

MODELING, INTERCONNECTION and ENERGY FLOW for DYNAMICAL SYSTEMS

JAN C. WILLEMS

K.U. Leuven, Flanders, Belgium

Theme

How are open systems formalized?

How are systems interconnected?

How is energy transferred between systems?

We deal with very simple examples, mainly electrical circuits.

Expect a kind of 'Back to Basics’ lecture.

SYSTEMS

- Open
- Interconnected
- Modular

Open systems

Environment

Systems are 'open', they interact with their environment.

How are such systems formalized?
How is energy transferred from the environment to a system?

Interacting systems

Interconnected systems interact.

How is this interaction formalized?
How is energy transferred between systems?

The ever-increasing computing power allows to model complex interconnected systems accurately by
tearing, zooming, and linking.
$~ \quad$ Simulation, model based design, ...

Requires the right mathematical concepts

- for 'dynamical system'
- for 'interconnection'
- for 'interconnection architecture'

CLASSICAL VIEW

Input/output systems

Oliver Heaviside

Norbert Wiener

Input/output systems

Input/output thinking is inappropriate for describing the functioning of open physical systems.

A physical system is not a signal processor.

Better concept: a behavior.

Interconnection

Interconnection as output-to-input assignment.

Examples:

Interconnection

Output-to-input assignment is inappropriate for describing the interconnection of physical systems.

A physical system is not a signal processor.

Better concept: variable sharing

Signal flow graphs

Signal flow graphs

Signal flow graphs are inappropriate for describing the interaction architecture of physical systems.

A physical system is not a signal processor.

Better concept: a graph with leaves.

Terminal behavior

A circuit with external terminals

Describe the dynamic terminal behavior!

A circuit with external terminals

Describe the dynamic terminal behavior!

What are the interaction variables?

Currents and voltages

Interaction variables: currents in \& voltages across.

$$
\leadsto \quad I=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right], \quad V=\left[\begin{array}{cccc}
V_{1,1} & V_{1,2} & \cdots & V_{1, N} \\
V_{2,1} & V_{2,2} & \cdots & V_{2, N} \\
\vdots & \vdots & \ddots & \vdots \\
V_{N, 1} & V_{N, 2} & \cdots & V_{N, N}
\end{array}\right] .
$$

Currents and voltages

Interaction variables: currents in \& voltages across.

$$
\leadsto \quad I=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right], \quad V=\left[\begin{array}{cccc}
V_{1,1} & V_{1,2} & \cdots & V_{1, N} \\
V_{2,1} & V_{2,2} & \cdots & V_{2, N} \\
\vdots & \vdots & \ddots & \vdots \\
V_{N, 1} & V_{N, 2} & \cdots & V_{N, N}
\end{array}\right] .
$$

$(I, V) \in \mathscr{B}_{I V}$ means
$\left(I_{1}, I_{2}, \ldots, I_{k}, \ldots, I_{N}, V_{1,1}, V_{1,2}, \ldots, V_{k_{1}, k_{2}}, \ldots, V_{N, N}\right): \mathbb{R} \rightarrow \mathbb{R}^{N} \times \mathbb{R}^{N \times N}$
is compatible with circuit architecture and element values.
The trajectories $(I, V) \in \mathscr{B}_{I V}$ are those that can conceivably occur.

KVL

Kirchhoff voltage law:

$$
\llbracket(I, V) \in \mathscr{B}_{I V} \rrbracket \Rightarrow \llbracket V_{k_{1}, k_{2}}+V_{k_{2}, k_{3}}+\cdots+V_{k_{n-1}, k_{n}}+V_{k_{n}, k_{1}}=0
$$

for all $k_{1}, k_{2}, \ldots, k_{n} \in\{1,2, \ldots, N\} \rrbracket$.

Physically, KVL is evident
(No EM fields outside the wires) We henceforth assume it

Potentials

Thm: $V: \mathbb{R} \rightarrow \mathbb{R}^{N \times N}$ satisfies KVL \Leftrightarrow
$\exists P=\left[\begin{array}{c}P_{1} \\ P_{2} \\ \vdots \\ P_{N}\end{array}\right]: \mathbb{R} \rightarrow \mathbb{R}^{N}$ such that $V_{k_{1}, k_{2}}=P_{k_{1}}-P_{k_{2}}$.

Potentials

Thm: $V: \mathbb{R} \rightarrow \mathbb{R}^{N \times N}$ satisfies KVL \Leftrightarrow
$\exists P=\left[\begin{array}{c}P_{1} \\ P_{2} \\ \vdots \\ P_{N}\end{array}\right]: \mathbb{R} \rightarrow \mathbb{R}^{N}$ such that $V_{k_{1}, k_{2}}=P_{k_{1}}-P_{k_{2}}$.
P^{\prime} 'potential' $\Rightarrow\left[\begin{array}{c}P_{1}+\alpha \\ P_{2}+\alpha \\ \vdots \\ P_{N}+\alpha\end{array}\right]$ potential $\forall \alpha: \mathbb{R} \rightarrow \mathbb{R}$.

Electrical circuit

At each terminal:

a current (counted >0 into the circuit) and a potential
\leadsto behavior $\mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$.
$\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}, P_{2}, \ldots, P_{N}\right) \in \mathscr{B}_{I P}$ means:
this current/potential trajectory is compatible with the circuit architecture and its element values.

Electrical circuit

\leadsto behavior $\mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$.
Early sources:

Brockway McMillan

Robert Newcomb

Mechanical device

At each terminal: a position and a force.
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.
More generally, a position, force, angle, and torque.

Other domains

Thermal systems:
At each terminal: a temperature and a heat flow.

Hydraulic systems:
At each terminal: a pressure and a mass flow.

Multidomain systems:
Systems with terminals of different types, as motors, pumps, loudspeakers, etc.

The BEHAVIORAL APPROACH

The dynamic behavior

Definition: A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with

$\mathbb{T} \subseteq \mathbb{R}$ the time set,
\mathbb{W} the signal space,

$$
\begin{aligned}
\mathscr{B} \subseteq & (\mathbb{W})^{\mathbb{T}} \text { the behavior, } \\
& \text { that is, } \mathscr{B} \text { is a family of maps from } \mathbb{T} \text { to } \mathbb{W} .
\end{aligned}
$$

$w: \mathbb{T} \rightarrow \mathbb{W} \in \mathscr{B}$ means:
the model allows the trajectory w,
$w: \mathbb{T} \rightarrow \mathbb{W} \notin \mathscr{B}$ means:
the model forbids the trajectory w.

Behavioral models

The behavior captures the essence of what a model is.

The behavior is all there is.
Equivalence of models, properties of models, symmetries, system identification, etc. must all refer to the behavior.

Behavioral models

The behavior captures the essence of what a model is.

> The behavior is all there is. Equivalence of models, properties of models, symmetries, system identification, etc. must all refer to the behavior.

Every 'good' scientific theory is prohibition: it forbids certain things to happen. The more it forbids, the better it is.

Karl Popper (1902-1994)

There has been an extensive development that deals with system theory, control, system identification, etc.
from this point of view.

System representations

While \mathscr{B} is the basic object of study, it allows many representations. For LTIDSs, we have
kernels of differential operators, images,
transfer fs, $\mathbf{i} / \mathbf{s} / \mathbf{o}(A, B, C, D)$, coprime fact.,
DAEs,
general ODEs with general latent variables, etc., etc.

System representations

While \mathscr{B} is the basic object of study, it allows many representations. For LTIDSs, we have
kernels of differential operators, images,
transfer fs, $\mathbf{i} / \mathbf{s} / \mathbf{o}(A, B, C, D)$, coprime fact.,
DAEs,
general ODEs with general latent variables, etc., etc.
Some representations more convenient than others.

- Concepts: \mathscr{B} itself.
- Math \& intuition : kernels, images, $\mathbf{t} \mathbf{f} \mathbf{f}$'s, (A, B, C, D),
first principles models: general ODEs with general latent variables, DEAs,
- numerical algorithms: DAEs, (A, B, C, D).

WHAT NEW DOES THIS BRING?

Controllability

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with $\mathbb{T}=\mathbb{R}$ or \mathbb{Z}, is said to be controllable : \Leftrightarrow
for all $w_{1}, w_{2} \in \mathscr{B}$, there exist
$T \in \mathbb{T}, T \geq 0$, and $w \in \mathscr{B}$, such that

$$
w(t)= \begin{cases}w_{1}(t) & \text { for } t<0 \\ w_{2}(t-T) & \text { for } t \geq T\end{cases}
$$

Controllability in a picture

Controllability in a picture

controllability $: \Leftrightarrow$ concatenability of trajectories after a delay

Controllability in a picture

controllability : \Leftrightarrow concatenability of trajectories after a delay

Makes controllability into a genuine, an intrinsic property of a system, rather than merely of a state representation.

INTERCONNECTION

Connection of terminals

By interconnecting, the terminal variables are equated.

Electrical interconnection

$$
I_{N}+I_{N^{\prime}}=0 \quad \text { and } \quad P_{N}=P_{N^{\prime}}
$$

Behavior after interconnection:
$\mathscr{B}_{1} \sqcap \mathscr{B}_{2}$
$:=\left\{\left(I_{1}, \ldots, I_{N-1}, I_{1^{\prime}}, \ldots, I_{N^{\prime}-1}, P_{1}, \ldots, P_{N-1}, P_{1^{\prime}}, \ldots, P_{N^{\prime}-1}\right) \mid\right.$
$\exists I, P$ such that

$$
\begin{aligned}
& \left(I_{1}, \ldots, I_{N-1}, \quad I, P_{1}, \ldots, P_{N-1}, P\right) \in \mathscr{B}_{1} \text { and } \\
& \left.\left(I_{1^{\prime}}, \ldots, I_{N^{\prime}-1},-I, P_{1^{\prime}}, \ldots, P_{N^{\prime}-1}, P\right) \in \mathscr{B}_{2}\right\} .
\end{aligned}
$$

Electrical interconnection

$~$ more terminals and more circuits connected

Interconnection of 1-D mechanical systems

$$
q_{N}=q_{N^{\prime}} \quad \text { and } \quad F_{N}+F_{N^{\prime}}=0
$$

Other terminal types

Thermal systems:

At each terminal: a temperature and a heat flow.

$$
T_{N}=T_{N^{\prime}} \quad \text { and } \quad Q_{N}+Q_{N^{\prime}}=0
$$

Hydraulic systems:
At each terminal: a pressure and a mass flow.

$$
p_{N}=p_{N^{\prime}} \quad \text { and } \quad f_{N}+f_{N^{\prime}}=0
$$

Sharing variables

$$
\begin{array}{ccr}
V_{N}=V_{N^{\prime}} \quad \text { and } \quad I_{N}+I_{N^{\prime}}=0, \\
q_{N}=q_{N^{\prime}} & \text { and } \quad F_{N}+F_{N^{\prime}}=0, \\
T_{N}=T_{N^{\prime}} & \text { and } & Q_{N}+Q_{N^{\prime}}=0, \\
p_{N}=p_{N^{\prime}} & \text { and } & f_{N}+f_{N^{\prime}}=0, \\
& \vdots &
\end{array}
$$

Interconnection means variable sharing.

RLC circuits

Circuit architecture

Circuit architecture :=

digraph with leaves $\cong\left(\mathbb{A}_{\mathbb{E}}, \mathbb{A}_{\mathbb{L}}\right)$

Element specification

The elements of the circuit (the R's, L's, and C's) correspond to the edges.
\sim a map that associates with each edge a resistance, an inductance, or a capacitance of a given value.
$3|\mathbb{E}| \times|\mathbb{E}|$ diagonal polynomial matrices $R, L \xi, C \xi$

Element specification

$$
R+L \xi=\left[\begin{array}{ccccc}
R_{1} & 0 & 0 & 0 & 0 \\
0 & R_{2} & 0 & 0 & 0 \\
0 & 0 & R_{3} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & L_{1} \xi
\end{array}\right], \quad C \xi=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & C \xi & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Circuit equations

Manifest variables:

the leaf currents I and the leaf potentials P. Latent variables:
the edge currents $I_{\mathbb{E}}$ and the vertex potentials $P_{\mathbb{V}}$.

$$
I=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{\mathbb{W}}
\end{array}\right], \quad P=\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\vdots \\
P_{\mathbb{I}}
\end{array}\right], \quad I_{\mathbb{E}}=\left[\begin{array}{c}
I_{e_{1}} \\
I_{e_{2}} \\
\vdots \\
I_{e_{\mathbb{E}}}
\end{array}\right], \quad P_{\mathrm{V}}=\left[\begin{array}{c}
P_{v_{1}} \\
P_{v_{2}} \\
\vdots \\
P_{v_{\mathbb{W}}}
\end{array}\right] .
$$

Circuit equations

Edges \sim constitutive equations:

$$
\left(R+L \frac{d}{d t}\right) I_{\mathbb{E}}=C \frac{d}{d t} A_{\mathbb{E}}^{\top} P_{\mathbb{V}}
$$

Vertices $\leadsto \mathbf{K C L}:$

$$
A_{\mathbb{E}} I_{\mathbb{E}}+A_{\mathbb{L}} I=0
$$

$\underline{\text { Leaves }} \leadsto$ potential assignment:

$$
P+A_{\mathbb{L}}^{\top} P_{\mathbb{V}}=0
$$

Circuit properties

Elimination of $I_{\mathbb{E}}$ and $P_{\mathbb{V}} \Rightarrow$

$$
F\left(\frac{d}{d t}\right)\left[\begin{array}{l}
I \\
P
\end{array}\right]=0, \quad F \in \mathbb{R}[\xi]^{N \times 2 N}
$$

KCL and KVL
Passivity

Hybridicity

Reciprocity
etc.

CONTROL as INTERCONNECTION

Feedback control

Behavioral control

Behavioral control

control $=$ interconnection.

controlled system

Example of behavioral control: A'quarter car'

Example of behavioral control: A 'quarter car'

Example of behavioral control: A 'quarter car'

Example of behavioral control: A 'quarter car'

Suspension control in Formula 1

Nigel Mansell victorious in 1992
with an active damper suspension.
Active dampers were banned in 1994 to break the dominance of the Williams team.

Suspension control in Formula 1

Renault successfully used a passive 'tuned mass damper' suspension in 2005/2006.

Tuned mass dampers were banned in 2006, under the 'movable aerodynamic devices' clause.

Suspension control in Formula 1

inerter

Kimi Räikkönen wins the 2005 Grand Prix in Spain with McLaren's 'J-damper', i.e., an inerter.

ENERGY

Energy

Energy := a physical quantity transformable into heat.

Energy

Energy := a physical quantity transformable into heat.

For example capacitor \rightarrow resistor \rightarrow heat. Energy on capacitor $=\frac{1}{2} C V^{2}$

PORTS

Energy transfer

Environment

Can we speak about

the energy transferred from the environment to the circuit along these terminals?

Electrical ports

Assume KVL.

Terminals $\{1,2, \ldots, p\}$ form a port : \Leftrightarrow
$\llbracket\left(I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}, V_{1,1}, \ldots, V_{k_{1}, k_{2}}, \ldots, V_{N, N}\right) \in \mathscr{B}_{I V} \rrbracket$

$$
\Rightarrow \quad \llbracket I_{1}+I_{2}+\cdots+I_{p}=0 \rrbracket . \quad \text { port } \boldsymbol{K} C L^{\prime}
$$

Energy

If terminals $\{1,2, \ldots, p\}$ form a port, then

$$
\text { power in }=I_{1}(t) P_{1}(t)+\cdots+I_{p}(t) P_{p}(t)
$$

energy in $=\int_{t_{1}}^{t_{2}}\left[I_{1}(t) P_{1}(t)+\cdots+I_{p}(t) P_{p}(t)\right] d t$
This interpretation in terms of power and energy is not valid unless these terminals form a port !

Internal ports

Analogous definition for internal terminals
\leadsto internal ports,
combinations of external and internal terminals
\leadsto mixed ports.

Examples

2-terminal circuits

2-terminal 1-port devices:
resistors, inductors, capacitors, memristors, etc., any 2 -terminal circuit composed of these.

$\mathbf{K V L} \Rightarrow$ only $V_{1,2}:=V$ matters,
$\mathbf{K C L} \Rightarrow I_{1}=-I_{2}=: I$.

3-terminal 1-ports.

Transformer

A transformer:

$$
\begin{gathered}
P_{3}-P_{4}=n\left(P_{1}-P_{2}\right), \\
I_{1}=-n I_{3}, \\
I_{1}+I_{2}=0, I_{3}+I_{4}=0 .
\end{gathered}
$$

$\{1,2\}$ and $\{3,4\}$ form ports.
A transformer = a 2-port with two 2-terminal ports.

Interconnected circuits

The set of external terminals of a circuit composed of elements that individually satisfy KCL satisfies KCL and is therefore a port.

Transmission line

Terminals $\{1,2,3,4\}$ form a port;
$\{1,2\}$ and $\{3,4\}$ do not.
We cannot speak about
"the energy transferred from terminals $\{1,2\}$ to $\{3,4\}$ ",
or "from the environment to the circuit through $\{1,2\}$ ".

Transmission line

The energy flows from the source and to the load are well-defined, since the terminals form internal ports.

Therefore we can speak about
"the energy transferred from the source to the load".

Transmission line

Terminals $\{1,2\}$ and $\{3,4\}$ now form a port.

RLC circuit

Not an internal port: energy flow not well-defined.

Theorem: Consider an electrical circuit consisting of an interconnection of (linear passive) R's, L's, C's.

Assume that every pair of terminals is connected by the circuit graph. Then
the only port is the one that consists of all the terminals.

Are ports common?

Theorem: Consider an electrical circuit consisting of an interconnection of (linear passive) R's, L's, C's.

Assume that every pair of terminals is connected by the circuit graph. Then
the only port is the one that consists of all the terminals.

For non-trivial ports, we need multi-port elements, as transformers or gyrators.

MECHANICAL PORTS

Mechanical ports

Environment

Terminals $\{1,2, \ldots, p\}$ form a (mechanical) port $: \Leftrightarrow$

$$
\begin{aligned}
& \left(q_{1}, \ldots, q_{p}, q_{p+1}, \ldots, q_{N}, F_{1}, \ldots, F_{p}, F_{p+1}, \ldots, F_{N}\right) \in \mathscr{B}, \\
& \quad \Rightarrow \quad F_{1}+F_{2}+\cdots+F_{p}=0 . \quad \text { 'port KFL' }
\end{aligned}
$$

Power and energy

If terminals $\{1,2, \ldots, p\}$ form a port, then

$$
\text { power in }=F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)
$$

energy in $=\int_{t_{1}}^{t_{2}}\left(F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)\right) d t$.

This interpretation in terms of power and energy is not valid unless these terminals form a port !

Example

$\underline{\text { Spring }}$

$$
F_{1}+F_{2}=0, \quad K\left(q_{1}-q_{2}\right)=F_{1}
$$

Example

Damper

$$
F_{1}+F_{2}=0, \quad D \frac{d}{d t}\left(q_{1}-q_{2}\right)=F_{1}
$$

Springs and dampers, and their interconnection form ports.

Not a port!!!

Interconnections of springs, dampers, and masses do not necessarily form ports.

MOTION ENERGY

Conservation law

$$
M \frac{d^{2}}{d t^{2}} q=F \Rightarrow \frac{d}{d t} \frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2}=F^{\top} \frac{d}{d t} q
$$

If $F^{\top} v$ is not power,

$$
\text { is } \frac{1}{2} M\|v\|^{2} \text { not stored (kinetic, motion) energy ??? }
$$

Kinetic energy and invariance under uniform motions

What is the kinetic energy?

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} M\|v\|^{2}
$$

This expression is not invariant under uniform motion.

Motion energy

What is the motion energy?

What quantity is transformable into heat?

$$
\mathscr{E}_{\text {motion }}=\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

Invariant under uniform motion.

Dissipation into heat

Can be justified by mounting a damper between the masses.

$$
\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

is the heat dissipated in the damper.

Motion energy

Generalization to N masses.

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Motion energy

With external forces.

(KFL) $\sum_{i \in\{1,2, \ldots, N\}} F_{i}=0 \Rightarrow \frac{d}{d t} \mathscr{E}_{\text {motion }}=\sum_{i \in\{1,2, \ldots, N\}} F_{i}^{\top} v_{i}$.

Motion energy

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Distinct from the classical expression of the kinetic energy,

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2}
$$

Motion energy

Reconciliation: $M_{N+1}=\infty, F_{N+1}=-\left(F_{1}+F_{2}+\cdots+F_{N}\right)$,

measure velocities w.r.t. this infinite mass ('ground'), then
$\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N, N+1\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}+M_{N+1}}\left\|v_{i}-v_{j}\right\|^{2}$

$$
\overrightarrow{M_{N} \rightarrow \infty} \quad \frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2}
$$

Motion energy

Motion energy is not an extensive quantity, it is not additive.

Total motion energy \neq sum of the parts.
Power and energy involve 'action at a distance'.

ENERGY TRANSFER

Energy transfer

One cannot speak about
"the energy transferred from system 1 to system 2 " or "from the environment to system 1 ",
unless the relevant terminals form a port.

Terminals are for interconnection,

ports are for energy transfer.

CONCLUSION

Favorite textbooks

Favorite textbooks

simals and SIGNAL PROCESSORS

References: 1. The behavioral approach to open and interconnected systems, Control Systems Magazine, volume 27, pages 46-99, 2007.
2. Terminals and Ports, Circuits and Systems Magazine, volume 10, issue 4, pages 8-16, December 2010.

Copies of the lecture frames available from/at http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

