

SYNTHESIS of RECIPROCAL CIRCUITS

JAN C. WILLEMS
K.U. Leuven, Flanders, Belgium

Second Workshop on Mathematical Aspects of Network Synthesis

Electrical circuits

An N-terminal circuit

Electrical circuits

Variables: terminal currents and voltages

Electrical circuits

Assume KVL: $\quad V_{k_{1}, k_{2}}+V_{k_{2}, k_{3}}+V_{k_{3}, k_{1}}=0$.

Variables: terminal currents and potentials

$$
V_{k_{1}, k_{2}}=P_{k_{1}}-P_{k_{2}} .
$$

Terminal connection

$$
\text { Imposes : } \quad I_{N}+I_{N^{\prime}}=0, \quad P_{N}=P_{N^{\prime}}
$$

Extendable to more than 2 terminals, than 2 circuits.

Circuit architecture

Digraph with leaves

vertices: subcircuits, 'building blocks', edges: connections,
leaves: external terminals.

The terminal behavior

The current/potential behavior

$$
\mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}} .
$$

$\mathscr{B}_{I P}=$ all possible $\left(I_{1}, P_{1}, I_{2}, P_{2}, \ldots, I_{N}, P_{N}\right): \mathbb{R} \rightarrow \mathbb{R}^{N} \times \mathbb{R}^{N}$.

KCL: $I_{1}+I_{2}+\cdots+I_{N}=0$.

Analysis \& synthesis

Analysis:
Given circuit architecture and element laws, find $\mathscr{B}_{I P}$.

Synthesis:

Given $\mathscr{B}_{I P}$ and building blocks,
find circuit architecture.
Which $\mathscr{B}_{I P}$'s can be synthesized?

Building blocks

Resistor, inductor, capacitor, connector

Element laws, e.g. inductor

$$
I_{1}+I_{2}=0, \quad P_{1}-P_{2}=L \frac{d}{d t} I_{1}
$$

$L=$ inductance.

Transformer

$$
I_{1}+I_{2}=0, I_{3}+I_{4}=0,
$$

$$
I_{3}=-n I_{1}, \quad\left(P_{1}-P_{2}\right)=n\left(P_{3}-P_{4}\right) .
$$

$n=$ 'turns ratio' .

Gyrator

$$
\begin{gathered}
\text { a } \\
I_{1}+I_{2}=0, I_{3}+I_{4}=0 \\
\left(P_{1}-P_{2}\right)=\rho I_{3}, \quad\left(P_{3}-P_{4}\right)=-\rho I_{1}
\end{gathered}
$$

$\rho=$ 'gyrator resistance'.
Tellegen B.D.H. : 'The gyrator, a new electric network element', Philips Research Reports, 3, pp. 81-101, 1948.

RLCTG Synthesis

Terminal synthesis

Determine the terminal behaviors $\mathscr{B}_{I P}$ that are achievable by interconnecting a finite number of

positive resistors,
positive capacitors,
positive inductors,
transformers,
and gyrators.

The port behavior

Port behavior:

$$
\begin{aligned}
& \mathscr{B}_{I V}=\left\{\left(I_{1}, V_{1}, I_{2}, V_{2}, \ldots, V_{N}, I_{N}\right) \mid \exists P_{1}, P_{3}, \ldots, P_{2 N-1}:\right. \\
& \left.\quad\left(I_{1}, P_{1},-I_{1}, P_{1}-V_{1}, \ldots, I_{N}, P_{2 N-1},-I_{N}, P_{2 N-1}-V_{N}\right) \in \mathscr{B}_{I P}\right\}
\end{aligned}
$$

Unit transformer termination

Port behavior \Leftrightarrow unit transformer termination.

4-terminal circuit or 2-port circuit?

2-terminal case

A 2-terminal circuit is a 1-port,
(assuming KCL and KVL).
Port $=\mathbf{W L O G}$ in 2-terminal case.

Port synthesis

Determine the port behaviors $\mathscr{B}_{I V}$ that are achievable by interconnecting a finite number of

positive resistors,
positive capacitors,
positive inductors,
transformers,
and gyrators.

Synthesis conditions

Properties of the port behavior

The port behavior $B_{I V} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$ of an interconnection of RLCTG's is

- linear,
- time-invariant,
- finite-dimensional,
- hybrid,
- passive.

Properties of the port behavior

'Hybrid' : \Leftrightarrow Each port is either current driven or voltage driven, meaning \exists an input/output partition

$$
\text { input }\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{N^{\prime}} \\
V_{N^{\prime}+1} \\
\vdots \\
V_{N}
\end{array}\right] \mapsto\left[\begin{array}{c}
V_{1} \\
\vdots \\
V_{N^{\prime}} \\
I_{N^{\prime}+1} \\
\vdots \\
I_{N}
\end{array}\right] \text { output }
$$

LTIFD \leadsto rational transfer f'n $G \in \mathbb{R}(\xi)^{N \times N}$.
E.g. 'impedance' $V=Z I$, 'admittance' $I=Y V$.

Properties of the port behavior

'Passive' : \Leftrightarrow

$$
\llbracket(I, V) \in \mathscr{B}_{I V} \rrbracket \Rightarrow \llbracket \int_{-\infty}^{0} I^{\top}(t) V(t) d t \geq 0 \rrbracket
$$

$\Leftrightarrow G$ is 'positive real'

i.e. $\llbracket s \in \mathbb{C}$, real part $(s)>0 \rrbracket \Rightarrow$

$$
\llbracket G(s)+G(\bar{s})^{\text {Hermitian conjugate }} \succeq 0 \rrbracket .
$$

Basic synthesis result

A hybrid transfer function

$$
G \in \mathbb{R}(\xi)^{N \times N}
$$

is synthesizable as the

 N-port behavior of an RLCTG circuit if and only if G is
positive real.

V. Belevitch, Classical Network Theory, Holden-Day, 1968.
B.D.O. Anderson, S. Vongpanitlerd, Network Analysis and Synthesis. A Modern Systems Approach, Prentice Hall, 1972.

Other synthesis questions

Of interest:

- RLCTG,
- RLCT,
- RLC,
- LC, RL, RC,
- RTG, RT, GT, T,
- \mathbf{R},
- etc.

Memoryless synthesis

$G \in \mathbb{R}^{N \times N}$

Transformer circuit

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & N \\
-N^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

is realizable using transformers.

Transformer circuit

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & N \\
-N^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

is realizable using transformers.

Multivariable generalization of

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & n \\
-n & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

Transformer synthesis

Transformer synthesis

Transformers \& Gyrators

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=G\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

with

$$
G+G^{\top}=0
$$

is realizable using gyrators and transformers.

Transformers \& Gyrators

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=G\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

with

$$
G+G^{\top}=0
$$

is realizable using gyrators and transformers.
Assume (WLOG) $\quad V=G I$
(impedance)
Factor $G=N J N^{\top}$ with $J=\left[\begin{array}{cc}0 & -I \\ I & 0\end{array}\right]$

Gyrator extraction

Synthesize using transformers $\left[\begin{array}{l}V \\ I^{\prime}\end{array}\right]=\left[\begin{array}{cc}0 & N \\ -N^{\top} & 0\end{array}\right]\left[\begin{array}{c}I \\ V^{\prime}\end{array}\right]$.

Synthesize using gyrators $\quad V^{\prime}=-J I^{\prime}$.

$$
V=N V^{\prime}=-N J I^{\prime}=N J N^{\top} I=G I
$$

Gyrator extraction

Transformers, gyrators, \& resistors

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=G\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

with

$$
G+G^{\top} \succeq 0
$$

is realizable using resistors, gyrators, and trafos.

Resistor extraction

Assume (WLOG) $\quad V=G I \quad$ (impedance)
Write $\quad \frac{1}{2}\left(G+G^{\top}\right)=S^{\top} S$.
Synthesize using gyrators and transformers:

$$
\left[\begin{array}{c}
V \\
V^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
G-S^{\top} S & S^{\top} \\
-S & 0
\end{array}\right]\left[\begin{array}{c}
I \\
I^{\prime}
\end{array}\right]
$$

Synthesize using resistors: $V^{\prime}=-I^{\prime}$.

$$
V=\left(G-S^{\top} S\right) I+S^{\top} I^{\prime}=\left(G-S^{\top} S\right) I-S^{\top} V^{\prime}=\left(G-S^{\top} S\right) I+S^{\top} S I=G I .
$$

Resistor extraction

Memoryless synthesis

We have hence proven that

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=G\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

with

$$
G+G^{\top} \succeq 0
$$

realizable using resistors, gyrators, transformers.

Dynamic synthesis

$$
G \in \mathbb{R}(\xi)^{N \times N}
$$

Realization theory

$G \in \mathbb{R}(\xi)^{N \times N}$. (WLOG) proper, impedance.

$$
\text { to be synthesized: } V=G I
$$

Realization theory

$G \in \mathbb{R}(\xi)^{N \times N}$. (WLOG) proper, impedance.
to be synthesized: $V=G I$
Well-known theorem: $\exists\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ such that

$$
\frac{d}{d t} x=A x+B I, V=C x+D I \leadsto G(s)=D+C(I s-A)^{-1} B .
$$

$\exists\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ such that the system is state-controllable and state-observable ('minimality').

KYP lemma

$G(s)=D+C(I s-A)^{-1} B$ is positive real
if and only if there exists $P=P^{\top} \succ 0$ such that
$\frac{d}{d t} x=A x+B I, V=C x+D I$ implies

$$
\frac{d}{d t} \frac{1}{2} x^{\top} P x \leq I^{\top} V
$$

'dissipation inequality'.

KYP lemma

$G(s)=D+C(I s-A)^{-1} B$ is positive real
if and only if there exists $P=P^{\top} \succ 0$ such that
$\frac{d}{d t} x=A x+B I, V=C x+D I$ implies

$$
\frac{d}{d t} \frac{1}{2} x^{\top} P x \leq I^{\top} V
$$

'dissipation inequality'.

$$
\Leftrightarrow\left[\begin{array}{cc}
A^{\top} P+P A & P B-C^{\top} \\
B^{\top} P-C & -D-D^{\top}
\end{array}\right] \preceq 0 .
$$

KYP lemma

$P=S^{\top} S, \quad\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right] \mapsto\left[\begin{array}{c|c}S^{-1} A S & S^{-1} B \\ \hline C S & D\end{array}\right]$
G positive real if and only if $\exists\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ such that

$$
G(s)=D+C(I s-A)^{-1} B
$$

$$
\left[\begin{array}{cc}
-A & -B \\
C & D
\end{array}\right]+\left[\begin{array}{cc}
-A & -B \\
C & D
\end{array}\right]^{\top} \succeq 0
$$

i.e., $\quad \frac{d}{d t} \frac{1}{2}\|x\|^{2} \leq I^{\top} V$. 'Passive realization'.

Reactance extraction

Synthesize using trafos, gyrators, and resistors:

$$
\left[\begin{array}{l}
V^{\prime} \\
V
\end{array}\right]=\left[\begin{array}{cc}
-A & -B \\
C & D
\end{array}\right]\left[\begin{array}{l}
I^{\prime} \\
I
\end{array}\right]
$$

Synthesize using inductors: $-\frac{d}{d t} I^{\prime}=V^{\prime}$.

$$
\left[\begin{array}{c}
V^{\prime}=-A I^{\prime}-B I \\
I=C I^{\prime}+D I
\end{array}\right] \Leftrightarrow\left[\begin{array}{c}
\frac{d}{d t} I^{\prime}=A I^{\prime}+B I \\
I=C I^{\prime}+D I
\end{array}\right] \Leftrightarrow \mathbf{t f} \mathbf{f n} \text { equals } G .
$$

Reactance extraction

Summary

Synthesis

Positive realness \Rightarrow KYP lemma $\Rightarrow \exists$ passive realization. Passive realization + reactance extraction \Rightarrow memoryless case. $G+G^{\top} \succeq 0+$ resistor extraction $\Rightarrow G+G^{\top}=0$. $G+G^{\top}=0+$ gyrator extraction \Rightarrow symmetric $G+G^{\top}=0$. symmetric $G+G^{\top}=0 \Rightarrow$ bank of transformers.

Symmetry

Symmetry

\llbracket reciprocity $\rrbracket: \Leftrightarrow \llbracket I=I^{\prime} \rrbracket$.

Reciprocity

$V=Z I$ is reciprocal $: \Leftrightarrow Z=Z^{\top}$.

$$
\begin{gathered}
{\left[\begin{array}{c}
V_{1} \\
\vdots \\
V_{N^{\prime}} \\
--- \\
I_{N^{\prime}+1} \\
\vdots \\
I_{N}
\end{array}\right]=G\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{N^{\prime}} \\
--- \\
V_{N^{\prime}+1} \\
\vdots \\
V_{N}
\end{array}\right] \text { is reciprocal }} \\
: \Leftrightarrow\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right] \text { satisfies } G_{11}=G_{11}^{\top}, G_{22}=G_{22}^{\top}, G_{12}=-G_{21}^{\top}
\end{gathered}
$$

Reciprocal building blocks

$V=R I, \frac{d}{d t} I=L V, I=C \frac{d}{d t} V$, trivially reciprocal.
Connector:

$$
\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\vdots \\
P_{n-1} \\
--- \\
I_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 1 \\
& & \vdots & & \\
0 & 0 & \cdots & 0 & 1 \\
-1 & -1 & \cdots & -1 & 0
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{n-1} \\
--- \\
P_{n}
\end{array}\right] \Rightarrow \text { reciprocal. }
$$

Reciprocal building blocks

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & n \\
-n & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right] \Rightarrow \text { trafo is reciprocal. }
$$

Non-reciprocal building block

$$
V_{1}=\rho I_{2}, \quad V_{2}=-\rho I_{1}
$$

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & \rho \\
-\rho & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] \Rightarrow \text { gyrator is NOT reciprocal. }
$$

Interconnection

The interconnection of reciprocal is reciprocal. RLCT circuits are therefore

- linear, time-invariant, finite-dimensional,
- hybrid,
passive,
reciprocal.

Reciprocal synthesis

Reciprocal synthesis conditions

$$
\left[\begin{array}{c}
V_{1} \\
\vdots \\
V_{N^{\prime}} \\
--- \\
I_{N^{\prime}+1} \\
\vdots \\
I_{N}
\end{array}\right]=G\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{N^{\prime}} \\
--- \\
V_{N^{\prime}+1} \\
\vdots \\
V_{N}
\end{array}\right]
$$

is synthesizable as a RLCT circuit if and only if
$G \in \mathbb{R}(\xi)^{N \times N}$ is positive real $\&$
$G=\left[\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right]$ satisfies $G_{11}=G_{11}^{\top}, G_{22}=G_{22}^{\top}, G_{12}=-G_{21}^{\top}$.

Memoryless reciprocal synthesis procedure

Memoryless case. First impedance:

$$
V=Z I, \quad Z \in \mathbb{R}^{N \times N}, Z=Z^{\top} \succeq 0
$$

Memoryless reciprocal synthesis procedure

Memoryless case. First impedance:

$$
V=Z I, \quad Z \in \mathbb{R}^{N \times N}, Z=Z^{\top} \succeq 0
$$

Write $Z=N N^{\top}$. Synthesize using transformers:

$$
\left[\begin{array}{c}
V \\
V^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & N \\
-N^{\top} & 0
\end{array}\right]\left[\begin{array}{c}
I \\
I^{\prime}
\end{array}\right]
$$

Synthesize using resistors: $V^{\prime}=-I^{\prime}$.

$$
V=N I^{\prime}=-N V^{\prime}=N N^{\top} I=Z I .
$$

Memoryless reciprocal synthesis procedure

Memoryless case. General case:

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
G_{11} & G_{12} \\
-G_{12}^{\top} & G_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

Maximally current driven

$$
\Rightarrow G_{22}=0, G_{11}=G_{11}^{\top} \succeq 0
$$

Memoryless reciprocal synthesis procedure

Write $\quad G_{11}=N N^{\top}$. Synthesize using transformers:

$$
\left[\begin{array}{c}
V_{1} \\
V^{\prime} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & N & G_{12} \\
-N^{\top} & 0 & 0 \\
-G_{12}^{\top} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I^{\prime} \\
V_{2}
\end{array}\right] .
$$

Synthesize using resistors: $V^{\prime}=-I^{\prime}$.

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
N I^{\prime}+G_{12} V_{2} \\
-G_{12}^{\top} I_{1}
\end{array}\right]=\left[\begin{array}{c}
-N V^{\prime}+G_{12} V_{2} \\
-G_{12}^{\top} I_{1}
\end{array}\right]=\left[\begin{array}{c}
N N^{\top} I_{1}+G_{12} V_{2} \\
-G_{12}^{\top} I_{1}
\end{array}\right]=G\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

Resistor extraction

Dynamic reciprocal synthesis procedure

Reciprocity and passivity:
$G \in \mathbb{R}(\xi)^{N \times N}$ is positive real $\&$
$G=\left[\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right]$ satisfies $\quad G_{11}=G_{11}^{\top}, G_{22}=G_{22}^{\top}, G_{12}=-G_{21}^{\top}$.
i.e.
G p.r. and $G \Sigma_{e}=\Sigma_{e} G^{\top}, \Sigma_{e}=\left[\begin{array}{cc}I_{n_{1}} & 0 \\ 0 & -I_{n_{2}}\end{array}\right]$.

Dynamic reciprocal synthesis procedure

\exists realization $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ such that simultaneously

$$
\left[\begin{array}{cc}
-A & -B \\
C & D
\end{array}\right]+\left[\begin{array}{cc}
-A & -B \\
C & D
\end{array}\right]^{\top} \succeq 0 .
$$

$$
\left[\begin{array}{cc}
-A & -B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{i} & 0 \\
0 & \Sigma_{e}
\end{array}\right]=\left[\begin{array}{cc}
-A & -B \\
C & D
\end{array}\right]^{\top}\left[\begin{array}{cc}
\Sigma_{i} & 0 \\
0 & \Sigma_{e}
\end{array}\right] .
$$

$\Sigma_{e}=\left[\begin{array}{cc}I_{n_{3}} & 0 \\ 0 & -I_{n_{4}}\end{array}\right]$: 'internal passivity' and 'internal reciprocity'.

Various proofs

- Several constructions in
B.D.O. Anderson, S. Vongpanitlerd, Network Analysis and

Synthesis. A Modern Systems Approach, Prentice Hall, 1972.

- JCW, Dissipative dynamical systems, Part II, Archive for Rational Mechanics and Analysis, 45, pp. 352-393, 1972.

Sol. set to KYP is convex compact, and Brouwer's fixpoint thm.

- Reciprocal synthesis is also in the classical literature. V. Belevitch, Classical Network Theory, Holden-Day, 1968.
- T. Reis and JCW, A balancing approach to the realization of systems with internal passivity and reciprocity, SCLetters, 60 , pp. 69-74, 2011.
Positive real balancing \Rightarrow internal passive and reciprocal.

Reactance extraction

Trafos and resistors:

$$
\left[\begin{array}{l}
V_{1}^{\prime} \\
I_{2}^{\prime} \\
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
-A & -B \\
C & D
\end{array}\right]\left[\begin{array}{l}
I_{1}^{\prime} \\
V_{2}^{\prime} \\
I_{1} \\
V_{2}
\end{array}\right]
$$

Inductors: $-\frac{d}{d t} I_{1}^{\prime}=V_{1}^{\prime}$.
Capacitors: $-\frac{d}{d t} V_{2}^{\prime}=I_{2}^{\prime}$.
$\left[\begin{array}{c}\frac{d}{d t} I_{1}^{\prime} \\ \frac{d}{d t} V_{2}^{\prime} \\ V_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{c}-V_{1}^{\prime} \\ -I_{2}^{\prime} \\ V_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{c}I_{1}^{\prime} \\ V_{2}^{\prime} \\ I_{1} \\ V_{2}\end{array}\right] \Leftrightarrow \mathbf{t f f n}$ equals G.

Summary

Conclusions

Conclusions

- Circuit synthesis shows the power and effectiveness of state space thinking.

Why ports instead of terminals in case $N>1$, surely $N>2$?

Open problem: Do Bott-Duffin from state point of view. Requires non-minimal, non-controllable realizations.

Open problem: Resistive N-ports.
Transformerless N-terminal resistive case solved.

Copies of the lecture frames available from/at http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

