

OPEN STOCHASTIC SYSTEMS

JAN C. WILLEMS
K.U. Leuven, Flanders, Belgium

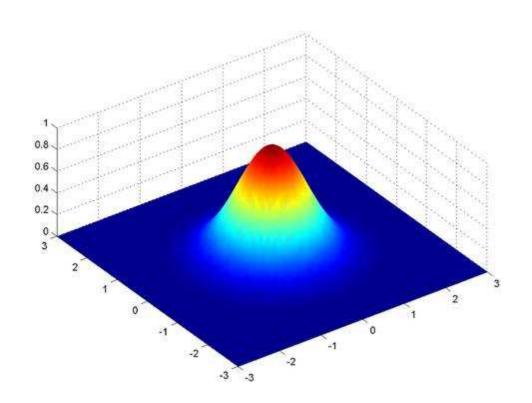
Orthodox probability

Probability (as commonly taught)

Model a phenomenon stochastically; outcomes in \mathbb{R}^n .

Usual framework:

- probability distributions, probability density functions;
- ightharpoonup 'Every' subset of \mathbb{R}^n is assigned a probability.



for
$$A \subseteq \mathbb{R}^n$$

$$P(A) = \int_A p(x) \, dx$$

Probability (as commonly taught)

Model a phenomenon stochastically; outcomes in \mathbb{R}^n .

Usual framework:

- probability distributions, probability density functions;
- ightharpoonup 'Every' subset of \mathbb{R}^n is assigned a probability.

Thesis

This is unduly restrictive, even for elementary applications.

Mathematical probability

A *stochastic system* is a triple $(\mathbb{W}, \mathcal{E}, P)$

A.N. Kolmogorov 1903 – 1987

- \blacktriangleright & a class of subsets of \mathbb{W} , with elements called *events*,
- $ightharpoonup P: \mathscr{E} \to [0,1]$ a probability measure.

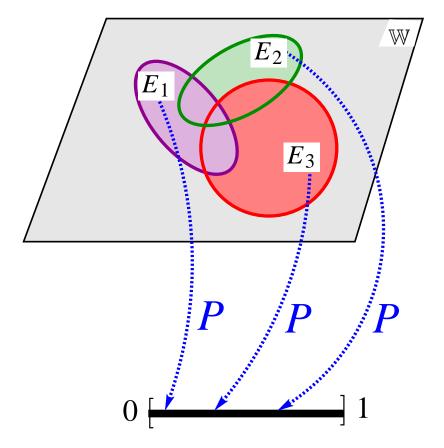
 \mathscr{E} : the sets that are assigned a probability. Probability that outcome $\in E, E \in \mathscr{E}$, is P(E).

Model \cong \mathscr{E} and P;

 $\mathscr E$ is an essential part.

 \mathscr{E} should not be taken for granted!

Events



A.N. Kolmogorov 1903 – 1987

 \mathscr{E} = the sets that are assigned a probability,

:= the class of 'measurable' subsets of W.

Main (not all) axioms

The events \mathscr{E} form a " σ -algebra" : \Rightarrow

$$[E \in \mathscr{E}] \Rightarrow [E^{\text{complement}} \in \mathscr{E}]$$

 $P:\mathscr{E}\to [0,1]$ is a probability measure : \Rightarrow

$$ightharpoonup P(\mathbb{W}) = 1,$$

ightharpoonup P is additive : \Leftrightarrow

$$\llbracket E_1, E_2 \in \mathscr{E} \text{ and } E_1 \cap E_2 = \emptyset
bracket$$

 $\Rightarrow \llbracket P(E_1 \cup E_2) = P(E_1) + P(E_2)
bracket$.

Borel

For expositions, both introductory and advanced, $W = \mathbb{R}^n$ the events are often taken to consist of the "Borel σ -algebra".

Émile Borel 1871 – 1956

 ${\mathscr E}$ then contains 'basically every' subset of ${\mathbb R}^n$.

Allows to take probability distributions and pdf's as the primitive concepts, and avoids modeling of \mathscr{E} .

Thesis

Borel is unduly restrictive for system theoretic applications.

Borel

For expositions, both introductory and advanced, $W = \mathbb{R}^n$ the events are often taken to consist of the "Borel σ -algebra".

Émile Borel 1871 – 1956

 ${\mathscr E}$ then contains 'basically every' subset of ${\mathbb R}^n$.

'Classical' stochastic system:

 $\mathbb{W} = \mathbb{R}^n$, $\mathscr{E} =$ the Borel σ -algebra \cong 'all' subsets of \mathbb{R}^n . P specified by a probability distribution or a pdf.

 \mathscr{E} is inherited from the topology of the outcome space, it does not involve the randomness.

Borel

For expositions, both introductory and advanced, $W = \mathbb{R}^n$ the events are often taken to consist of the "Borel σ -algebra".

Émile Borel 1871 – 1956

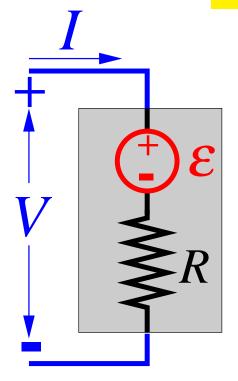
 ${\mathscr E}$ then contains 'basically every' subset of ${\mathbb R}^n$.

Borel is usually assumed for many basic concepts, as

- **▶** random variable, random vector,
- independence of random variables,
- **▶** marginal measure, conditioning,
- random process,
- **▶** Brownian motion, Markov process, etc.

Examples

Noisy (or 'hot') resistor



$$V = RI + \varepsilon$$

arepsilon gaussian zero mean variance $\sim RT$

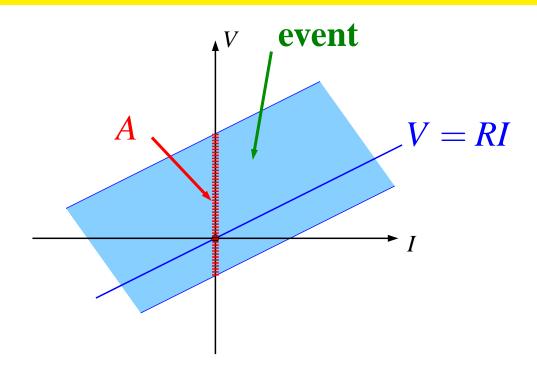
'Johnson-Nyquist resistor'

What is $\begin{bmatrix} V \\ I \end{bmatrix}$ as a mathematical entity?

Noisy resistor

Outcomes $\begin{bmatrix} V \\ I \end{bmatrix}$, $\mathbb{W} = \mathbb{R}^2$; events: subsets of \mathbb{R}^2 as

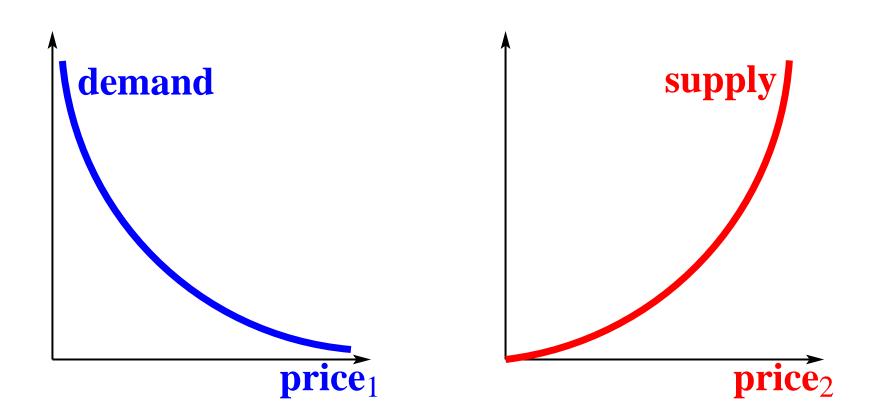
$$\{ \begin{bmatrix} V \\ I \end{bmatrix} \in \mathbb{R}^2 \mid V - RI \in A \text{ with } A \text{ a Borel subset of } \mathbb{R} \}.$$



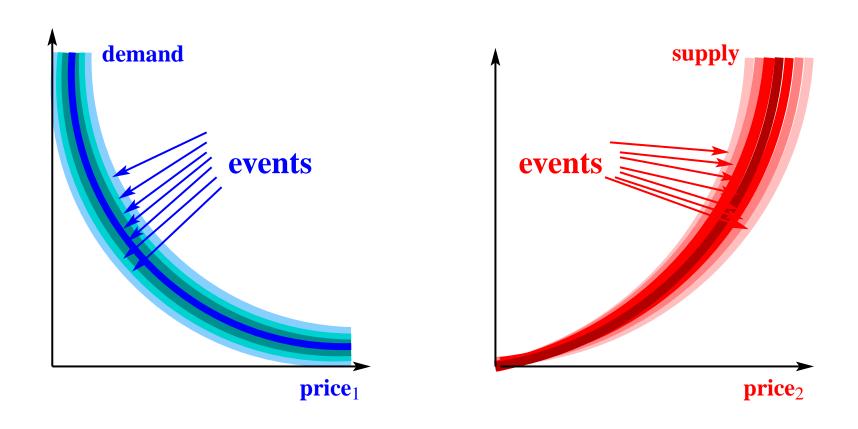
 $P(\text{event}) = \text{gaussian measure of } \varepsilon \in A.$

Neither $\begin{bmatrix} V \\ I \end{bmatrix}$, nor I, nor V possess a pdf.

Deterministic price/demand/supply



Stochastic price/demand/supply



 $\mathscr{E}, \mathscr{E}'$ = the regions that are assigned a probability.

 p_1, p_2, d, s are not classical real random variables.

Linearity

Linear stochastic system

linear stochastic system

: \Leftrightarrow Borel probability on \mathbb{R}^n/\mathbb{L} , with $\mathbb{L} \subseteq \mathbb{R}^n$ a linear subspace, the 'fiber'.

 \mathbb{R}^n/\mathbb{L} real vector space of dimension $n-\dim(\mathbb{L})$.

Events: cylinders with sides parallel to \mathbb{L} .

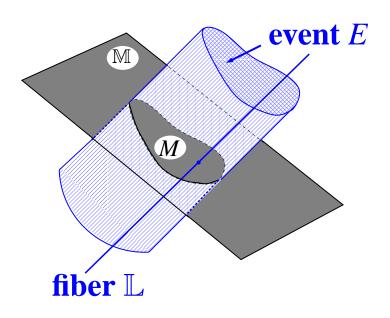
Subsets of \mathbb{R}^n as $A + \mathbb{L}$, $A \subseteq \mathbb{R}^n$ Borel.

Linearity

linear stochastic system :⇔

 $\mathbb{L} \oplus \mathbb{M} = \mathbb{R}^n, \mathbb{M} \cong \mathbb{R}^n/\mathbb{L}$

Borel probability on \mathbb{M} .



Example: the noisy resistor.

Classical \Rightarrow linear!

gaussian: \Rightarrow linear, probability on \mathbb{R}^n/\mathbb{L} gaussian.

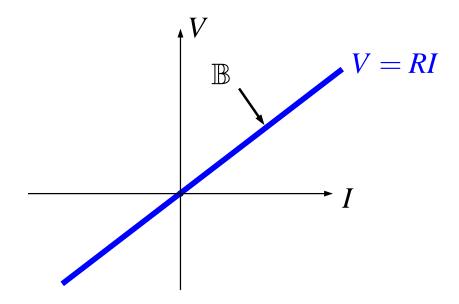
Deterministic system

 $(\mathbb{W}, \mathcal{E}, P)$ is said to be *deterministic* if

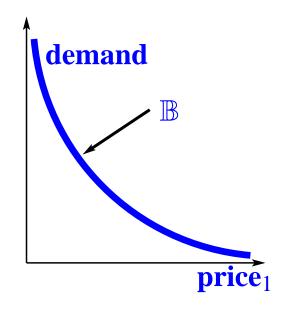
$$\mathscr{E} = \{\emptyset, \mathbb{B}, \mathbb{B}^{complement}, \mathbb{W}\} \text{ and } P(\mathbb{B}) = 1.$$

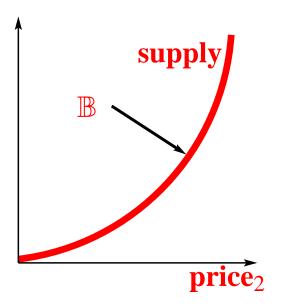
Deterministic examples

Ohmic resistor:



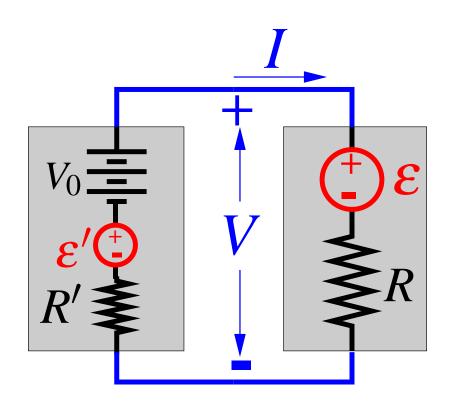
Economic example:





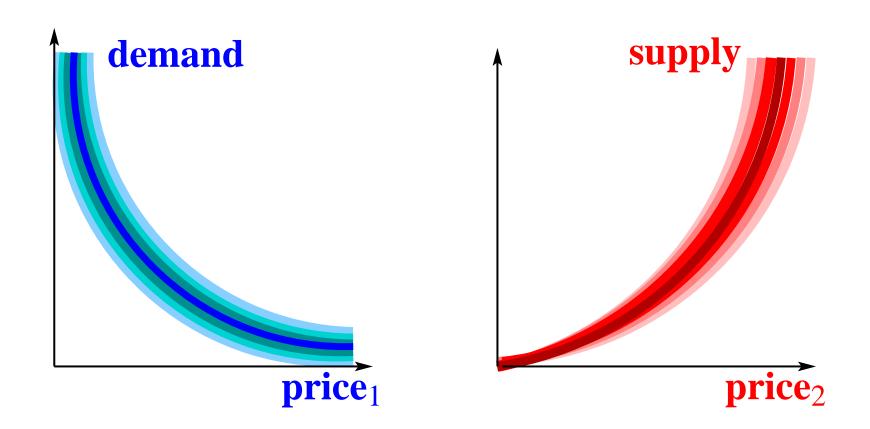
Interconnection

Noisy resistor terminated by a voltage source



How do we deal with interconnection?

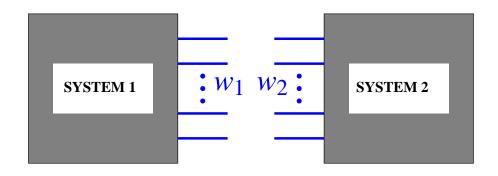
Stochastic price/demand/supply



How do we deal with equilibrium?

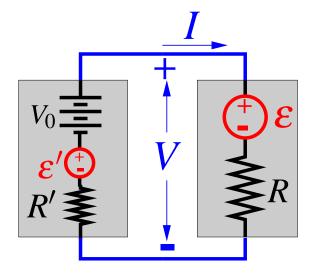
Equilibrium: $price_1 = price_2$, supply = demand.

Interconnection

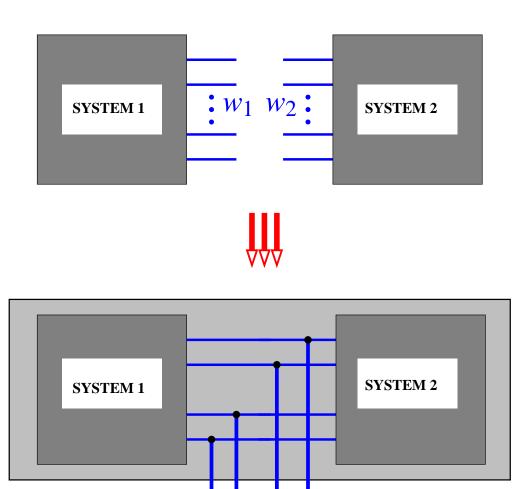




Example:



Interconnection



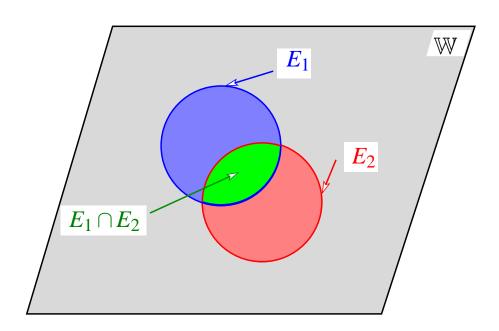
Can two distinct probabilistic laws

be imposed on the same set of variables?

Complementarity of σ -algebras

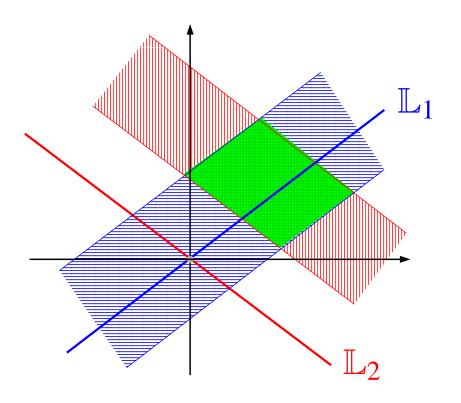
 \mathscr{E}_1 and \mathscr{E}_2 are complementary σ -algebras : \Leftrightarrow for all nonempty sets $E_1, E_1' \in \mathscr{E}_1, E_2, E_2' \in \mathscr{E}_2$

$$[\![E_1 \cap E_2 = E_1' \cap E_2']\!] \Rightarrow [\![E_1 = E_1' \text{ and } E_2 = E_2']\!].$$



The intersection determines the intersectants.

Linear example



complementarity \Leftrightarrow $\mathbb{L}_1 + \mathbb{L}_2 = \mathbb{R}^n$

Interconnection of complementary systems

Let $(\mathbb{W}, \mathcal{E}_1, P_1)$ and $(\mathbb{W}, \mathcal{E}_2, P_2)$ be stochastic systems (independent). Assume complementarity.

Their *interconnection* is defined as

$$(\mathbb{W},\mathscr{E},P)$$

with $\mathscr{E} :=$ the σ -algebra generated by 'rectangles'

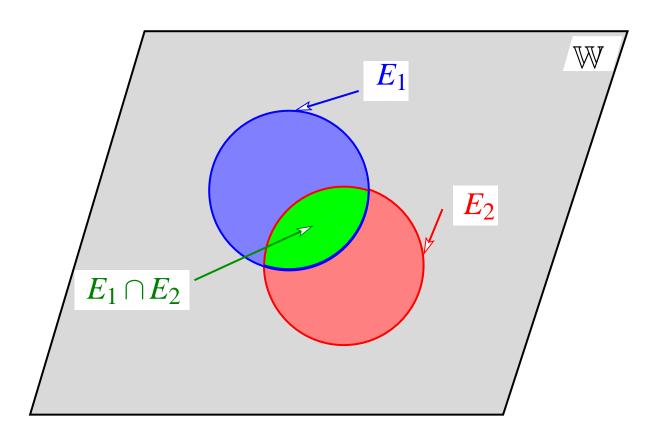
$$\{E_1 \cap E_2 \mid E_1 \in \mathscr{E}_1, E_2 \in \mathscr{E}_2\},\$$

and P defined through the rectangles by

$$P(E_1 \cap E_2) := P_1(E_1)P_2(E_2).$$

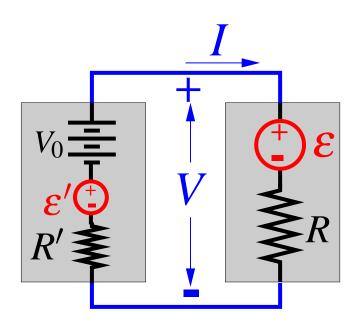
for $E_1 \in \mathscr{E}_1, E_2 \in \mathscr{E}_2$.

Interconnection of complementary systems



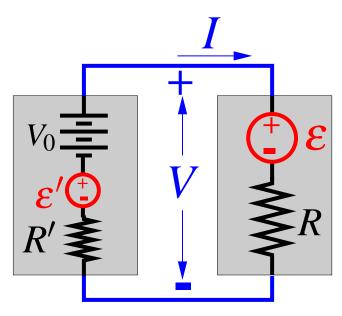
$$P(E_1 \cap E_2) := P_1(E_1)P_2(E_2).$$

Noisy resistor terminated by a voltage source



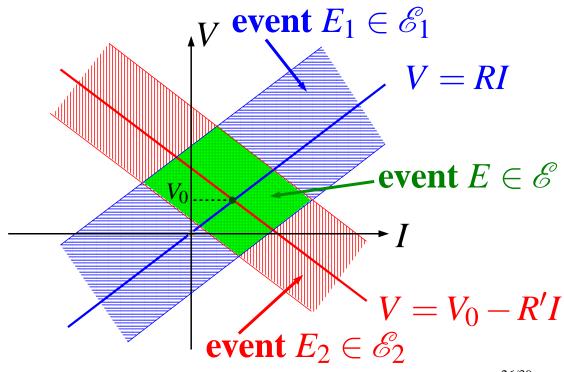
Probability of $\begin{bmatrix} V \\ I \end{bmatrix}$?

Noisy resistor terminated by a voltage source

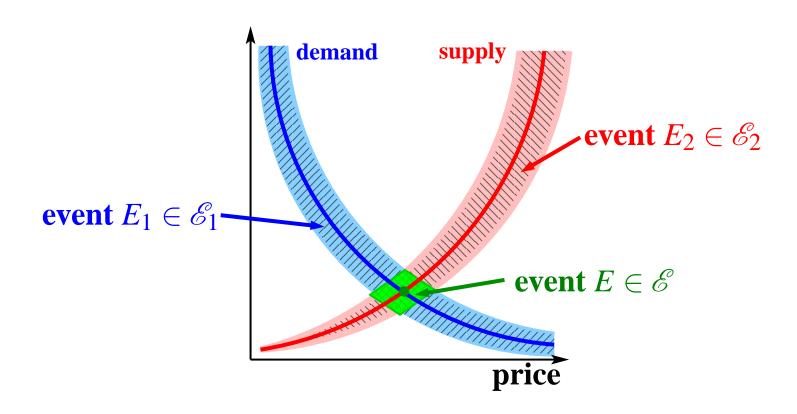


Probability of $\begin{bmatrix} V \\ I \end{bmatrix}$?

$$P(E) = P_1(E_1)P_2(E_2)$$



Equilibrium price/demand/supply



$$P(E) = P_1(E_1)P_2(E_2).$$

Constrained probability

Impose $w \in \mathbb{S}$

Constrained probability

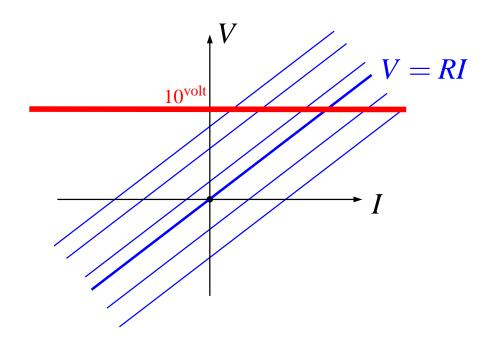
Let
$$\Sigma = (\mathbb{W}, \mathscr{E}, P)$$
.

Impose the constraint $w \in \mathbb{S}$ with $\mathbb{S} \subset \mathbb{W}$.

What is the stochastic nature of the outcomes in \mathbb{S} ?

Is this a meaningful question?

Noisy resistor

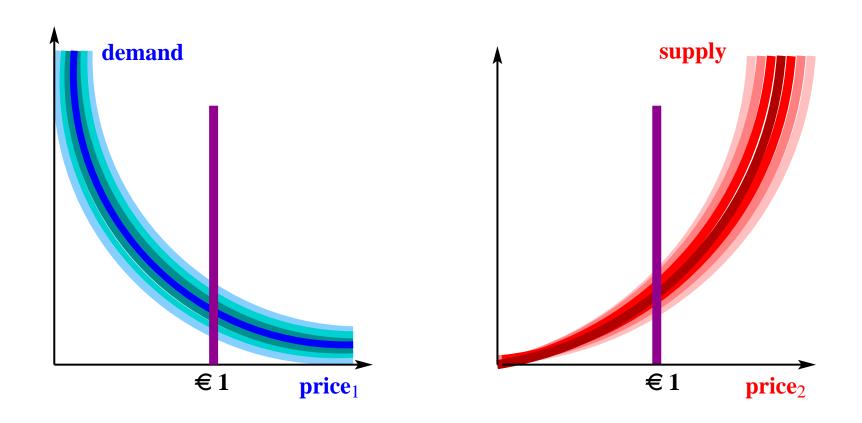


Impose $V = 10^{\text{volt}}$. What is the distribution of I?

$$V = RI + \varepsilon, V = 10^{\text{volt}} \Rightarrow I = \frac{V_0}{10} - \frac{\varepsilon}{10}.$$

I is a well-defined random variable!

Price/demand/supply example



Impose price $= \le 1$. Probability of demand, supply?

Constrained probability

Let
$$\Sigma = (\mathbb{W}, \mathscr{E}, P)$$
.

Impose the constraint $w \in \mathbb{S}$ with $\mathbb{S} \subset \mathbb{W}$.

What is the stochastic nature of the outcomes in \mathbb{S} ?

Is this a meaningful question? Yes, it is!

Constrained probability

Constraining \simeq interconnection of $\Sigma = (\mathbb{W}, \mathscr{E}, P)$ and the deterministic system with behavior \mathbb{S} .

Require complementarity:

$$\llbracket E_1, E_2 \in \mathscr{E} \text{ and } E_1 \cap \mathbb{S} = E_2 \cap \mathbb{S} \rrbracket \Rightarrow \llbracket E_1 = E_2 \rrbracket$$

Note: complementarity implies $\mathbb{S} \notin \mathcal{E}!$

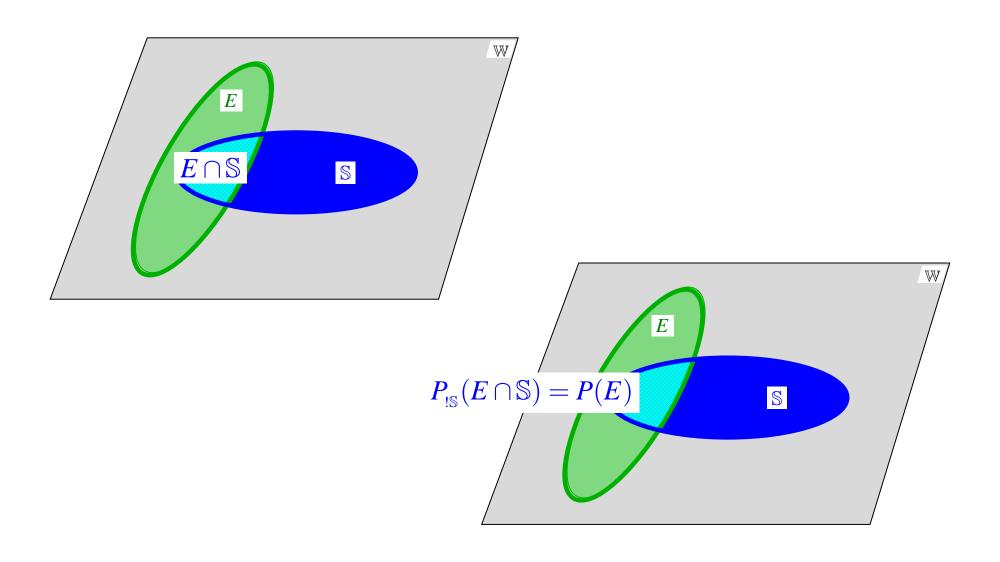
$$\mathbb{S} \notin \mathscr{E}!$$

Interconnection \sim

$$\Sigma_{!\mathbb{S}} = (\mathbb{S}, \mathscr{E} \cap \mathbb{S}, P_{!\mathbb{S}})$$
 with $P_{!\mathbb{S}}(E \cap \mathbb{S}) := P(E)$.

 $P_{\mathbb{N}}$ = "probability of w constrained by $w \in \mathbb{S}$ ".

Constrained probability



Open stochastic systems

Open versus closed

Consider $\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$.

If \mathcal{E}_1 = the Borel σ -algebra, then Σ_1 is interconnectable only with the free system

 $(\mathbb{R}^{\mathtt{n}},\mathscr{E}_2,P_2)$, $\mathscr{E}_2=\{\emptyset,\mathbb{R}^{\mathtt{n}}\}$.

 \Rightarrow classical Σ_1 = 'closed' system.

It don't mean a thing, if it ain't interconnecting!

Open versus closed

Consider
$$\Sigma_1 = (\mathbb{R}^n, \mathscr{E}_1, P_1)$$
.

If \mathcal{E}_1 = the Borel σ -algebra, then Σ_1 is interconnectable only with the free system

$$(\mathbb{R}^{\mathtt{n}},\mathscr{E}_2,P_2)$$
, $\mathscr{E}_2=\{\emptyset,\mathbb{R}^{\mathtt{n}}\}$.

 \Rightarrow classical Σ_1 = 'closed' system.

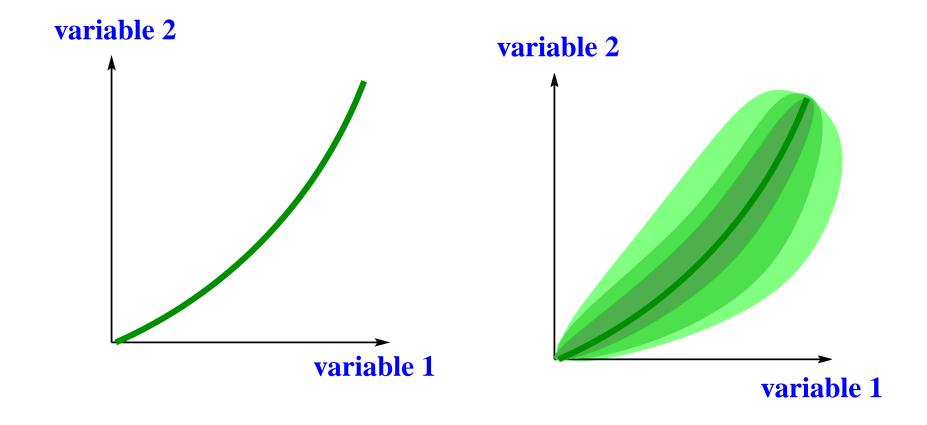
Coarse \mathcal{E}_1

 $\Rightarrow \Sigma_1$ is interconnectable.

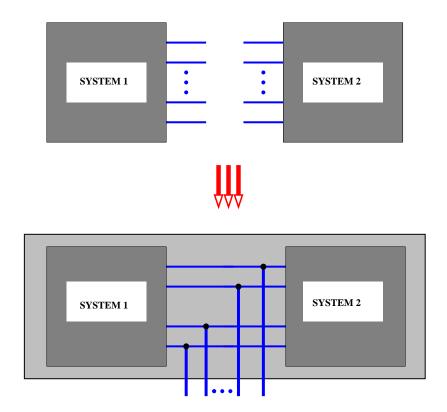
⇒ 'open' stochastic system.

Conclusions

The Borel σ -algebra is inadequate even for elementary applications.



- The Borel σ-algebra is inadequate even for elementary applications.
- ► Complementary stochastic systems can be interconnected: two distinct laws imposed on one set of variables.



- The Borel σ-algebra is inadequate even for elementary applications.
- ➤ Complementary stochastic systems can be interconnected: two distinct laws imposed on one set of variables.
- Open stochastic systems require a coarse σ-algebra.
 Classical random vectors imply closed systems.

- The Borel σ-algebra is inadequate even for elementary applications.
- Complementary stochastic systems can be interconnected: two distinct laws imposed on one set of variables.
- Open stochastic systems require a coarse σ-algebra.
 Classical random vectors imply closed systems.
- ightharpoonup Notion of 'constrained probability'.

Thank you Thank you