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The idea




Theme

Model a phenomenon stochastically; outcomes IR".

Usual framework:
» probability distributions, probability density function s;

» means that the evento-algebra consists of the Borel sets.
~» ‘Every’ subset of R" Is assigned a probability.

:/ p(x)dx, A C R" Borel
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Theme

Model a phenomenon stochastically; outcomes IR".

Usual framework:
» probability distributions, probability density function s;

» means that the evento-algebra consists of the Borel sets.
~» ‘Every’ subset of R" Is assigned a probability.

Thesis

Thisisunduly restrictive,
even for e ementary applications.



Basic probability




Events

A.N. Kolmogorov
1903 — 1987

A probability P(E) € |0, 1]
IS assigned to certain
P /P /P subsetsE (‘events)
of the outcome space W.

& = the class of ‘measurable’ subsets oV,
= the sets that are assigned a probability.



Main (not all) axioms

The set of events?’ Is a o-algebra:=
> [E € & = [Ecomplement o o]

» [E1.BEoe &= |E1nNExe &, E1UEy € &



Main (not all) axioms

The set of events?’ Is a o-algebra:=
> [E € & = [Ecomplement o o]

» [E1.BEoe &= |E1nNExe &, E1UEy € &

The probability P: & — |0, 1] satisfies
» P(W)=1,

» [Ei,Ere&andEiNEx;=10]
= [P(E1UE2) = P(E1) + P(E2)]
(P Is additive).



Borel

In most applications it Is assumed that
the g-algebra of measurable sets

are the Borel sets. Emile Borel
1871 — 1956

A(R™) = the Borel o-algebra onR";

random variable: W =R (or C), and & = #(R)
random vector: W =R" and & = #(R")
random process: a family of random vectors, etc.

Z(R™) contains ‘basically every’ subset ofR™.



Borel

In most applications it Is assumed that
the g-algebra of measurable sets

are the Borel sets. Emile Borel
1871 — 1956

A(R™) = the Borel o-algebra onR";

Z(R™) contains ‘basically every’ subset ofR™.

Thesis
Borel isunduly restrictive for system theory.




Stochastic systems




Requirements for a good concept

Environment

Open



Requirements for a good concept

Environment

- - T

Connectable



Motivating examples




=

Noisy resistor

V=R +¢

€ gaussian
Zero mean
variance o ~ vRT

‘Johnson-Nyquist resistor’



Noisy resistor

A
V=R +¢
b De
Vv R € gaussian
i Zero mean
- | variance o ~ vRT

‘Johnson-Nyquist resistor’

What is | Y | asa mathematical entity?



Noisy resistor

|

How do we deal with interconnection?
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Deterministic price/demand/supply

demand

price

supply

price



Deterministic price/demand/supply

demand

supply

.- equilibrium

PR
-
-

price

‘Interconnection’



Stochastic price/demand/supply
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demand ) supply
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price price

(Only) certain regions of the [ depﬂgﬁd} and {s%r[ia?oely}

planes are assigned a probabillity.



Stochastic price/demand/supply

A

demand ) supply

N

price price

demand supply
planes are assigned a probabillity.

(Only) certain regions of the[ price } and { price }

How do we deal with equilibrium: supply = demand?



Formal definitions




Definition
A stochastic system is a probability triple (W, &, P)
» W anon-empty set, theoutcome space,
» & ao-algebra of subsets oW: the events,
» P:& —[0,1] aprobability measure.

&’. the subsets that are assigned a probability.
Probability that outcomesec E, E € &, isP(E).

Model = & and P; & is an essential part!




Definition
A stochastic system is a probability triple (W, &, P)
» W anon-empty set, theoutcome space,

» & ao-algebra of subsets oW: the events,

» P:& —[0,1] aprobability measure.

‘Classical’ stochastic system:
W =R" and & = the Borel subsets ofR".
P specified by a probabillity distribution or a pdf.

& 1S Inherited from the topology, it does not involve
the random phenomenon, only the outcome space.



Noisy resistor

WV

/ o

V = Rl +&: stoch. system, outcomes$Y |, W = R?.
Events: {[Y] € R?|V —RI € Awith Aa Borel subset ofR}.
P(event) = gaussian measure oA.

V and | are not classical real random variables.
Neither |V | nor I nor V possess a pdf.



Stochastic price/demand/supply

v, demand

event

price

event

supply

price

& = the regions that are assigned a probabillity.
P, d, and s are not classical real random variables.



Linearity

linear stochastic system
<> Borel probability on R* /L,
. C R* a linear subspace, called the ‘fiber’.

Events : cylinders with sides parallel tol.
Subsets ofR™ asA+ 1L, L linear subspaceA Borel.



Linearity

Events : cylinders with sides parallel tol.
Subsets ofR™ asA+ 1L, L linear subspaceA Borel.

A

/

event

A 4
~_ _




Linearity
linear stochastic system

< Borel probability on R* /L,
. C R" a linear subspace, called the ‘fiber’.

fiber IL
Borel probability on M= R*/L., (ML =R").
Classical= linear!
gaussian < linear, Borel probabillity gaussian.
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(W, &, P) is said to bedeterministic if

& = {0,B,BOMPE™e w1 and P(B) = 1.



Deterministic

(W, &, P) is said to bedeterministic if
& = {0,B,BOMPE™e w1 and P(B) = 1.

Example: An Ohmic resistor,

W=R? B={[Y]€R*|V=RI}.

‘e
‘e
o




The need for ‘parsimonious’ (‘coarse’) o-algebras

variable 2 variable 2
A A

variable 1 variable 1

For a classical random vector,
the deterministic limit becomes a (singular) pdf.
Awkward from the modeling point of view.
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Interconnection

SYSTEM 1 . . SYSTEM 2
[ ] [ ]

SYSTEM 1 SYSTEM 2




Interconnection

SYSTEM 1 . . SYSTEM 2
[ ] [ ]

®
SYSTEM 1 SYSTEM 2




Interconnection

SYSTEM 1 . . SYSTEM 2
[ ] [ ]

®
SYSTEM 1 SYSTEM 2

Can we impose two distinct probabillistic laws
on the same set of variables?



Complementarity of o-algebras

&1 and &> are complementary o-algebras . <
for all nonempty setskj, E] € &1,E2,E} € &

[[E;LﬂEz = EiﬂEé]] = [[El — Ei and E> = Eé]]

EiNEs




Complementarity of o-algebras

&1 and &> are complementary o-algebras . <
for all nonempty setskj, E] € &1,E2,E} € &

[[E;LﬂEz = EiﬂEé]] = [[El — Ei and E> = Eé]]

EiNEs

The intersection determines the intersectants.



Linear example




Complementarity of systems

P) are said to be

527

Y

i c &1 and Eo, Eé € 9.

:(W

(W, (o@l, Pl) and 22
complementary < for E1,E

21 =

PLEDP(E))]-

)

[[E]_ﬂ E, = Eiﬂ Eé]] — [[Pl(El)Pz(EZ

probability zero




Interconnection of complementary systems

Let 2, = (W,&,P) and 2o = (W, &, P) be
complementary stochastic systems (assumed
stochastically independent). Theinnterconnection is

(W, &, P)
with & .= the o-algebra generated by the ‘rectangles’

{ElﬂEz ‘ Ei1 € cgal,EzE 52},

and P defined through the rectangles by

P(El M Ez) = Pl(El) Pz(Ez).




Interconnection of complementary systems

EiNEs

P(E]_ M Ez) = P]_(E]_) P2(E2).



Noisy resistor terminated by voltage source




Noisy resistor terminated by voltage source

T
V
|

4
Vo=
g/
R
| | \/ eventk; € &1
- V=R

= eventEc &

N
N
N

V =Vy—R
eventks € &>



Equilibrium price/demand/supply

demand supply S
eventks € 65
S
eventE, € 81— >
s eventE € &
—
price

P(E) =Pi(E1)P(Ep).



Open stochastic systems




Open versus closed

21 =(R% &1,P).

If &1 =the Borel og-algebra, andsupport (P;) = R",
then 21 Is interconnectable only with the free system
2o =(R" &5,P,), & ={0,R"}.

= classicalz; = ‘closed’ system.



Open versus closed
21 = (R", &1,P).

If &1 =the Borel og-algebra, andsupport (P;) = R",
then 21 Is interconnectable only with the free system
2o =(R" &5,P,), & ={0,R"}.

= classicalz; = ‘closed’ system.

Parsimoniouséy
= 21 IS Interconnectable.
=- ‘open’ system.



Interconnection < variable sharing




Variable sharing

o [

W1 = W»o




Output-to-input assignment

SYSTEM 1 SYSTEM 2

SYSTEM 1 SYSTEM 2
- t -
- t -

Ui =Yz, Ux=Y1




S
|

Resistor interconnection




S

~~

Resistor interconnection




demand!

Price/demand/supply interconnection

Marketing

P1 P2
d S
P1 = P2,

Manufacturing

A

supply

N

price



demand!

Price/demand/supply interconnection

P1 P2
\\\ N

price P1 = P2,

Manufacturing
S

Manufacturing

A

supply

N

price



Price/demand/supply interconnection

, P1 P2
d S

price P1 = P2, d=s price

Manufacturing
S




|dentification




Sampling

variable 2

A

variable 1

System identification: deduce the stochastic model
& and P
from the samples.



Measurements

variables

SYSTEM

Data collection implies observing a stochastic system
IN Interaction with an environment.



Measurements

Data collection implies observing a stochastic system
IN Interaction with an environment.

samples

SYSTEM Environment



Measurements

Data collection implies observing a stochastic system
INn Interaction with an environment.

| sit possible to disentangle the laws of a system
from the laws of the environment?



Measurements

Data collection implies observing a stochastic system
INn Interaction with an environment.

|sit possible to disentangle the laws of a system
from the laws of the environment?

In engineering, it may be possible to set the
experimental conditions.

In economics and the social sciences (and biology?),
data often gathered passivelyin vivo'.



Disentangling

Vo E
i | e

Can Rand o be deduced by samplingV,1)?



Disentangling

demand supply o

price

Can the price/demand characteristic be deduced
by sampling (p,d) in equilibrium?



SYSID for gaussian systems

Let 21 and 2> be complementary gaussian systems
and assume that the interconnectior:; A 25 IS a

classical random system.

Sampling~» the mean and covariance ob 4 A 2.
Assume that the covariance is nonsingular.



SYSID for gaussian systems

Let 21 and 2> be complementary gaussian systems
and assume that the interconnectior:; A 25 IS a
classical random system.

Sampling~» the mean and covariance ob 4 A 2.
Assume that the covariance is nonsingular.

Given the fiber of either 21 or 25, then all the other
parameters of2; and 2, can be deduced from
21\ 2.

The fiber of 21 can be chosen freely.



Linearized gaussian price/demand/supply

price

|dentifiability provided one of the fibers is known.
Sampling alone does not give these elasticities.



Conclusions




Stochastic systems

» The Borel o-algebra is inadequate
even for elementary applications.

variable 2

\ variable 2

A

variable 1 —
variable 1



Stochastic systems

» Complementary stochastic systems can be
Interconnected: two distinct laws imposed on
one set of variables.

SYSTEM 1 SYSTEM 2

SYSTEM 1 SYSTEM 2




Stochastic systems

» Open stochastic systems require a parsimonious
o-algebra.

Classical random vectors imply closed systems.



SYSID

» Measurements are the result of interaction with
an environment.

samples

SYSTEM Environment

Modeling from data requires disentanglement.



SYSID

» Modeling from data requires disentanglement.
The data alone are insufficient for identifiability.

variable 2 variable 2

A A

variaE)Ie 1 variable 1



Future work

Urgent:

Generalization to stochastic processes.



Reference Open stochastic systems, IEEE AC, submitted.

Copies of the lecture frames available from/at
http://ww. esat. kul euven. be/ ~jw | | ens



Reference Open stochastic systems, IEEE AC, submitted.

Copies of the lecture frames available from/at
http://ww. esat. kul euven. be/ ~jw | | ens
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