

A POST MODERN VIEW

of some of the basics of

ELECTRICAL CIRCUIT THEORY

JAN C. WILLEMS K.U. Leuven

Workshop Mathematical Aspects of Network Synthesis

Würzburg, September 28, 2010

To present an approach to mathematizing a (simple) part of physics:

electrical circuits.

I feel that I finally understand circuits, after all this time.

Electrical circuit

;; Describe electrical interaction with environment !!

By what physically measurable variables does the circuit interacts with its environment?

Interaction variables

Interaction variables

interaction variables: currents in & voltages across.

measurable by ammeters and voltmeters.

Currents and voltages

Currents and voltages

$$\sim \hspace{-0.5cm} \hspace{0.5cm} I = \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_N \end{bmatrix}, \quad V = \begin{bmatrix} V_{1,1} & V_{1,2} & \cdots & V_{1,N} \\ V_{2,1} & V_{2,2} & \cdots & V_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ V_{N,1} & V_{N,2} & \cdots & V_{N,N} \end{bmatrix}$$

$$\rightsquigarrow \Sigma_{IV} = \left(\mathbb{R}, \mathbb{R}^N \times \mathbb{R}^{N \times N}, \mathscr{B}_{IV}\right), \quad \mathscr{B}_{IV} \subseteq \left(\mathbb{R}^N \times \mathbb{R}^{N \times N}\right)^{\mathbb{R}}.$$
$$(I, V) \in \mathscr{B}_{IV} \text{ means}$$

 $\left(I_1, I_2, \dots, I_k, \dots, I_N, V_{1,1}, V_{1,2}, \dots, V_{k_1,k_2}, \dots, V_{N,N}\right) : \mathbb{R} \to \mathbb{R}^N \times \mathbb{R}^{N \times N}$

is compatible with the circuit architecture and its element values. I.e., all the trajectories that can conceivable occur.

Kirchhoff voltage law (KVL):

$$[[(I,V) \in \mathscr{B}_{IV}]]$$

$$\Rightarrow [V_{k_1,k_2} + V_{k_2,k_3} + V_{k_3,k_4} + \dots + V_{k_{n-1},k_n} + V_{k_n,k_1} = 0]$$

for all $k_1, k_2, \ldots, k_n \in \{1, 2, \ldots, N\}$].

KVL

$$\Rightarrow V_{k_1,k_2} = -V_{k_2,k_1} \quad \forall k_1,k_2 \in \{1,2,\ldots,N\}.$$

$$\Rightarrow V_{k_1,k_2} + V_{k_2,k_3} + V_{k_3,k_1} = 0$$

$$\forall k_1,k_2,k_3 \in \{1,2,\ldots,N\}.$$

Currents & Potentials

Potentials

<u>Thm</u>: $V : \mathbb{R} \to \mathbb{R}^{N \times N}$ satisfies KVL \Leftrightarrow $\exists P = \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_N \end{bmatrix} : \mathbb{R} \to \mathbb{R}^N \text{ such that } V_{k_1,k_2} = P_{k_1} - P_{k_2}.$ $P \text{ 'potential'} \Rightarrow \begin{bmatrix} P_1 + \alpha \\ P_2 + \alpha \\ \vdots \\ P_N + \alpha \end{bmatrix} \text{ potential } \forall \alpha : \mathbb{R} \to \mathbb{R}.$ **Potentials**

Potentials 'unobservable' from

physically observable currents & voltages.

- p. 10/85

Interaction variables

KVL \Rightarrow at each terminal: a **potential** and a **current** $\rightsquigarrow \Sigma_{IP} = (\mathbb{R}, \mathbb{R}^N \times \mathbb{R}^N, \mathscr{B}_{IP}), \quad \mathscr{B}_{IP} \subseteq (\mathbb{R}^N \times \mathbb{R}^N)^{\mathbb{R}}.$

Currents and potentials

At each terminal: a **potential** and a **current**

 $\rightsquigarrow \Sigma_{IP} = \left(\mathbb{R}, \mathbb{R}^N \times \mathbb{R}^N, \mathscr{B}_{IP}\right), \quad \mathscr{B}_{IP} \subseteq \left(\mathbb{R}^N \times \mathbb{R}^N\right)^{\mathbb{R}}.$

Early sources:

Brockway McMillan

Robert Newcomb

Kirchhoff voltage law (KVL):

 $\llbracket (I_1, I_2, \dots, I_N, P_1, P_2, \dots, P_N) \in \mathscr{B}_{IP} \text{ and } \alpha : \mathbb{R} \to \mathbb{R} \rrbracket$ $\Rightarrow \llbracket (I_1, I_2, \dots, I_N, P_1 + \alpha, P_2 + \alpha, \dots, P_N + \alpha) \in \mathscr{B}_{IP} \rrbracket.$

 $\llbracket (I_1, I_2, \dots, I_N, P_1, P_2, \dots, P_N) \in \mathscr{B}_{IP} \rrbracket \Rightarrow \llbracket I_1 + I_2 + \dots + I_N = 0 \rrbracket.$

Modeling problem

Given an electrical circuit, specify the current/voltage behavior

$$\mathscr{B}_{IV} \subseteq \left(\mathbb{R}^N \times \mathbb{R}^{N \times N}\right)^{\mathbb{R}}$$

or, assuming KVL, the current/potential behavior

$$\mathscr{B}_{IP} \subseteq \left(\mathbb{R}^N \times \mathbb{R}^N\right)^{\mathbb{R}}$$

Related by

$$V_{k_1,k_2} = P_{k_1} - P_{k_2}.$$

New circuits from old ones

Juxtaposition

 $\sim N + N'$ terminals, $\mathscr{B}_{IV}^{\text{new}} = \mathscr{B}_{IV} \times \mathscr{B}'_{IV}$.

Preserves KVL and KCL. $\rightsquigarrow \mathscr{B}_{IP}^{\text{new}} = \mathscr{B}_{IP} \times \mathscr{B}'_{IP}$.

Interconnection

Imposes, in addition to the original behavioral equations,

$$V_{N-1,k} = V_{N,k}$$
 $k = 1, 2, ..., N$ and $I_{N-1} + I_N = 0$.

 $\sim N - 2$ terminals. Preserves KVL and KCL.

Interconnection

Imposes, in addition to the original behavioral equations, assuming KVL,

$$P_{N-1} = P_N$$
 and $I_{N-1} + I_N = 0$.

Interconnection

Juxtaposition followed by interconnection. $\rightsquigarrow N + N' - 2$ terminals.

Building blocks

Standard elements

transistors, gyrators, current sources, voltage sources, OPAMPs, ...

Standard elements

transistors, gyrators, current sources, voltage sources, OPAMPs, ...

resistor: $P_1 - P_2 = RI_1, \quad I_1 + I_2 = 0,$ inductor: $P_1 - P_2 = L \frac{d}{dt}I_1, \quad I_1 + I_2 = 0,$ capacitor: $C \frac{d}{dt}(P_1 - P_2) = I_1, \quad I_1 + I_2 = 0,$ transformer: $P_3 - P_4 = n(P_1 - P_2), I_1 = -nI_3, I_1 + I_2 = 0, I_3 + I_4 = 0,$

connector: $I_1 + I_2 + \cdots + I_N = 0, P_1 = P_2 = \cdots = P_N.$

How do we formalize the architecture of a circuit, consisting of an interconnection of building blocks?

Digraph with leaves

Digraph with leaves

A digraph with leaves has vertices, edges, and

leaves (edges incident with ONLY ONE vertex).

Digraph with leaves

A digraph with leaves has vertices, edges, and

leaves (edges incident with ONLY ONE vertex).

Mathematically specified by

edge incidence matrix and leaf incidence matrix.

 $\{0, +1, -1\}$ -matrices

Incidence matrices

$$\mathbb{V} = \{v_1, v_2, v_3, v_4\}$$
$$\mathbb{E} = \{e_1, e_2, e_3, e_4, e_5\}$$
$$\mathbb{L} = \{\ell_1, \ell_2, \ell_3, \ell_4\}$$

$$\mathbb{A}_{\mathbb{E}} = \begin{bmatrix} +1 & -1 & 0 & +1 & 0 \\ -1 & 0 & +1 & 0 & +1 \\ 0 & +1 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix}, \quad \mathbb{A}_{\mathbb{L}} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

RLC circuits

Circuit architecture

Circuit architecture :=

digraph with leaves $\cong (\mathbb{A}_{\mathbb{E}}, \mathbb{A}_{\mathbb{L}})$

Element specification

The elements of the circuit (the R's, L's, and C's) correspond to the edges.

 \rightsquigarrow a map that associates with each edge a resistance, an inductance, or a capacitance of a given value.

\sim → 3 $|\mathbb{E}| \times |\mathbb{E}|$ diagonal matrices R, L, C $\Rightarrow |\mathbb{E}| \times |\mathbb{E}|$ diagonal polynomial matrices $RL(\xi)$ and $C(\xi)$.

Element specification

$$RL(\xi) = \begin{bmatrix} R_1 & 0 & 0 & 0 & 0 \\ 0 & R_2 & 0 & 0 & 0 \\ 0 & 0 & R_3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & L_1\xi \end{bmatrix}, \quad C(\xi) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & C_1\xi & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Circuit equations

Manifest variables:

the leaf currents *I* and the leaf potentials *P*. *Latent variables:*

the edge currents $I_{\mathbb{E}}$ and the vertex potentials $P_{\mathbb{V}}$.

$$I = \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_{|\mathbb{L}|} \end{bmatrix}, P = \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_{|\mathbb{L}|} \end{bmatrix}, I_{\mathbb{E}} = \begin{bmatrix} I_{e_1} \\ I_{e_2} \\ \vdots \\ I_{e_{|\mathbb{E}|}} \end{bmatrix}, P_{\mathbb{V}} = \begin{bmatrix} P_{v_1} \\ P_{v_2} \\ \vdots \\ I_{e_{|\mathbb{V}|}} \end{bmatrix}$$

Circuit equations

Edges \rightarrow constitutive equations for each edge:

$$RL\left(\frac{d}{dt}\right)I_{\mathbb{E}} = C\left(\frac{d}{dt}\right)A_{\mathbb{E}}^{\top}P_{\mathbb{V}}.$$

<u>Vertices</u> \rightsquigarrow KCL for each vertex:

 $A_{\mathbb{E}}I_{\mathbb{E}} + A_{\mathbb{L}}I = 0.$

<u>Leaves</u> \rightarrow potential assignment for each leaf:

$$\boldsymbol{P} + \boldsymbol{A}_{\mathbb{L}}^{\top} \boldsymbol{P}_{\mathbb{V}} = \boldsymbol{0}.$$

Circuit properties

- Elimination of $I_{\mathbb{E}}$ and $P_{\mathbb{V}} \Rightarrow$ for \mathscr{B}_{IP} $F\left(\frac{d}{dt}\right)\begin{bmatrix}I\\P\end{bmatrix}=0, \quad F \in \mathbb{R}[\xi]^{\bullet \times 2N}.$
- **KVL and KCL**
- Passivity
- Hybridicity
- Reciprocity
 - > etc.
Modeling methodology

- **Generalizes to 2-terminal 1-ports in edges**
- Generalizes to 2-terminal multi-ports in edges
- Generalizes to nonlinear circuits
- Restricted to 2-terminal ports

- p. 33/85

Behavioral equations

$$\begin{bmatrix} R_C & 0 & 0 & 0 \\ 0 & L\frac{d}{dt} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & R_L \end{bmatrix} \begin{bmatrix} I_{e_1} \\ I_{e_2} \\ I_{e_3} \\ I_{e_4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & C\frac{d}{dt} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -P_{v_1} + P_{v_2} \\ -P_{v_1} + P_{v_3} \\ P_{v_2} - P_{v_4} \\ P_{v_3} - P_{v_4} \end{bmatrix},$$

$$\begin{bmatrix} I_{e_1} + I_{e_2} + I_1 = 0 \\ I_{e_1} + I_{e_3} = 0 \\ I_{e_2} + I_{e_4} = 0 \\ I_{e_3} + I_{e_4} + I_2 = 0 \end{bmatrix}, \qquad \begin{bmatrix} P_1 = P_{v_1} \\ P_2 = P_{v_4} \end{bmatrix}$$

٠

Elimination of $I_{\mathbb{E}}$ and $P_{\mathbb{V}} \rightsquigarrow$ (trust me!):

The circuit behavior

\rightsquigarrow the following ODE defines \mathscr{B}_{IP} .

<u>Case 1</u>:

$$CR_C \neq \frac{L}{R_L}.$$

$$\left(\frac{R_C}{R_L} + \left(1 + \frac{R_C}{R_L}\right)CR_C\frac{d}{dt} + CR_C\frac{L}{R_L}\frac{d^2}{dt^2}\right)\left(\frac{P_1 - P_2}{P_2}\right)$$
$$= \left(1 + CR_C\frac{d}{dt}\right)\left(1 + \frac{L}{R_L}\frac{d}{dt}\right)R_C\frac{I_1}{I_1},$$

 $I_1+I_2=0$

The circuit behavior

\rightsquigarrow the following ODE defines \mathscr{B}_{IP} .

Case 2:

$$CR_C = \frac{L}{R_L}.$$

-

$$\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right) \left(\frac{P_1 - P_2}{P_2}\right) = \left(1 + CR_C \frac{d}{dt}\right) R_C I_1,$$
$$I_1 + I_2 = 0.$$

The circuit behavior

\rightsquigarrow the following ODE defines \mathscr{B}_{IP} .

<u>Case 2</u>:

$$R_C = \frac{L}{R_L}$$

Ι

$$\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right) \left(\frac{P_1 - P_2}{P_2}\right) = \left(1 + CR_C \frac{d}{dt}\right) R_C I_1,$$
$$I_1 + I_2 = 0.$$

$$CR_C = \frac{L}{R_L}$$
 and $R_C = R_L \quad \Leftrightarrow$ uncontrollable.

<u>Hence</u>: Linear passive circuits can become uncontrollable.

Common factors

 $CR_C \neq \frac{L}{R_L}$ and $CR_C \rightarrow \frac{L}{R_L} \sim a$ common factor. It should be cancelled in $CR_C = \frac{L}{R_L}$! $CR_C = \frac{L}{R_L}$ and $R_C = R_L \sim a$ second common factor. This one should not be cancelled.

That is what the math gives (trust me!).

Common factors

Suppose we work with the impedance, and cancel common factors. Is this OK?

$$CR_C = \frac{L}{R_L} \text{ and } R_C = R_L \rightsquigarrow$$

 $\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right) V = \left(1 + CR_C \frac{d}{dt}\right) R_C I.$

After cancellation \rightsquigarrow $V = R_C I$.Short circuit $(V = 0) \rightsquigarrow$

$$\left(1+CR_C\frac{d}{dt}\right)R_CI=0$$
 versus $I=0$.

Observable exponentials disappear. Here exponentially stable, but could be only stable, then surely bothersome. For an exact, complete description of the physics of an RLC circuit, the impedance does not suffices.

Requires a bit of rethinking of Thévenin, Norton, Seshu, even classical synthesis, ...

Synthesis problem

Informal formulation

Given a system, a *behavior*, and a set of *building blocks*, find an *architecture* and an *embedding* of building blocks such that the interconnected system realizes the given behavior.

We take a look at the following classical case:

- behavior : a linear time-invariant differential (LTID) current/voltage behavior,
- building blocks : linear passive resistors, inductors, capacitors, and transformers ~ RLCT synthesis.

Ronald Foster Wilhelm Cauer **Otto Brune Raoul Bott & Richard Duffin Bernard Tellegen Brockway McMillan** Vitold Belevitch **Sidney Darlington Dante Youla** and many others...

We add some footnotes to the work of these EE pioneers...

N-terminal circuits

Synthesis

For which polynomial matrices $F \in \mathbb{R}[\xi]^{\bullet \times 2N}$ is

$$F\left(\frac{d}{dt}\right) \begin{bmatrix} \mathbf{I} \\ \mathbf{P} \end{bmatrix} = 0$$

the terminal behavior \mathscr{B}_{IP} of an RLCT circuit?

i Given such an $F \in \mathbb{R}[\xi]^{\bullet \times 2N}$, specify an RLCT circuit that has this terminal behavior \mathscr{B}_{IP} !!

Further cases of interest: allow only: RLC, R, RC, RL, LC, RT, etc. **Our two footnotes**

Do we want to realize the *correct behavior* or only the *correct controllable part*?

Our two footnotes

Do we want to realize the *correct behavior* or only the *correct controllable part*?

Do we want to realize an *N*-terminal circuit, or an *N*-port circuit?

Controllability

Definition of controllability

Definition of controllability

controllability : \Leftrightarrow **concatenability of trajectories after a delay**.

Controllability of LTIDSs

The following are equivalent for $F\left(\frac{d}{dt}\right)\begin{bmatrix}I\\P\end{bmatrix}=0.$

- $\blacktriangleright \mathscr{B}_{IP} \text{ is } \frac{\text{controllable}}{\text{controllable}}.$
- F (WLOG full row rank) is left prime.

Controllability of LTIDSs

The following are equivalent for $F\left(\frac{d}{dt}\right)\begin{bmatrix}I\\P\end{bmatrix}=0.$

- $\blacktriangleright \quad \mathscr{B}_{IP} \text{ is } \frac{\text{controllable}}{\mathbf{\mathcal{B}}_{IP}}.$
- F (WLOG full row rank) is left prime.

The RLC example which we worked out shows

uncontrollable circuits are not degenerate.

Realization of 2-terminal circuits

2-terminal circuits

KCL \Rightarrow $I_1 + I_2 = 0$, **KVL** \Rightarrow only $P_1 - P_2$ matters. with $I := I_1 = -I_2$ and $V := P_1 - P_2$, this leads to

$$P\left(\frac{d}{dt}\right)\mathbf{V} = Q\left(\frac{d}{dt}\right)\mathbf{I}$$

'impedance'.

2-terminal circuits

$$P\left(\frac{d}{dt}\right)V = Q\left(\frac{d}{dt}\right)I, \qquad Z = \frac{Q}{P}$$

Which polynomial pairs (P,Q) are realizable
using RLCT?Using RLC?

2-terminal circuits

$$P\left(\frac{d}{dt}\right)V = Q\left(\frac{d}{dt}\right)I, \qquad Z = \frac{Q}{P}$$

Which polynomial pairs (P,Q) are realizable
using RLCT?Using RLC?

Assume *P* and *Q* are coprime (\Leftrightarrow controllability). Then RLCT realizable iff *Z* is positive real (Brune).

Iff Z is positive real, then the controllable part is RLCT realizable (Brune).

Iff Z is positive real, then there exists RLC realization with the 'correct' controllable part (Bott-Duffin).
Bott-Duffin introduces uncontrollably common factors.
Are they Hurwitz? I do not know. Perhaps not! **Open problem**

Which polynomial pairs (P, Q) are realizable using RLCT?

Necessary condition 1:
$$Z = \frac{Q}{P}$$
 is positive real.

Necessary condition 2: Uncontrollable part 'stable'.

1 + 2 are not sufficient.

<u>Sufficient condition</u>: *P* and *Q* coprime, and $Z = \frac{Q}{P}$ p.r.

Open problem

Which polynomial pairs (P, Q) are realizable using RLCT?

Necessary condition 1:
$$Z = \frac{Q}{P}$$
 is positive real.

Necessary condition 2: Uncontrollable part 'stable'.

1 + 2 are not sufficient.

<u>Sufficient condition</u>: *P* and *Q* coprime, and $Z = \frac{Q}{P}$ p.r.

Conclusions:

The set of RLCT realizable LTID behaviors is unknown Bott-Duffin realizes the impedance, but not the behavior.

$$\frac{d}{dt}V = \frac{d^2}{dt^2}I$$

has impedance ξ : positive real. Common factor ξ : stable.

Not realizable. Proof: the short-circuit behavior is

$$\frac{d^2}{dt^2}I = 0,$$

which is not stable! And that violates passivity.

$$\frac{d}{dt}V = \frac{d^2}{dt^2}I$$

has impedance ξ : positive real. Common factor ξ : stable.

Not realizable. Proof: the short-circuit behavior is

$$\frac{d^2}{dt^2}I = 0,$$

which is not stable! And that violates passivity.

There is presently no theory that guarantees that

$$\left(1+\frac{d}{dt}\right)\mathbf{V} = \left(1+\frac{d}{dt}\right)\mathbf{I},$$

is realizable.

There is presently no theory that guarantees that

$$\left(1+\frac{d}{dt}\right)V = \left(1+\frac{d}{dt}\right)I,$$

is realizable. But it is, using $R_C = R_L = 1, C = 1, L = 1$.

N-port versus N-terminal circuits

N-terminal circuit

 $\rightsquigarrow \Sigma = (\mathbb{R}, \mathbb{R}^N \times \mathbb{R}^N, \mathscr{B}_{IP})$ behavior $\mathscr{B}_{IP} \subseteq (\mathbb{R}^N \times \mathbb{R}^N)^{\mathbb{R}}$

Pair the terminals, set

$$I_1 + I_2 = 0, I_3 + I_4 = 0, \cdots, I_{2N-1} + I_{2N} = 0,$$

and take as variables the 'port' currents and 'port' voltages

$$I'_1 = I_1, \ I'_2 = I_3, \cdots, I'_N = I_{2N-1},$$

 $V_1 = P_1 - P_2, \ V_2 = P_3 - P_4, \cdots, V_N = P_{2N-1} - P_{2N}.$
Currents and voltages

 $\sim \Sigma_{\text{port}} = (\mathbb{R}, \mathbb{R}^N \times \mathbb{R}^N, \mathscr{B}_{\text{port}}) \text{ port behavior } \mathscr{B}_{\text{port}} \subseteq (\mathbb{R}^N \times \mathbb{R}^N)^{\mathbb{R}}$ $(I_1, I_2, \dots, I_N, V_1, V_2, \dots, V_N) : \mathbb{R} \to \mathbb{R}^N \times \mathbb{R}^N \in \mathscr{B}_{\text{port}} \text{ means:}$ this current/voltage trajectory is compatible with $\mathscr{B}_{IP} \text{ and the port current constraints.}$

Classical synthesis problem

Given a LTID behavior $\mathscr{B}_{port} \subseteq (\mathbb{R}^N \times \mathbb{R}^N)^{\mathbb{R}}$, find a 2*N*-terminal RLCT circuit with *N*-port behavior \mathscr{B}_{port} . **Classical synthesis problem**

Given a LTID behavior $\mathscr{B}_{port} \subseteq (\mathbb{R}^N \times \mathbb{R}^N)^{\mathbb{K}}$, find a 2*N*-terminal RLCT circuit with *N*-port behavior \mathscr{B}_{port} .

- For the 2-terminal case, KCL and KVL imply that 1-port synthesis is equivalent to 2-terminal synthesis.
- If transformers are allowed in the synthesis, then the results of the N-port case and the N-terminal case are transferrable. Modulo controllability, a RLCT synthesis exists iff, roughly, the multivariable impedance is symmetric and positive real.
- Without transformers, the N-port and the N-terminal cases are distinct.

Resistive terminal synthesis

Transformerless resistive synthesis

The synthesis of resistive *N***-ports without transformers is one of the open problems of classical** *N***-port synthesis.**

For *N***-terminal synthesis, it can be solved completely.**

Interconnected circuits

3-terminal circuits

Classical graph and digraph methods are restricted to elements with 2-terminal ports. They do not deal with 3-terminal circuits, such as

Interconnected multiterminal circuits

We outline a hierarchical method that incorporates multi-terminal ports and general interconnected circuits.

Interconnection architecture

Tearing, zooming, & linking

Interconnection architecture: graph with leaves

- Subcircuits in the vertices
- Connections in the edges
- External terminals in the leaves

Tearing, zooming, & linking

Interconnection architecture: graph with leaves

- Subcircuits in the vertices
- Connections in the edges
- External terminals in the leaves

Contrast with classical view

- Connections in vertices
- Subcircuits in edges

Interconnection architecture

Manifest variables:

the leaf currents *I* and the leaf potentials *P*. *Latent variables:*

the edge currents $I_{\mathbb{E}}$ and the edge potentials $P_{\mathbb{E}}$.

$$I = \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_{|\mathbb{L}|} \end{bmatrix}, P = \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_{|\mathbb{L}|} \end{bmatrix}, I_{\mathbb{E}} = \begin{bmatrix} I_{e_1} \\ I_{e_2} \\ \vdots \\ I_{e_{|\mathbb{E}|}} \end{bmatrix}, P_{\mathbb{E}} = \begin{bmatrix} P_{e_1} \\ P_{e_2} \\ \vdots \\ I_{e_{|\mathbb{E}|}} \end{bmatrix}$$

External behavior

- Behavior for each vertex involves $I, P, I_{\mathbb{E}}, P_{\mathbb{E}}$.
- Interconnection equation for each edge involves $I_{\mathbb{E}}, P_{\mathbb{E}}$.

$$I_{e_{\text{side1}}} + I_{e_{\text{side2}}} = 0, \quad P_{e_{\text{side1}}} = P_{e_{\text{side2}}}$$

→ behavioral equations in *I*, *P*, *I*_E, *P*_E.
Eliminate edge currents *I*_E and edge potentials *P*_E
→ behavioral equations for *I*, *P*.

Energy Transfer

How is **energy transferred** from the environment to a system?

How is energy transferred between systems? Does interconnection mean energy transfer?

Energy := a physical quantity transformable into heat.

Energy := a physical quantity transformable into heat.

For example, capacitor \mapsto resistor \mapsto heat.

Energy on capacitor = $\frac{1}{2}CV^2$

Electrical ports

Assume that we monitor the current/potential on a set of terminals.

Can we speak about 'the energy transferred from the environment to the circuit along these terminals'?

Assume henceforth KVL.

Terminals
$$\{1, 2, ..., p\}$$
 form a port :
 $\llbracket (I_1, ..., I_p, I_{p+1}, ..., I_N, P_1, ..., P_p, P_{p+1}, ..., P_N,) \in \mathscr{B}_{IP} \rrbracket$
 $\Rightarrow \llbracket I_1 + I_2 + \dots + I_p = 0 \rrbracket$. *`port KCL'*

 $KCL \Rightarrow$ all terminals together form a port.

If terminals $\{1, 2, \dots, p\}$ form a port, then

power in = $P_1(t)I_1(t) + P_2(t)I_2(t) + \dots + P_p(t)I_p(t)$ **energy in** = $\int_{t_1}^{t_2} [P_1(t)I_1(t) + P_2(t)I_2(t) + \dots + P_p(t)I_p(t)] dt$

This interpretation in terms of power and energy is not valid unless these terminals form a port ! Examples

2-terminal 1-port devices:

resistors, inductors, capacitors, memristors, etc., any 2-terminal circuit composed of these.

KCL \Rightarrow a port $(I_1 = -I_2 =: I)$. **KVL** \Rightarrow only $P_1 - P_2 =: V$ matters. \rightarrow usual circuit variables (I, V).

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

We cannot speak about *'the energy transferred from terminals* {1,2} *to* {3,4}'.

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

Terminals $\{1,2\}$ and $\{3,4\}$ form ports.

Energy transfer between circuits

Assume that we monitor the current/potential on a set of terminals between circuits or within a circuit.

Can we speak about

'the energy transferred along these terminals'?

Internal ports

Terminals $\{1, 2, \dots, N\}$ form an internal port : \Leftrightarrow

$$\begin{bmatrix} (I_1, I_2, \dots, I_N, P_1, P_2, \dots, P_N) \in \mathscr{B}_{IP} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} I_1 + I_2 + \dots + I_N = 0 \end{bmatrix}. \quad `internal port-KCL'$$

Power and energy

Flow through the terminals *from one side to the other* in the direction of the arrows:

power =
$$I_1(t)P_1(t) + I_2(t)P_2(t) + \dots + I_N(t)P_N(t)$$

energy = $\int_{t_1}^{t_2} [I_1(t)P_1(t) + I_2(t)P_2(t) + \dots + I_N(t)P_N(t)]d$

This physical interpretation of power and energy is valid only if the terminals form an internal port.

Because of the source and the load (2-terminal 1-ports) terminals $\{1,2\}$ and $\{3,4\}$ form internal ports.

Therefore, we can speak of *'the energy transferred from the source to the load'*.

Passivity

Definition

Assume KVL and KCL, use \mathscr{B}_{IP} . The circuit is [passive]: $\Leftrightarrow [(I,P) \in \mathscr{B}_{IP}, t_0 \in \mathbb{R} \Rightarrow \exists K \in \mathbb{R} \text{ such that}$

$$-\int_{t_0}^t \left(\sum_{k=1}^N I_k(t) P_k(t)\right) dt < K \qquad \text{for } t \ge t_0]]. \tag{1}$$

Passivity : \Leftrightarrow only finite amount of extractable energy.

Definition

Assume KVL and KCL, use \mathscr{B}_{IP} . The circuit is [passive]: $\Leftrightarrow [(I,P) \in \mathscr{B}_{IP}, t_0 \in \mathbb{R} \Rightarrow \exists K \in \mathbb{R} \text{ such that}$

$$-\int_{t_0}^t \left(\sum_{k=1}^N I_k(t) P_k(t)\right) dt < K \qquad \text{for } t \ge t_0]].$$
(2)

Passivity : \Leftrightarrow **only finite amount of extractable energy.**

 \mathscr{B}_{IP} is passive $\Leftrightarrow \exists V : \mathbb{R} \to [0, \infty)$, called a *storage*, such that

 $V(t_2) - V(t_1) \le \int_{t_1}^{t_2} \left(\sum_{k=1}^N I_k(t) P_k(t) \right) dt$

for $(I, P) \in \mathscr{B}_{IP}$ and $t_1 \ge t_2$.

 \rightsquigarrow positive realness, etc.

Concluding remarks

!! Use digraphs with leaves instead of graphs !!

- **!! Use digraphs with leaves instead of graphs** !!
- Avoid having to pair terminals as in N-ports.
- Avoid dealing with circuits as if the external terminals were driven by current or voltage sources.

- **!! Use digraphs with leaves instead of graphs !!**
- Avoid having to pair terminals as in N-ports.
- Avoid dealing with circuits as if the external terminals were driven by current or voltage sources.
- Note irrelevance and inappropriateness of input/output thinking.

The lecture frames are available from/at

Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems

