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Basic probability

A.N. Kolmogorov
1903 — 1987

A probability P(E) € |0, 1]
IS assigned to certain
P /P /P subsetsE (‘events)
of the outcome space W.

& = the class of ‘measurable’ subsets oV,
= the sets that are assigned a probability.
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Main (not all) axioms

& 1s ao-algebra:=
> [[E c éa]] s [[EcomplementE @(a]]
» [E1.BEoe &= |E1nNExe &, E1UEy € &



Main (not all) axioms

& 1s ao-algebra:=
> [[E c éa]] s [[EcomplementE @(a]]
» [E1.BEoe &= |E1nNExe &, E1UEy € &

» P(W)=1

P Is additive ;=

> [EiNE2=0] = [P(E1UE2) = P(E1) + P(E2)]
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Borel

In most applications it Is assumed that
the g-algebra of measurable sets

are the Borel sets. Emile Borel
1871 — 1956

ZA(R™) = the Borel o-algebra onR";

random variable : W =R (or C), and & = #(R)
random vector: W =R", and& = #A(R")
random process : a family of random vectors, etc.

Z(R™) contains ‘basically every’ subset ofR™.
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Theme

We consider stochastic models with outcomes IR®.

Usual framework:

» The evento-algebra& consists of the Borel sets.
~» ‘Every’ subset of R" Is assigned a probability.

» -~ probability distributions, probability densities,
marginal distributions, conditional densities, ...

:/ p(x)dx, E C R" Borel
E




Theme

We consider stochastic models with outcomes IR®.

Usual framework:

» The evento-algebra& consists of the Borel sets.
~» ‘Every’ subset of R" Is assigned a probability.

» -~ probability distributions, probability densities,
marginal distributions, conditional densities, ...

Thesis

This Is unduly restrictive,
even for elementary applications.

The event set is crucial, and often less tha (R").
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Motivating examples




Noisy resistor

.
V=Rl+¢
b e
V € gaussian
i R
mean=_0
- | standard deviation

~+/RT, T temp.

‘Johnson-Nyquist resistor’



Noisy resistor

.
V=Rl+¢
b e
V € gaussian
i R
mean=_0
- | standard deviation

~+/RT, T temp.

‘Johnson-Nyquist resistor’

What is | Y | as a stochastic object?
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Noisy resistor

|

How do we deal with interconnection?
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A

Deterministic price/demand/supply

demand

price

A

supply

price



Deterministic price/demand/supply

A

supply

.- equilibrium

_ price
Equilibrium:

» prices pertain to same product,

» supply =demand.

‘Interconnection’

¢

—p.9/51



Stochastic price/demand/supply

A

demand \ supply
orice price
Only certain regions of the [depﬂgﬁd } plane and

of the { S‘fjré%?y} plane are assigned a probability.



Stochastic price/demand/supply

A

demand \ supply
orice price
Only certain regions of the [depﬂgﬁd } plane and

of the { S‘fjrri)%?y} plane are assigned a probability.

How do we deal with equilibrium supply = demand?
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Formal definitions




Definition
A stochastic system is a probability triple (W, &, P)
» W anon-empty set, theoutcome space,
» & ao-algebra of subsets oW, the events,
» P:& —[0,1] aprobability measure.

&’. the subsets that are assigned a probability.
Probability that outcome € E, E € &, iISP(E).

Model = & and P; & 1S an essential part.



Definition
A stochastic system is a probability triple (W, &, P)
» W anon-empty set, theoutcome space,

» & ao-algebra of subsets oW, the events,

» P:& —[0,1] aprobability measure.

‘Classical’ random vector on R*:
W = R" and & = the Borel subsets oiR".
& 1s Inherited from the topology on R*,
It does not involve the random phenomenon.
P can then be specified by a probabillity distribution.
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Noisy resistor

AV

event V =Rl

o

V =Rl +¢: stoch. systemW = R4, outcomes][Y |.
Events: {[Y] € R? |V —RI € Awith Aa Borel subset ofR}.
P(event) = gaussian measure oA.

V and | are not classical real random variables.
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Stochastic price/demand/supply

A

demand ) supply

N

event event

price price

& = the regions that are assigned a probabillity.
P, d, and sare not classical real random variables.
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linear stochastic system
< Borel probability on R*/LL, IL linear, ‘fiber’.

Events. cylinders with sides parallel toL,
that Is, subsets of the formA+ L,
. a linear subspace ofR*,
A C R*/IL a Borel set.



linear stochastic system
< Borel probability on R*/LL, IL linear, ‘fiber’.

fiber L.

Borel probability on M = R*/IL. Classical=- linear.



linear stochastic system
< Borel probability on R*/LL, IL linear, ‘fiber’.

fiber L.

Borel probability on M = R*/IL. Classical=- linear.

gaussian | .« linear & Borel probability gaussian.
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Deterministic

(W, &, P) is said to bedeterministic if
& = {0,B,BOMPET w1 with P(B) = 1.
B Is called thebehavior of the deterministic system.

Only valid probabilistic statements:
P(B)=1P(W)=1,
P(B complement) =0,P(0) =0.



Deterministic

(W, &, P) is said to bedeterministic if
& = {0,B,BOMPET w1 with P(B) = 1.
B Is called thebehavior of the deterministic system.

Only valid probabilistic statements:
P(B)=1P(W)=1,
P(B complement) =0,P(0) =0.

If B =W, the variables are said to bdree.
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Noisy resistor

noisy resistor: linear, gaussian, fioelvV = Rl.

Leta e R.Map [Y|—V—al =w.

w IS classical random variable iffa = R.

If a #R, thenwis free.

In particular, for R=£0,V and| are both free.
Only statements:P({V e R}) =1, P{l e R}) = 1.

Y| no distribution, no pdf,
no marginal distributions,
no conditional distributions.
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The need for coarseog-algebras

variable 2 variable 2
A A

variable 1 variable 1

variable 1 :
If [Variable 2} were a classical random vector,

then the deterministic limit becomes a (singular) pdf.
Awkward from the modeling point of view:

determinism = stochastic laws.
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Interconnection




Interconnection

SYSTEM 1

SYSTEM 2

SYSTEM 1

SYSTEM 2




Interconnection

SYSTEM 1 . . SYSTEM 2

®
SYSTEM 1 SYSTEM 2

Is It possible to Impose two distinct probabilistic laws
on the same set of variables?
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Complementarity

The o-algebrasé and & on W are said to be
complementary < for non-empty E; € &1, Eo € 65,
the intersectionE,1 N E> determinesk; and Es.

W

=]

Ei1NE>
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Complementarity

&, P») are said to be
Z/L c &1 and B, Eé € 9.

= (W,

(W, (551, P]_) and Zz
complementary < for Eq,

21 =

PL(E1)P(E5)]-

E1)P(E2) =

(

[[ElﬂEz — EiﬂEé]] = [[Pl

probability zero




Interconnection of complementary systems

Let 2, = (W,&,P) and 2o = (W, &, P) be
complementary stochastic systems (assumed
stochastically independent). Theinnterconnection is

(W, &, P)

with & .= the g-algebra generated bys; U &7,
and P defined through the ‘rectangles’ by

P(El M Ez) = Pl(El) Pz(Ez).

for E1 € &1, Ep € é5.



Interconnection of complementary systems

EiNEs

P(E]_ M Ez) = P]_(E]_) P2(E2).

Needs complementarity.
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Noisy resistor terminated by voltage source

+
T I Complementary g-algebras
Y if R+ R £ 0.




Noisy resistor terminated by voltage source

|,
I + |
1
Vo= T g Complementary o-algebras
e/ V if R+ R +#£0.
R =N
| ~ | \ eventk; € &1
wm»” N V=R
1 ol Ll e ”/’/
Pe — cventEc &

P(E) = Py(E1)P2(Ep) ==

? P VRSV

eventks € &5

& = Borel g-algebra onR?.
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Equilibrium price/demand/supply

demand supply 3

eventks € 65

eventE; € &1— X

AN
& eventkE € &

price

&1 and &> typically complementary.



Equilibrium price/demand/supply

demand supply 3

eventks € 65

eventk; € &1— s

s eventk € &

pricé’
P(E) =P(E1)P(E).
& typically = Borel g-algebra on|0,®) x [0, ).
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Interconnection of linear systems

AssumeZ; = (R",&1,P1),2> = (R™, 6, P,) linear.

&1 and &> are complementary
Iff Lq+Ly=R" é/ Ly

The interconnection of21 and 2, Is a classical
random vector If Ly L, = R".
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Open stochastic systems




Open versus closed

21 =(R* &1,P), &1 =Borel g-algebra Z(R").
& C #B(R™) sub-g-algebra.

|&1 and & complementary] = [& = {0, R"}],
thatis, 2o = (R", %, P,) is free.
= classicalz; = ‘closed’ system.



Open versus closed

21 =(R* &1,P), &1 =Borel g-algebra Z(R").
& C #B(R™) sub-g-algebra.

|&1 and & complementary] = [& = {0, R"}],
thatis, 2o = (R", %, P,) is free.
= classicalz; = ‘closed’ system.

Coarsedéy
= 21 IS Interconnectable.
=- ‘open’ system.
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The system theorist’s requirements for a good notion

Environment

Open

Models should incorporate influence of environment.



The system theorist’s requirements for a good notion

- T

Connectable

Models should allow interconnection.



The system theorist’s requirements for a good notion

- T

Connectable

Models should allow interconnection.
Classical random vectors fail these requirements.
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|dentification




Sampling

variable 2

A

variable 1

System identification: deduce the stochastic model
& and P
from the samples.
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Measurements

« outcome
* variables




Measurements

outcome
* variables

Measurements occur under experimental conditions.

environment
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Noisy resistor with a voltage source

Vo

T
V
|
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Noisy resistor with a current source

1
V
L
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Noisy resistor with a noisy voltage source

1
Vo=
8/
R
|

T
V
|
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Measurements

Data collection requires observing a stochastic system
In Interaction with an environment. The samples
depend on both the system & the environment.

|sit possible to disentangle the laws of a system
from the laws of the environment?



Measurements

Data collection requires observing a stochastic system
In Interaction with an environment. The samples
depend on both the system & the environment.

|sit possible to disentangle the laws of a system
from the laws of the environment?

In engineering, it may be possible to set the
experimental conditions. In economics and the social

sciences (and biology?), data are often gathered
passively,'in vivo' .



Disentangling

Vo E
i | e

Can Rand o be deduced by samplingV,1)?



Disentangling

demand v supply

price

Can the price/demand characteristic be deduced
by sampling (p,d) in equilibrium?
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SYSID for gaussian stochastic systems

Let 2, = (R", &1,P1) and 25 = (R™, &%, P) be
complementary gaussian systems. Assume that the
Interconnection 21 A 25 1S a classical random vector.

Sampling~» the mean and covariance ob1 A 2.
Assume that the covariance is nonsingular.



SYSID for gaussian stochastic systems

Let 2, = (R", &1,P1) and 25 = (R™, &%, P) be
complementary gaussian systems. Assume that the
Interconnection 21 A 25 1S a classical random vector.

Sampling~» the mean and covariance ob1 A 2.
Assume that the covariance is nonsingular.

Given fiber of either 24 or 25, then the parameters of
21 and 2, can be deduced fromxq A 2.

The fiber of 21 can be chosen freely.
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Linearized gaussian price/demand/supply

4
N
N
N
N
N
N
N
N
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NN
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N
N
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N
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N
N
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N
N
N
N
N

" price

|dentifiability provided one of the fibers is known.

Sampling alone does not give the elasticities.
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Summary: an example




Deterministic price/demand

demand

price

Price = demand.
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Stochastic price/demand

}v: demand

price

Certain [depﬂgﬁd } regions are assigned a probability.

Borel g-algebra =- trouble in the deterministic limit.
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Deterministic price/supply

supply

price

Price = supply.
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Stochastic price/supply

A _supply

price

Certain [Sﬁggﬁ, } regions are assigned a probability.
Borel g-algebra =- trouble in the deterministic limit.
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Prices pertain

A

Deterministic equilibrium

to same product & demand = supply.

demand

supply

.- equilibrium

price

Equilibrium = price, demand, and supply.
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Stochastic equilibrium

Prices pertain to same product & demand = supply.

demand supply \\

eventks € 65

eventk; € 81— 2

o eventke

price

Complementarity = [demanpgigesupply} well-defined

stochastic system. Typically the equilibrium yields a

: price
classical random vec:tor[demamOI : Supply} .
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Sample {

demand

|dentification

price

demand = supply

N supply

price

|

demand = supply

N>

° : so
e b
FX
g ooui
L
o. .: ...o
.. ° .




Disentanglement

price

Does passive samplln%Olemanol — supply | IMPly the
price/demand elasticity?
demanq = supply demand

price price



Disentanglement

: : price :
Does passive samplln%Olemanol — supply | IMPly the
price/demand elasticity?
demanq = supply demand
?
Ty =
price pri;

Sampling alone=- identification.
Requires more a priori knowledge.
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Conclusions




Stochastic systems

» The Borel g-algebra is inadequate even for elementary
applications.
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Open stochastic systems require a coarse-algebra of
events.



Stochastic systems

The Borel o-algebra is inadequate even for elementary
applications.

Complementary stochastic systems can be
Interconnected:
two distinct laws imposed on one set of variables.

Classical random vectors are closed systems.
Open stochastic systems require a coarse-algebra of
events.

Measurements are the result of interaction with an
environment.

Modeling from data requires disentanglement.
Sampling alone is insufficient for identifiability.
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Reference Open stochastic systems, IEEE TAC, submitted.

Copies of the lecture frames available from/at
http://ww. esat. kul euven. be/ ~jw | | ens



Reference Open stochastic systems, IEEE TAC, submitted.

Copies of the lecture frames available from/at
http://ww. esat. kul euven. be/ ~jw | | ens

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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