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Orthodox probability




Probability (as commonly taught)

Model a phenomenon stochastically; outcomes IR".

Usual framework:
» probability distributions, probability density function s;
» -~ ‘Every subset of R" is assigned a probabillity.




Probability (as commonly taught)

Model a phenomenon stochastically; outcomes IR".

Usual framework:
» probability distributions, probability density function s;
» -~ ‘Every subset of R" is assigned a probabillity.

Thesis

This Is unduly restrictive,
even for elementary applications.
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Mathematical probability

A stochastic systens a triple (W, &, P)

» W the outcome space A.N. Kolmogorov
1903 — 1987

» & aclass of subsets oV,
with elements calledevents

» P:& — |0,1] aprobability measure

& . the sets that are assigned a probability.
Probability that outcome c E, E € &, isP(E).

Model = & and P; & 1S an essential part

& should not be taken for granted!
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A.N. Kolmogorov
1903 — 1987

& =the sets that are assigned a probabillity,
.= the class of‘measurable’ subsets ofW.
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Main (not all) axioms

The eventsé form a “ g-algebra” .=

> [[E c éa]] s [[EcomplementE @(a]]
» [E1.BEoe &= |E1nNExe &, E1UEy € &

P:& — |0,1] is aprobability measure :=
» P(W)=1,
» Pisadditive (&

[[El, E-c&andE1NEy; = @]]
= [P(EaUE2) = P(E1) + P(E2)].
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Borel

For expositions, both introductory and
advanced,W = R* the events are often

Emile Borel

taken to consist of the“"Borel o-algebra”.  1871-1956

& then contains ‘basically every’ subset ofR®.

Allows to take probabillity distributions and pdf’s as
the primitive concepts, andavoids modeling ofé&’.

Thesis

Borel Is unduly restrictive
for system theoretic applications.




Borel

For expositions, both introductory and
advanced,W = R* the events are often

Emile Borel

taken to consist of the“"Borel o-algebra”.  1871-1956

& then contains ‘basically every’ subset oiR".

‘Classical’ stochastic system:
W = R?, & = the Borel g-algebra= ‘all’ subsets of
R™. P specified by a probability distribution or a pdf.

& 1s Inherited from the topology of the outcome
space, it does not involve the randomness.



For expositions, both introductory and
advanced,W = R* the events are often

Borel

Emile Borel

taken to consist of the“"Borel o-algebra”.  1871-1956

& then contains ‘basically every’ subset ofR®.

Borel is usually assumed for many basic concepts, as

>

vV v . Vv V¥

random variable, random vector,
Independence of random variables,
marginal measure, conditioning,
random process,

Brownian motion, Markov process, etc.
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Examples




Noisy (or ‘hot’) resistor

A
V=R +¢
b De
Vv R € gaussian
i Zero mean
- | variance ~ RT

‘Johnson-Nyquist resistor’

Whatis | Y | as a mathematical entity?

—p. 9/39



Noisy resistor

Outcomes|Y |, W = R?; events: subsets oR? as
{[Y] € R? |V —RI € Awith Aa Borel subset ofR}.

v event

RI

P(event) = gaussian measure of € A.

Neither |Y |, nor I, nor V possess a pdf.

—p. 10/39



A

Deterministic price/demand/supply

demand

pricél

supply

pricéz



Stochastic price/demand/supply

demand

/

events

price; price

&,&" = the regions that are assigned a probability.

P1, P2, d,sare not classical real random variables.
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Linearity




Linear stochastic system

linear stochastic system
<> Borel probability on R* /L,
with . C R® a linear subspace, théfiber’ .

R™/IL real vector space of dimensionn —dim(L).

Events: cylinders with sides parallel tolL.
Subsets ofR* asA+1L, AC R" Borel.



Linearity

linear stochastic system:<

LoM =R M =R"/L.
Borel probability on M.

Example: the noisy resistor.

Classical= linear!

gaussian ;< linear, probability on R™/IL gaussian.
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Deterministic system

(W, &, P) is said to bedeterministicif

& = {0,B,B P w1 and P(B) = 1.



Deterministic examples

Ohmic resistor:

Economic example:

A

\

demand

/B

price;

supply

price,
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Interconnection




Noisy resistor terminated by a voltage source

Vo T E
i | e

How do we deal with interconnection?
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Stochastic price/demand/supply

A

demand

pricél

supply

pricéz

How do we deal with equilibrium?

Equilibrium : price; = prices, supply = demand
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Interconnection

SYSTEM 1 . . SYSTEM 2
o °

I Example:

I
Vo=
e’g
R

il
V
|




Interconnection

SYSTEM 1 . . SYSTEM 2
[ ] [ ]

@
SYSTEM 1 SYSTEM 2

Can two distinct probabilistic laws
be imposed on the same set of variables?
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Complementarity of o-algebras

&1 and &> are complementary o-algebras . <
for all nonempty setsk;, E; € &1, Ep, ES € &

[[El NEy = Ei M Eé]] — [[El — Ei and B, = Eé]]

EiNEs

The intersection determines the intersectants.
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Linear example

>~
N
Ny
N -
N -
Ny -
N -
N >
Ny v
N >
S v
N -
N1
1
>
> N
v N
- N
- NS
- N
- N
>
v
>
v
>
-
-
-
>
v
-
v

complementarity < |Lj+Lo=R"
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Interconnection of complementary systems

Let (W,&71,P1) and (W, &%, P,) be stochastic systems
(iIndependent). Assume complementarity.
Their interconnectionis defined as
(W, &, P)
with & .= the g-algebra generated by ‘rectangles’
{E1NEx | E1 € &1,BEp € &3,
and P defined through the rectangles by

P(E]_ M Ez) = P]_(E]_) P2(E2).

for E1 € &1, B € 6.



Interconnection of complementary systems

EiNEs

P(E]_ M Ez) = P]_(E]_) P2(E2).
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Noisy resistor terminated by a voltage source

.
b e Probability of [¥]?
V

1
Vo=
8/
R
|




Noisy resistor terminated by a voltage source

.
b e Probability of [¥]?
V

1
Vo=
g/
R
|

\/ eventk; € &1

>4
=
-
>
v
-
v
-
-
-
-
>
v
>
v
-
-
-

N
N
n




Equilibrium price/demand/supply

demand supply S
eventks € 65
S
eventE, € 81— >
s eventE € &
—
price

P(E) =Pi(E1)P(Ep).
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Constrained probability

Imposew € S




Constrained probability

Let I = (W,&,P).

Impose the constraintwe S| with S C W.

What is the stochastic nature of the outcomesSr?

Is this a meaningful question?
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Noisy resistor

2

N\

ImposeV = 10", What is the distribution of 1?

Vo &
V =Rl +¢£.V = 10" | — .
TE, = "= 107 10

| 1Is a well-defined random variable!
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Price/demand/supply example

demand A

> o

€1 pricel €1 pricez

Impose price =€ 1. Probability of demand, supply?
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Constrained probability

Let I = (W,&,P).

Impose the constrainfwe S| with S C W.

What is the stochastic nature of the outcomesSr?

Is this a meaningful question? Yes, It Is!
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Constrained probability

Constraining ~ interconnection ofZ = (W, &, P)
and the deterministic system with behaviors.

Require complementarity:
[[El, E-c&andE1NS = EzﬂS:] = [[El — Eg]]

Note: complementarity implies|S ¢ &

Interconnection ~»

. =(S,£NS,P.) with P,(ENS):=P(E).

P. = “probability of w constrained byw € S”.
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Constrained probability

TSNS
oo ool
s
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Open stochastic systems




Open versus closed
Considerz; = (R*,&1,Py).

If &1 =the Borel g-algebra, thenZ Is
Interconnectable only with the free system
(R, &, P), & = {0,R"}.

= classical>1 = ‘closed’ system.

It don’t mean a thing, if it ain’t interconnecting!




Open versus closed

Consider2, = (Rn, &1, Pl).

If &1 =the Borel o-a
Interconnectable on
(R™, &, P), 65 = {0,

gebra, thenZ Is
y with the free system
R™}.

= classica

Coarsedéy

21 = ‘closed’ system.

= 21 IS Interconnectable.
= ‘open’ stochastic system.
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Conclusions




Stochastic systems

» The Borel g-algebra is inadequate even for elementary
applications.

variable 2

\ variable 2

A

>

variable 1

>
variable 1



Stochastic systems

The Borel g-algebra is inadequate even for elementary
applications.

Complementary stochastic systems can be interconnected:
two distinct laws imposed on one set of variables.

° L]
SYSTEM 1 . ° SYSTEM 2
L] L]

SYSTEM 1 SYSTEM 2




Stochastic systems

The Borel g-algebra is inadequate even for elementary
applications.

Complementary stochastic systems can be interconnected:
two distinct laws imposed on one set of variables.

Open stochastic systems require a coarsge-algebra.
Classical random vectors imply closed systems.



Stochastic systems

The Borel g-algebra is inadequate even for elementary
applications.

Complementary stochastic systems can be interconnected:
two distinct laws imposed on one set of variables.

Open stochastic systems require a coarsge-algebra.
Classical random vectors imply closed systems.

~» Notion of ‘constrained probability’.
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Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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