

A POST MODERN VIEW

of some of the basics of

ELECTRICAL CIRCUIT THEORY

JAN C. WILLEMS
K.U. Leuven

Aim

To present an approach to mathematizing a (simple) part of physics: electrical circuits.

I feel that I finally understand circuits, after all this time.

Electrical circuit

wires \cong 'terminals'

ii Describe electrical interaction with environment !!

By what physically measurable variables does the circuit interacts with its environment?

Interaction variables

Interaction variables

interaction variables: currents in $\&$ voltages across.
measurable by ammeters and voltmeters.

Currents and voltages

$\leadsto \quad I=\left[\begin{array}{c}I_{1} \\ I_{2} \\ \vdots \\ I_{N}\end{array}\right], \quad V=\left[\begin{array}{cccc}V_{1,1} & V_{1,2} & \cdots & V_{1, N} \\ V_{2,1} & V_{2,2} & \cdots & V_{2, N} \\ \vdots & \vdots & \ddots & \vdots \\ V_{N, 1} & V_{N, 2} & \cdots & V_{N, N}\end{array}\right]$.

Currents and voltages

$$
\leadsto \quad I=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right], \quad V=\left[\begin{array}{cccc}
V_{1,1} & V_{1,2} & \cdots & V_{1, N} \\
V_{2,1} & V_{2,2} & \cdots & V_{2, N} \\
\vdots & \vdots & \ddots & \vdots \\
V_{N, 1} & V_{N, 2} & \cdots & V_{N, N}
\end{array}\right]
$$

$\leadsto \Sigma_{I V}=\left(\mathbb{R}, \mathbb{R}^{N} \times \mathbb{R}^{N \times N}, \mathscr{B}_{I V}\right), \quad \mathscr{B}_{I V} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times N}\right)^{\mathbb{R}}$.
$(I, V) \in \mathscr{B}_{I V}$ means

$$
\left(I_{1}, I_{2}, \ldots, I_{k}, \ldots, I_{N}, V_{1,1}, V_{1,2}, \ldots, V_{k_{1}, k_{2}}, \ldots, V_{N, N}\right): \mathbb{R} \rightarrow \mathbb{R}^{N} \times \mathbb{R}^{N \times N}
$$

is compatible with the circuit architecture and its element values. I.e., all the trajectories that can conceivable occur.

KVL

Kirchhoff voltage law (KVL) :

$$
\begin{aligned}
& \llbracket(I, V) \in \mathscr{B}_{I V} \rrbracket \\
& \Rightarrow \llbracket V_{k_{1}, k_{2}}+V_{k_{2}, k_{3}}+V_{k_{3}, k_{4}}+\cdots+V_{k_{n-1}, k_{n}}+V_{k_{n}, k_{1}}=0 \\
& \quad \text { for all } k_{1}, k_{2}, \ldots, k_{n} \in\{1,2, \ldots, N\} \rrbracket .
\end{aligned}
$$

KVL

KVL

$$
\begin{aligned}
& \Rightarrow V_{k_{1}, k_{2}}=-V_{k_{2}, k_{1}} \quad \forall k_{1}, k_{2} \in\{1,2, \ldots, N\} . \\
& \Leftrightarrow \quad V_{k_{1}, k_{2}}+V_{k_{2}, k_{3}}+V_{k_{3}, k_{1}}=0 \\
& \quad \forall k_{1}, k_{2}, k_{3} \in\{1,2, \ldots, N\} .
\end{aligned}
$$

Currents \& Potentials

Potentials

Thm: $V: \mathbb{R} \rightarrow \mathbb{R}^{N \times N}$ satisfies KVL \Leftrightarrow
$\exists P=\left[\begin{array}{c}P_{1} \\ P_{2} \\ \vdots \\ P_{N}\end{array}\right]: \mathbb{R} \rightarrow \mathbb{R}^{N}$ such that $V_{k_{1}, k_{2}}=P_{k_{1}}-P_{k_{2}}$.
P 'potential' $\Rightarrow\left[\begin{array}{c}P_{1}+\alpha \\ P_{2}+\alpha \\ \vdots \\ P_{N}+\alpha\end{array}\right]$ potential $\forall \alpha: \mathbb{R} \rightarrow \mathbb{R}$.

Potentials

Thm: $V: \mathbb{R} \rightarrow \mathbb{R}^{N \times N}$ satisfies KVL \Leftrightarrow
$\exists P=\left[\begin{array}{c}P_{1} \\ P_{2} \\ \vdots \\ P_{N}\end{array}\right]: \mathbb{R} \rightarrow \mathbb{R}^{N}$ such that $V_{k_{1}, k_{2}}=P_{k_{1}}-P_{k_{2}}$.
P 'potential' $\Rightarrow\left[\begin{array}{c}P_{1}+\alpha \\ P_{2}+\alpha \\ \vdots \\ P_{N}+\alpha\end{array}\right]$ potential $\forall \alpha: \mathbb{R} \rightarrow \mathbb{R}$.

Potentials 'unobservable' from
physically observable currents \& voltages.

Interaction variables

$\mathrm{KVL} \Rightarrow$ at each terminal: a potential and a current
$\sim \Sigma_{I P}=\left(\mathbb{R}, \mathbb{R}^{N} \times \mathbb{R}^{N}, \mathscr{B}_{I P}\right), \quad \mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$.

Currents and potentials

At each terminal: a potential and a current
$\leadsto \Sigma_{I P}=\left(\mathbb{R}, \mathbb{R}^{N} \times \mathbb{R}^{N}, \mathscr{B}_{I P}\right), \quad \mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$.
Early sources:

KVL for potentials

Kirchhoff voltage law (KVL) :
$\llbracket\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}, P_{2}, \ldots, P_{N}\right) \in \mathscr{B}_{I P}$ and $\alpha: \mathbb{R} \rightarrow \mathbb{R} \rrbracket$

$$
\Rightarrow \llbracket\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}+\alpha, P_{2}+\alpha, \ldots, P_{N}+\alpha\right) \in \mathscr{B}_{I P} \rrbracket .
$$

KCL

Kirchhoff current law (KCL) :

$$
\begin{aligned}
\llbracket\left(I_{1}, I_{2}, \ldots, I_{N}, V_{1,1}, V_{1,2}, \ldots, V_{k_{1}, k_{2}}, \ldots, V_{N, N}\right) & \in \mathscr{B}_{I V} \rrbracket \\
& \Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{N}=0 \rrbracket .
\end{aligned}
$$

Assuming KVL, (KCL):

$$
\llbracket\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}, P_{2}, \ldots, P_{N}\right) \in \mathscr{B}_{I P} \rrbracket \Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{N}=0 \rrbracket .
$$

Modeling problem

Given an electrical circuit,

 specify the current/voltage behavior$$
\mathscr{B}_{I V} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times N}\right)^{\mathbb{R}}
$$

or, assuming KVL, the current/potential behavior

$$
\mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}
$$

Related by

$$
V_{k_{1}, k_{2}}=P_{k_{1}}-P_{k_{2}} .
$$

New circuits from old ones

Juxtaposition

$\leadsto N+N^{\prime}$ terminals, $\quad \mathscr{B}_{I V}^{\text {new }}=\mathscr{B}_{I V} \times \mathscr{B}_{I V}^{\prime}$.
Preserves KVL and KCL. $\leadsto \mathscr{B}_{I P}^{\text {new }}=\mathscr{B}_{I P} \times \mathscr{B}_{I P}^{\prime}$.

Interconnection

Imposes, in addition to the original behavioral equations,

$$
V_{N-1, k}=V_{N, k} \quad k=1,2, \ldots, N \quad \text { and } \quad I_{N-1}+I_{N}=0
$$

$\leadsto N-2$ terminals. Preserves KVL and KCL.

Interconnection

Imposes, in addition to the original behavioral equations, assuming KVL,

$$
P_{N-1}=P_{N} \quad \text { and } \quad I_{N-1}+I_{N}=0
$$

Interconnection

Juxtaposition followed by interconnection. $\leadsto N+N^{\prime}-2$ terminals.

Building blocks

Standard elements

transistors, gyrators, current sources, voltage sources, OPAMPs, ...

Standard elements

transistors, gyrators, current sources, voltage sources, OPAMPs, ...

$$
\begin{array}{lrlrl}
\text { resistor: } & P_{1}-P_{2} & =R I_{1}, & & I_{1}+I_{2}=0, \\
\text { inductor: } & P_{1}-P_{2} & =L \frac{d}{d t} I_{1}, & & I_{1}+I_{2}=0, \\
\text { capacitor: } & C \frac{d}{d t}\left(P_{1}-P_{2}\right) & =I_{1}, & & I_{1}+I_{2}=0,
\end{array}
$$

transformer: $P_{3}-P_{4}=n\left(P_{1}-P_{2}\right), I_{1}=-n I_{3}, I_{1}+I_{2}=0, I_{3}+I_{4}=0$,
connector:

$$
I_{1}+I_{2}+\cdots+I_{N}=0, \quad P_{1}=P_{2}=\cdots=P_{N}
$$

How do we formalize the architecture of a circuit, consisting of an interconnection of building blocks?

Digraph with leaves

Digraph with leaves

A digraph with leaves has vertices, edges, and leaves (edges incident with ONLY ONE vertex).

Digraph with leaves

A digraph with leaves has vertices, edges, and leaves (edges incident with ONLY ONE vertex).

Mathematically specified by edge incidence matrix and leaf incidence matrix.
$\{0,+1,-1\}$-matrices

Incidence matrices

$$
\begin{array}{r}
\mathbb{V}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
\mathbb{E}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\} \\
\mathbb{L}=\left\{\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right\}
\end{array}
$$

RLC circuits

Circuit architecture

Circuit architecture :=

digraph with leaves $\cong\left(\mathbb{A}_{\mathbb{E}}, \mathbb{A}_{\mathbb{L}}\right)$

Element specification

The elements of the circuit (the R's, L's, and C's) correspond to the edges.
\sim a map that associates with each edge a resistance, an inductance, or a capacitance of a given value.
$3|\mathbb{E}| \times|\mathbb{E}|$ diagonal matrices R, L, C
$\Rightarrow|\mathbb{E}| \times|\mathbb{E}|$ diagonal polynomial matrices $R L(\xi)$ and $C(\xi)$.

Element specification

$R L(\xi)=\left[\begin{array}{ccccc}R_{1} & 0 & 0 & 0 & 0 \\ 0 & R_{2} & 0 & 0 & 0 \\ 0 & 0 & R_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & L_{1} \xi\end{array}\right], \quad C(\xi)=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & C_{1} \xi & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.

Circuit equations

Manifest variables:

the leaf currents I and the leaf potentials P. Latent variables:
the edge currents $I_{\mathbb{E}}$ and the vertex potentials $P_{\mathbb{V}}$.

$$
I=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{\mathbb{W}}
\end{array}\right], \quad P=\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\vdots \\
P_{\mathbb{I}}
\end{array}\right], \quad I_{\mathbb{E}}=\left[\begin{array}{c}
I_{e_{1}} \\
I_{e_{2}} \\
\vdots \\
I_{e_{\mathbb{E}}}
\end{array}\right], \quad P_{\mathrm{V}}=\left[\begin{array}{c}
P_{v_{1}} \\
P_{v_{2}} \\
\vdots \\
P_{v_{\mathbb{W}}}
\end{array}\right] .
$$

Circuit equations

$\underline{\text { Edges }} \leadsto$ constitutive equations for each edge:

$$
R L\left(\frac{d}{d t}\right) I_{\mathbb{E}}=C\left(\frac{d}{d t}\right) A_{\mathbb{E}}^{\top} P_{\mathrm{V}} .
$$

Vertices $\leadsto \mathbf{K C L}$ for each vertex:

$$
A_{\mathbb{E}} I_{\mathbb{E}}+A_{\mathbb{L}} I=0
$$

$\underline{\text { Leaves }} \sim$ potential assignment for each leaf:

$$
P+A_{\mathbb{L}}^{\top} P_{\mathbb{V}}=0
$$

Circuit properties

Elimination of $I_{\mathbb{E}}$ and $P_{\mathbb{V}} \Rightarrow$ for $\mathscr{B}_{I P}$

$$
F\left(\frac{d}{d t}\right)\left[\begin{array}{l}
I \\
P
\end{array}\right]=0, \quad F \in \mathbb{R}[\xi]^{\bullet \times 2 N}
$$

KVL and KCL
Passivity
Hybridicity
Reciprocity
etc.

Modeling methodology

Generalizes to 2-terminal 1-ports in edges
Generalizes to 2-terminal multi-ports in edges
Generalizes to nonlinear circuits
Restricted to 2-terminal ports

Example

$$
\mathbb{A}_{\mathbb{V}}=\left[\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
+1 & 0 & +1 & 0 \\
0 & +1 & 0 & +1 \\
0 & 0 & -1 & -1
\end{array}\right], \quad \mathbb{A}_{\mathbb{L}}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & -1
\end{array}\right]
$$

Example

$$
I=\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right], P=\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right], \quad I_{\mathbb{E}}=\left[\begin{array}{c}
I_{e_{1}} \\
I_{e_{2}} \\
I_{e_{3}} \\
I_{e_{4}}
\end{array}\right], P_{\mathbb{V}}=\left[\begin{array}{c}
P_{v_{1}} \\
P_{v_{2}} \\
P_{v_{3}} \\
P_{v_{4}}
\end{array}\right] .
$$

Behavioral equations

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
R_{C} & 0 & 0 & 0 \\
0 & L \frac{d}{d t} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & R_{L}
\end{array}\right]\left[\begin{array}{l}
I_{e_{1}} \\
I_{e_{2}} \\
I_{e_{3}} \\
I_{e_{4}}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & C \frac{d}{d t} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
-P_{v_{1}}+P_{v_{2}} \\
-P_{v_{1}}+P_{v_{3}} \\
P_{v_{2}}-P_{v_{4}} \\
P_{v_{3}}-P_{v_{4}}
\end{array}\right], } \\
& {\left[\begin{array}{c}
I_{e_{1}}+I_{e_{2}}+I_{1}=0 \\
I_{e_{1}}+I_{e_{3}}=0 \\
I_{e_{2}}+I_{e_{4}}=0 \\
I_{e_{3}}+I_{e_{4}}+I_{2}=0
\end{array}\right], \quad\left[\begin{array}{l}
P_{1}=P_{v_{1}} \\
P_{2}=P_{v_{4}}
\end{array}\right] }
\end{aligned}
$$

Elimination of $I_{\mathbb{E}}$ and $P_{\mathbb{V}} \leadsto$ (trust me!):

The circuit behavior

\leadsto the following ODE defines $\mathscr{B}_{I P}$.
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

$$
\begin{gathered}
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right)\left(P_{1}-P_{2}\right) \\
=\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I_{1}, \\
I_{1}+I_{2}=0 .
\end{gathered}
$$

The circuit behavior

\sim the following ODE defines $\mathscr{B}_{I P}$.
Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$.

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right)\left(P_{1}-P_{2}\right) & =\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I_{1} \\
I_{1}+I_{2} & =0
\end{aligned}
$$

The circuit behavior

\leadsto the following ODE defines $\mathscr{B}_{I P}$.
Case 2:

$$
C R_{C}=\frac{L}{R_{L}} .
$$

$$
\begin{gathered}
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right)\left(P_{1}-P_{2}\right)=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I_{1}, \\
I_{1}+I_{2}=0 .
\end{gathered}
$$

$$
C R_{C}=\frac{L}{R_{L}} \text { and } R_{C}=R_{L} \quad \Leftrightarrow \quad \text { uncontrollable. }
$$

Hence: Linear passive circuits can become uncontrollable.

Common factors

$C R_{C} \neq \frac{L}{R_{L}}$ and $C R_{C} \rightarrow \frac{L}{R_{L}} \leadsto$ a common factor.
It should be cancelled in $C R_{C}=\frac{L}{R_{L}}$!
$C R_{C}=\frac{L}{R_{L}}$ and $R_{C}=R_{L} \leadsto$ a second common factor.
This one should not be cancelled.
That is what the math gives (trust me!).

Common factors

Suppose we work with the impedance, and cancel common factors. Is this OK?
$C R_{C}=\frac{L}{R_{L}}$ and $R_{C}=R_{L} \leadsto$

$$
\left.\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V\right)=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I .
$$

After cancellation $\leadsto \quad V=R_{C} I$.
Short circuit $(V=0) \sim$

$$
\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I=0 \text { versus } I=0
$$

Observable exponentials disappear. Here exponentially stable, but could be only stable, then surely bothersome.

Consequences

For an exact, complete description of the physics of an RLC circuit, the impedance does not suffices.

Requires a bit of rethinking of Thévenin, Norton, Seshu, even classical synthesis, ...

Synthesis problem

Informal formulation

Given a system, a behavior, and a set of building blocks, find an architecture and an embedding of building blocks such that the interconnected system realizes the given behavior.

We take a look at the following classical case:
behavior : a linear time-invariant differential (LTID)
current/voltage behavior,
building blocks : linear passive
resistors, inductors, capacitors, and transformers
\leadsto RLCT synthesis.

Pedigree

Ronald Foster
Wilhelm Cauer
Otto Brune
Raoul Bott \& Richard Duffin
Bernard Tellegen
Brockway McMillan
Vitold Belevitch
Sidney Darlington
Dante Youla
and many others...

We add some footnotes to the work of these EE pioneers...

N-terminal circuits

Currents and potentials

At each terminal: a current and a potential

$$
\leadsto \text { behavior } \mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}
$$

Elimination thm. \leadsto
RLCT circuit \Rightarrow LTID behavior

Synthesis

For which polynomial matrices $F \in \mathbb{R}[\xi]^{\bullet \times 2 N}$ is

$$
F\left(\frac{d}{d t}\right)\left[\begin{array}{l}
I \\
P
\end{array}\right]=0
$$

the terminal behavior $\mathscr{B}_{I P}$ of an RLCT circuit?
ii Given such an $F \in \mathbb{R}[\xi]^{\bullet \times 2 N}$, specify an RLCT circuit that has this terminal behavior $\mathscr{B}_{I P}$!!

Further cases of interest: allow only: RLC, R, RC, RL, LC, RT, etc.

Our two footnotes

Do we want to realize the correct behavior or only the correct controllable part?

Do we want to realize the correct behavior or only the correct controllable part ?

Do we want to realize an N-terminal circuit, or an N-port circuit?

Controllability

Definition of controllability

$$
\left[\begin{array}{l}
I^{\prime} \\
P^{\prime}
\end{array}\right],\left[\begin{array}{l}
I^{\prime \prime} \\
P^{\prime \prime}
\end{array}\right] \in \mathscr{B}_{I P}
$$

$\xrightarrow{\text { time }}$

Definition of controllability

controllability $: \Leftrightarrow$ concatenability of trajectories after a delay.

Controllability of LTIDSs

The following are equivalent for $F\left(\frac{d}{d t}\right)\left[\begin{array}{l}I \\ P\end{array}\right]=0$.

$\mathscr{B}_{I P}$ is controllable .

F (WLOG full row rank) is left prime .

Controllability of LTIDSs

The following are equivalent for $F\left(\frac{d}{d t}\right)\left[\begin{array}{l}I \\ P\end{array}\right]=0$.
$\mathscr{B}_{I P}$ is controllable.
F (WLOG full row rank) is left prime .

The RLC example which we worked out shows
uncontrollable circuits are not degenerate.

Realization of 2-terminal circuits

2-terminal circuits

$\mathbf{K C L} \Rightarrow I_{1}+I_{2}=0, \quad \mathbf{K V L} \Rightarrow$ only $P_{1}-P_{2}$ matters. with $I:=I_{1}=-I_{2}$ and $V:=P_{1}-P_{2}$, this leads to

$$
P\left(\frac{d}{d t}\right) V=Q\left(\frac{d}{d t}\right) I
$$

Define $Z:=\frac{Q}{P} \quad$ 'impedance'.

2-terminal circuits

$$
P\left(\frac{d}{d t}\right) V=Q\left(\frac{d}{d t}\right) I, \quad Z=\frac{Q}{P}
$$

Which polynomial pairs (P, Q) are realizable using RLCT? Using RLC?

$$
P\left(\frac{d}{d t}\right) V=Q\left(\frac{d}{d t}\right) I, \quad Z=\frac{Q}{P}
$$

Which polynomial pairs (P, Q) are realizable using RLCT? Using RLC?

Assume P and Q are coprime (\Leftrightarrow controllability). Then RLCT realizable iff Z is positive real (Brune).

Iff Z is positive real, then the controllable part is RLCT realizable (Brune).

Iff Z is positive real, then there exists $R L C$ realization with the 'correct' controllable part (Bott-Duffin).
Bott-Duffin introduces uncontrollably common factors. Are they Hurwitz? I do not know. Perhaps not!

Open problem

Which polynomial pairs (P, Q) are realizable using RLCT?

Necessary condition 1: $Z=\frac{Q}{P}$ is positive real.
Necessary condition 2: Uncontrollable part 'stable'.
$1+2$ are not sufficient .
Sufficient condition: P and Q coprime, and $Z=\frac{Q}{P}$ p.r.

Open problem

Which polynomial pairs (P, Q) are realizable using RLCT?

Necessary condition 1: $Z=\frac{Q}{P}$ is positive real.
Necessary condition 2: Uncontrollable part 'stable'.
$1+2$ are not sufficient .
Sufficient condition: P and Q coprime, and $Z=\frac{Q}{P}$ p.r. Conclusions:

The set of RLCT realizable LTID behaviors is unknown . Bott-Duffin realizes the impedance, but not the behavior .

Example 1

$$
\frac{d}{d t} V=\frac{d^{2}}{d t^{2}} I
$$

has impedance ξ : positive real. Common factor ξ : stable.
Not realizable.
Proof: the short-circuit behavior is

$$
\frac{d^{2}}{d t^{2}} I=0
$$

which is not stable! And that violates passivity.

Example 1

$$
\frac{d}{d t} V=\frac{d^{2}}{d t^{2}} I
$$

has impedance ξ : positive real. Common factor ξ : stable.
Not realizable.
Proof: the short-circuit behavior is

$$
\frac{d^{2}}{d t^{2}} I=0
$$

which is not stable! And that violates passivity.

Example 2

There is presently no theory that guarantees that

$$
\left(1+\frac{d}{d t}\right) V=\left(1+\frac{d}{d t}\right) I
$$

is realizable.

Example 2

There is presently no theory that guarantees that

$$
\left(1+\frac{d}{d t}\right) V=\left(1+\frac{d}{d t}\right) I,
$$

is realizable. But it is, using $R_{C}=R_{L}=1, C=1, L=1$.

N-port versus N-terminal circuits

N-terminal circuit

At each terminal: a current and a potential

$$
\leadsto \Sigma=\left(\mathbb{R}, \mathbb{R}^{N} \times \mathbb{R}^{N}, \mathscr{B}_{I P}\right) \quad \text { behavior } \mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}
$$

N-port

$2 N$-terminal circuit. Assume KVL.

behavior $\mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{2 N} \times \mathbb{R}^{2 N}\right)^{\mathbb{R}}$

Pair the terminals, set

$$
I_{1}+I_{2}=0, I_{3}+I_{4}=0, \cdots, I_{2 N-1}+I_{2 N}=0,
$$

and take as variables the 'port' currents and 'port' voltages

$$
\begin{gathered}
I_{1}^{\prime}=I_{1}, I_{2}^{\prime}=I_{3}, \cdots, I_{N}^{\prime}=I_{2 N-1}, \\
V_{1}=P_{1}-P_{2}, V_{2}=P_{3}-P_{4}, \cdots, V_{N}=P_{2 N-1}-P_{2 N} .
\end{gathered}
$$

Currents and voltages

$\leadsto \Sigma_{\text {port }}=\left(\mathbb{R}, \mathbb{R}^{N} \times \mathbb{R}^{N}, \mathscr{B}_{\text {port }}\right)$ port behavior $\mathscr{B}_{\text {port }} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$
$\left(I_{1}, I_{2}, \ldots, I_{N}, V_{1}, V_{2}, \ldots, V_{N}\right): \mathbb{R} \rightarrow \mathbb{R}^{N} \times \mathbb{R}^{N} \in \mathscr{B}_{\text {port }}$ means:
this current/voltage trajectory is compatible with $\mathscr{B}_{I P}$ and the port current constraints.

Classical synthesis problem

Given a LTID behavior $\mathscr{B}_{\text {port }} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$, find a $2 N$-terminal RLCT circuit with N-port behavior $\mathscr{B}_{\text {port }}$.

Classical synthesis problem

Given a LTID behavior $\mathscr{B}_{\text {port }} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$, find a $2 N$-terminal RLCT circuit with N-port behavior $\mathscr{B}_{\text {port }}$.

For the 2-terminal case, KCL and KVL imply that 1-port synthesis is equivalent to 2-terminal synthesis. If transformers are allowed in the synthesis, then the results of the N-port case and the N-terminal case are transferrable.
Modulo controllability, a RLCT synthesis exists iff, roughly, the multivariable impedance is symmetric and positive real.
Without transformers, the N-port and the N-terminal cases are distinct.

Resistive terminal synthesis

Transformerless resistive synthesis

The synthesis of resistive N-ports without transformers is one of the open problems of classical N-port synthesis.

For N-terminal synthesis, it can be solved completely.

Interconnected circuits

3-terminal circuits

Classical graph and digraph methods are restricted to elements with 2-terminal ports. They do not deal with 3-terminal circuits, such as

Interconnected multiterminal circuits

We outline a hierarchical method that incorporates multi-terminal ports and general interconnected circuits.

Interconnection architecture

Interconnection architecture: graph with leaves

Subcircuits in the vertices

Connections in the edges
External terminals in the leaves

Interconnection architecture: graph with leaves

- Subcircuits in the vertices

Connections in the edges
External terminals in the leaves

Contrast with classical view

- Connections in vertices
- Subcircuits in edges

Interconnection architecture

Manifest variables:

the leaf currents I and the leaf potentials P. Latent variables:
the edge currents $I_{\mathbb{E}}$ and the edge potentials $P_{\mathbb{E}}$.

$$
I=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{|\mathbb{L}|}
\end{array}\right], \quad P=\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\vdots \\
P_{|\mathbb{L}|}
\end{array}\right], \quad I_{\mathbb{E}}=\left[\begin{array}{c}
I_{e_{1}} \\
I_{e_{2}} \\
\vdots \\
I_{e_{\mid \mathbb{E}}}
\end{array}\right], \quad P_{\mathbb{E}}=\left[\begin{array}{c}
P_{e_{1}} \\
P_{e_{2}} \\
\vdots \\
P_{e_{\mid \mathbb{E}} \mid}
\end{array}\right] .
$$

External behavior

Behavior for each vertex involves $I, P, I_{\mathbb{E}}, P_{\mathbb{E}}$.

Interconnection equation for each edge involves $I_{\mathbb{E}}, P_{\mathbb{E}}$.

$$
I_{e_{\text {side1 }}}+I_{e_{\text {side } 2}}=0, \quad P_{e_{\text {side } 1}}=P_{e_{\text {side } 2}}
$$

\sim behavioral equations in $I, P, I_{\mathbb{E}}, P_{\mathbb{E}}$.
Eliminate edge currents $I_{\mathbb{E}}$ and edge potentials $P_{\mathbb{E}}$ \leadsto behavioral equations for I, P.

Energy Transfer

Theme

How is energy transferred from the environment to a system?

How is energy transferred between systems?
Does interconnection mean energy transfer?

Energy

Energy := a physical quantity transformable into heat.

Energy

Energy := a physical quantity transformable into heat.

For example, capacitor \mapsto resistor \mapsto heat. Energy on capacitor $=\frac{1}{2} C V^{2}$

Electrical ports

Energy transfer

Assume that we monitor the current/potential on a set of terminals.

Can we speak about 'the energy transferred from the environment to the circuit along these terminals'?

Ports

Assume henceforth KVL.
Terminals $\{1,2, \ldots, p\}$ form a port $: \Leftrightarrow$

$$
\begin{aligned}
\llbracket\left(I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}, P_{1}, \ldots, P_{p}, P_{p+1}, \ldots, P_{N},\right) \in \mathscr{B}_{I P} \rrbracket \\
\Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{p}=0 \rrbracket . \quad \text { 'port KCL' }
\end{aligned}
$$

$\mathrm{KCL} \Rightarrow$ all terminals together form a port.

Ports

If terminals $\{1,2, \ldots, p\}$ form a port, then power in $=P_{1}(t) I_{1}(t)+P_{2}(t) I_{2}(t)+\cdots+P_{p}(t) I_{p}(t)$
energy in $=\int_{t_{1}}^{t_{2}}\left[P_{1}(t) I_{1}(t)+P_{2}(t) I_{2}(t)+\cdots+P_{p}(t) I_{p}(t)\right] d t$
This interpretation in terms of power and energy is not valid unless these terminals form a port !

Examples

2-terminal 1-port devices:

resistors, inductors, capacitors, memristors, etc., any 2 -terminal circuit composed of these.

$\mathbf{K C L} \Rightarrow \mathbf{a}$ port $\left(I_{1}=-I_{2}=: I\right)$.
KVL \Rightarrow only $P_{1}-P_{2}=: V$ matters.
\sim usual circuit variables (I, V).

Example

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

We cannot speak about
'the energy transferred from terminals $\{1,2\}$ to $\{3,4\}$ '.

Example

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

Terminals $\{1,2\}$ and $\{3,4\}$ form ports.

Energy transfer between circuits

Assume that we monitor the current/potential on a set of terminals between circuits or within a circuit.

Can we speak about
'the energy transferred along these terminals'?

Internal ports

Terminals $\{1,2, \ldots, N\}$ form an internal port $: \Leftrightarrow$

$$
\begin{aligned}
& \llbracket\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}, P_{2}, \ldots, P_{N}\right) \in \mathscr{B}_{I P} \rrbracket \\
& \quad \Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{N}=0 \rrbracket . \quad \text { internal port-KCL},
\end{aligned}
$$

Power and energy

Flow through the terminals from one side to the other in the direction of the arrows:
power $=\quad I_{1}(t) P_{1}(t)+I_{2}(t) P_{2}(t)+\cdots+I_{N}(t) P_{N}(t)$
energy $=\int_{t_{1}}^{t_{2}}\left[I_{1}(t) P_{1}(t)+I_{2}(t) P_{2}(t)+\cdots+I_{N}(t) P_{N}(t)\right] d t$

This physical interpretation of power and energy is valid only if the terminals form an internal port.

Example

Because of the source and the load (2-terminal 1-ports) terminals $\{1,2\}$ and $\{3,4\}$ form internal ports.

Therefore, we can speak of
'the energy transferred from the source to the load'.

Passivity

Definition

Assume KVL and KCL, use $\mathscr{B}_{I P}$. The circuit is \llbracket passive \rrbracket $: \Leftrightarrow \llbracket(I, P) \in \mathscr{B}_{I P}, t_{0} \in \mathbb{R} \Rightarrow \exists K \in \mathbb{R}$ such that

$$
\begin{equation*}
-\int_{t_{0}}^{t}\left(\sum_{k=1}^{N} I_{k}(t) P_{k}(t)\right) d t<K \quad \text { for } t \geq t_{0} \rrbracket . \tag{1}
\end{equation*}
$$

Passivity $: \Leftrightarrow$ only finite amount of extractable energy.

Definition

Assume KVL and KCL, use $\mathscr{B}_{I P}$. The circuit is \llbracket passive \rrbracket
$: \Leftrightarrow \llbracket(I, P) \in \mathscr{B}_{I P}, t_{0} \in \mathbb{R} \Rightarrow \exists K \in \mathbb{R}$ such that

$$
\begin{equation*}
-\int_{t_{0}}^{t}\left(\sum_{k=1}^{N} I_{k}(t) P_{k}(t)\right) d t<K \quad \text { for } t \geq t_{0} \rrbracket . \tag{2}
\end{equation*}
$$

Passivity $: \Leftrightarrow$ only finite amount of extractable energy.
$\mathscr{B}_{I P}$ is passive $\Leftrightarrow \exists V: \mathbb{R} \rightarrow[0, \infty)$, called a storage, such that

$$
V\left(t_{2}\right)-V\left(t_{1}\right) \leq \int_{t_{1}}^{t_{2}}\left(\sum_{k=1}^{N} I_{k}(t) P_{k}(t)\right) d t
$$

for $(I, P) \in \mathscr{B}_{I P}$ and $t_{1} \geq t_{2}$.
\leadsto positive realness, etc.

Concluding remarks

!! Use digraphs with leaves instead of graphs !!

!! Use digraphs with leaves instead of graphs !!
Avoid having to pair terminals as in N-ports. Avoid dealing with circuits as if the external terminals were driven by current or voltage sources.
!! Use digraphs with leaves instead of graphs !!
Avoid having to pair terminals as in N-ports.
Avoid dealing with circuits as if the external terminals were driven by current or voltage sources.

Note irrelevance and inappropriateness of input/output thinking.

The lecture frames are available from/at

Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you
Thank you

Thank you

Thank you
Thank you
Thank you
Thank you

