(E2).

for E1 € &1, B € 6.



Interconnection of complementary systems

EiNEs

P(E]_ M Ez) = P]_(E]_) P2(E2).



Noisy resistor terminated by voltage source




Noisy resistor terminated by voltage source

T
V
|

4
Vo=
g/
R
| | \/ eventk; € &1
- V=R

= eventEc &

N
N
N

V =Vy—R
eventks € &>



In terms of equations

I V=R +¢
V=Vg—RI+¢




In terms of equations

L7 ]
we | | e V=Rl+¢
g/ V V=V—RI+¢
R | R
| =
1 = ,
V:R—I—R’( & R(Vo E))
| = R—I:}R’( e+Vo+¢').

Shows that|V | is indeed a classical random vector.
Complementarity = this construction geometrically.



Equilibrium price/demand/supply

demand supply S
eventks € 65
S
eventE, € 81— >
s eventE € &
—
price

P(E) =Pi(E1)P(Ep).



In terms of equations

A

demand \ supply o

p1d = & S= &5

price; price;

Complementarity = this construction geometrically.



Open stochastic systems




Open versus closed

Consider2, = (Rn, &1, Pl).

If &1 =the Borel g-algebra, andsupport (P;) = R",
then 21 Is interconnectable only with the free system
(R, &, P), & = {0,R"}.

= classicalz; = ‘closed’ system.



Open versus closed

Consider2, = (Rn, &1, Pl).

If &1 =the Borel g-algebra, andsupport (P;) = R",
then 21 Is interconnectable only with the free system
(R, &, P), & = {0,R"}.

= classicalz; = ‘closed’ system.

Coarsedéy
= 21 IS Interconnectable.
=- ‘open’ system.



Open versus closed

In the Kolmogorov philosophy, random variables,
random vectors, and random processes are
(measurable) functions defined on the probability
space(Q, o7, P).

We view the randomness as ‘internal’ to the system.

S0, once the Gods choos® € Q, all the random
variables are determined.
The environment has no influence on the outcomes.

= ‘closed’ systems.



Interconnection < variable sharing




Variable sharing

o [

W1 = W»o




Output-to-input assignment

SYSTEM 1 SYSTEM 2

SYSTEM 1 SYSTEM 2
- t -
- t -

Ui =Yz, Ux=Y1




S
|

Resistor interconnection




S

~~

Resistor interconnection




demand!

Price/demand/supply interconnection

Marketing

P1 P2
d S
P1 = P2,

Manufacturing

A

supply

N

price



demand!

Price/demand/supply interconnection

P1 P2
\\\ N

price P1 = P2,

Manufacturing
S

Manufacturing

A

supply

N

price



Price/demand/supply interconnection

, P1 P2
d S

price P1 = P2, d=s price

Manufacturing
S




Functions




Problem

Consider the stochastic systeniW,, &1, Py),
and the map W1 L Wo.

Wq

a

Which stochastic system on W, does f generate?




Pullback construction
If (Wq,81) — (Wz,é‘“’z) IS a measurable map:<

[[Ez = (502]] = [[f_l(Ez) = (5‘71]],

then Py(E) :=Pi(fH(Ep)) ~ (W, &%, Py).



Pullback construction
If (Wq,81) — (Wz,éaz) IS a measurable map:<
|E> € &) = [[f_l(Eg) e &1],

then Py(Ey) := Pi(f1(Ep)) ~ (W, &, Ps).

Usually, it is assumed that£> is given, say as#(R"),
and that f Is measurable.

However, since the events are part of the stochastic
phenomenon,> ought to be constructed



Construction of &5

& = {Ex C Wy | f_l(Ez) € &1}
&> is a g-algebra,~» stochastic systemWo,, &5, )
with P(Ez) = Py (4 E2))

;

&> = those subsets to which a probability can be assigned.
&5 1S modeled, not obtained from the topology oriWs.




Example

Noisy resistor,V =Rl +¢, R#D0.

- f [Y] — V.
~» stochastic systemR,{0,R},P).



Example

Noisy resistor,V =Rl +¢, R#D0.

- f [Y] — V.
~» stochastic systemR,{0,R},P).
r f [Y] — .

~» stochastic systemR,{0,R}, P).



Example

Noisy resistor,V =Rl +¢, R#D0.

I f [Y] — V.
~» stochastic systemR,{0,R},P).
r f [Y] — .
~» stochastic systemR,{0,R}, P).
r f:|Y]—V-R.
~» stochastic systen{R, Z(R), )
with P, = .47(0,~ v/RT).



Independence




Independence of stochastic variables

Independence of events is a measure theoretic
concept. Does not need adjustment.

Let (W, &, P) be a stochastic system.

Consider W E> Wi, W 3 W
~» stochastic systemsW, &1, Py), and (W, &, P).

Are the outcomes w; and w, stochastically independent ?



Independence of stochastic variables

WA W, W3 W,.

| f
Consider alsow (=% W1 x Wo.

~ 210 = (W1 x Wo, &12,P1o).

Independence:< (W1 x W», &12,P12)
s the product of (W1,&7,P1) and (Wy, &%, P).

Noisy resistorR = 0: V and | are not independent.
R=0: V and| are independent.



Conditioning & Constraining




Conditional probability

Let 2 = (W,&,P). Look at the outcomegw € S.

When S Is an event, that IsS € &,
~» conditional probability. Assume P(S) > 0. Then

P(ENS)

2|s = (S,&NS,P(-|S), with P(ENSIS) := P(S)

The construction of P(-|S) is more complicated when
P(S) = 0, but well-known.



onditional probability




Conditional probability
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Constrained probability

Let 2 = (W,&,P). Impose the constraint“ we S

with SC W, |S € &.

What is the stochastic nature of the outcomesin S ?

Is this a meanigful question?



Noisy resistor

2

AN

ImposeV = 10¥9t, What is the distribution of 1?

Vo &
V =Rl +¢£.V = 10vo!t | — .
TE, = '=107 10

| 1Is a well-defined random variable!




Price/demand/supply example

demand A supply

> o

€1 price; €1 price;

Impose price =€ 1. Distribution of demand, supply?
pid=¢,pr=el=d=¢;S=&p5 p=el=2=¢.
d, s become well-defined random variables.



Constrained probability

Let 2 = (W,&,P). Impose the constraint“ we S

with SC W, |S € &.

What is the stochastic nature of the outcomesin S ?

Is this a meanigful question? Yes!



Constrained probability

Conditioning ~ interconnection of> = (W, &, P)
and the deterministic system with behaviors.

Assume complementarity:
[E1,Ex € £andEiNS =ExNS] = [P(E1) = P(Ey)]

nterconnection ~»
2|ls=(S,&NS,P(-|S)) with P(ENSI|S) :=P(E).

P(-|S) = “probability of w constrained byw € S”.



Constrained probability




Constrained probability
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Eventsc &






In pictures

events in&

events in& NS



In pictures

Probabllity of E drawn globally into S.






Contrast with conditional probability

Probability locally computed, with renormalization.



Constraining and conditioning

Is there a point of view from which yields both
concepts are special cases of one unifying idea?



|dentification




Sampling

variable 2

A

variable 1

System identification: deduce the stochastic model
& and P
from the samples.



Measurements

variables

SYSTEM

Data collection implies observing a stochastic system
IN Interaction with an environment.



Measurements

Data collection implies observing a stochastic system
IN Interaction with an environment.

samples

SYSTEM Environment



Measurements

Data collection implies observing a stochastic system
INn Interaction with an environment.

|sit possible to disentangle the laws of a system
from the laws of the environment?

In engineering, it may be possible to set the
experimental conditions.

In economics and the social sciences (and biology?),
data often gathered passivelyin vivo'.



Disentangling

Vo E
i | e

Can Rand o be deduced by samplingV,1)?



Disentangling

demand supply o

price

Can the price/demand characteristic be deduced
by sampling (p,d) in equilibrium?



SYSID for gaussian systems

Let 21 and 2> be complementary gaussian systems
and assume that the interconnectior:; A 25 IS a

classical random system.

Sampling~» the mean and covariance ob 4 A 2.
Assume that the covariance is nonsingular.



SYSID for gaussian systems

Let 21 and 2> be complementary gaussian systems
and assume that the interconnectior:; A 25 IS a
classical random system.

Sampling~» the mean and covariance ob 4 A 2.
Assume that the covariance is nonsingular.

Given the fiber of either 21 or 25, then all the other
parameters of2; and 2, can be deduced from
21\ 2.

The fiber of 21 can be chosen freely.



Linearized gaussian price/demand/supply

price

|dentifiability provided one of the fibers is known.
Sampling alone does not give these elasticities.



Conclusions




Stochastic systems

» The Borel o-algebra is inadequate
even for elementary applications.

variable 2

\ variable 2

A

variable 1 —
variable 1



Stochastic systems

» Complementary stochastic systems can be
Interconnected: two distinct laws imposed on
one set of variables.

SYSTEM 1 SYSTEM 2

SYSTEM 1 SYSTEM 2




Stochastic systems

» Open stochastic systems require a coarse
o-algebra.

Classical random vectors imply closed systems.



SYSID

» Measurements are the result of interaction with
an environment.

samples

SYSTEM Environment

Modeling from data requires disentanglement.



SYSID

» Modeling from data requires disentanglement.
The data alone are insufficient for identifiability.

variable 2 variable 2

A A

variaE)Ie 1 variable 1



Future work

Urgent:

Generalization to stochastic processes.



Reference Open stochastic systems, IEEE Tr. AC, submitted.

Copies of the lecture frames available from/at
http://ww. esat. kul euven. be/ ~jw | | ens



Reference Open stochastic systems, IEEE Tr. AC, submitted.

Copies of the lecture frames available from/at
http://ww. esat. kul euven. be/ ~jw | | ens

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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