

MODELING, INTERCONNECTION,

and ENERGY FLOW

for DYNAMICAL SYSTEMS

JAN C. WILLEMS

K.U. Leuven, Flanders, Belgium

How are open systems formalized?

How are systems interconnected?

How is energy transferred between systems?

How are open systems formalized?

How are systems interconnected?

How is energy transferred between systems?

We deal with very simple examples, mainly electrical circuits and 1-dimensional mechanical systems.

SYSTEMS

Features

- Open
- Interconnected

Modular

The ever-increasing computing power allows to model such complex interconnected systems accurately by
tearing, zooming, and linking.
$~ \quad$ Simulation, model based design, ...

Features

- Open

Interconnected
Modular

The ever-increasing computing power allows to model such complex interconnected systems accurately by
tearing, zooming, and linking.
$~ \quad$ Simulation, model based design, ...
Requires the right mathematical concepts

- for dynamical system
- for interconnection
- for interconnection architecture

Open systems

Environment

Systems are 'open', they interact with their environment.

How are such systems formalized?
How is energy transferred from the environment to a system?

Interacting systems

Interconnected systems interact.

How is this interaction formalized?
How is energy transferred between systems?

CLASSICAL VIEW

Input/output systems

Oliver Heaviside

Norbert Wiener

Input/output systems

Input/output thinking is inappropriate for describing the functioning of physical systems.

A physical system is not a signal processor.

Better concept: a behavior.

Signal flow graphs

Signal flow graphs

Signal flow graphs are inappropriate for describing the interaction physical systems.

A physical system is not a signal processor.

Better concept: a graph with leaves.

Interconnection

Interconnection as output-to-input assignment.

Interconnection

Interconnection as output-to-input assignment.

Examples:

Interconnection

Interconnection as output-to-input assignment.

Output-to-input assignment is inappropriate for describing the interconnection of physical systems.

A physical system is not a signal processor.
$\underline{\text { Better concept: variable sharing }}$

The BEHAVIORAL APPROACH

The dynamic behavior

Definition: A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with

$\mathbb{T} \subseteq \mathbb{R}$ the time set,
\mathbb{W} the signal space,

$$
\begin{aligned}
\mathscr{B} \subseteq & (\mathbb{W})^{\mathbb{T}} \text { the behavior, } \\
& \text { that is, } \mathscr{B} \text { is a family of maps from } \mathbb{T} \text { to } \mathbb{W} .
\end{aligned}
$$

$w: \mathbb{T} \rightarrow \mathbb{W} \in \mathscr{B}$ means:
the model allows the trajectory w,
$w: \mathbb{T} \rightarrow \mathbb{W} \notin \mathscr{B}$ means:
the model forbids the trajectory w.

Behavioral models

The behavior captures the essence of what a model is.

The behavior is all there is.
Equivalence of models, properties of models, symmetries, system identification, etc. must all refer to the behavior.

Behavioral models

The behavior captures the essence of what a model is.

> The behavior is all there is. Equivalence of models, properties of models, symmetries, system identification, etc. must all refer to the behavior.

Every 'good' scientific theory is prohibition: it forbids certain things to happen. The more it forbids, the better it is.

Karl Popper (1902-1994)

Electrical circuit

At each terminal:

a potential (!) and a current (counted >0 into the circuit),

Electrical circuit

At each terminal:

a potential (!) and a current (counted >0 into the circuit),
\leadsto behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$.
$\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B}$ means:
this potential/current trajectory is compatible with the circuit architecture and its element values.

Electrical circuit

\leadsto behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$.
Early sources:

Brockway McMillan

Robert Newcomb

Mechanical device

At each terminal: a position and a force.
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.
More generally, a position, force, angle, and torque.

Other domains

Thermal systems:
At each terminal: a temperature and a heat flow.

Hydraulic systems:
At each terminal: a pressure and a mass flow.

Multidomain systems:
Systems with terminals of different types, as motors, pumps, etc.

There has been an extensive development that deals with system theory, control, system identification, etc.
from this point of view.

WHAT NEW DOES THIS BRING?

Controllability

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with $\mathbb{T}=\mathbb{R}$ or \mathbb{Z}, is said to be controllable : \Leftrightarrow
for all $w_{1}, w_{2} \in \mathscr{B}$, there exist
$T \in \mathbb{T}, T \geq 0$, and $w \in \mathscr{B}$, such that

$$
w(t)= \begin{cases}w_{1}(t) & \text { for } t<0 \\ w_{2}(t-T) & \text { for } t \geq T\end{cases}
$$

Controllability in a picture

$$
w_{1}, w_{2} \in \mathscr{B}
$$

Controllability in a picture

controllability : \Leftrightarrow concatenability of trajectories after a delay

Controllability in a picture

controllability $: \Leftrightarrow$ concatenability of trajectories after a delay

Makes controllability into a genuine, an intrinsic property of a system, rather than merely a property of a state representation.

LTIDSs

A linear time-invariant differential system (LTIDS) : \Leftrightarrow
the behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{\mathbb{W}}\right)^{\mathbb{R}}$ is the set of solutions of a system of linear constant-coefficient ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $R_{0}, R_{1}, \ldots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times{ }^{\mathrm{w}}}$ real matrices, and $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}}$.

LTIDSs

A linear time-invariant differential system (LTIDS) : \Leftrightarrow

the behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{R}}$ is the set of solutions of a system of linear constant-coefficient ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $R_{0}, R_{1}, \ldots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times{ }^{W}}$ real matrices, and $w: \mathbb{R} \rightarrow \mathbb{R}^{w}$. In polynomial matrix notation

$$
R\left(\frac{d}{d t}\right) w=0
$$

with $R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}} \in \mathbb{R}[\xi]^{\bullet \times w}$.
$\mathscr{B}=$ the set of solutions $=\operatorname{kernel}\left(R\left(\frac{d}{d t}\right)\right)$.

3 theorems for LTIDSs

1. There exists a $1 \leftrightarrow 1$ relation between the LTIDSs and the $\mathbb{R}[\xi]$-submodules of $\mathbb{R}[\xi]^{\bullet}$.
2. In LTIDSs, variables can be eliminated:

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \quad \Rightarrow \quad \tilde{R}\left(\frac{d}{d t}\right) w=0 .
$$

The projection of a kernel is a kernel.
3. A LTIDS is controllable if and only if

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \mathscr{B}=\operatorname{image}\left(M\left(\frac{d}{d t}\right)\right) .
$$

Every image is a kernel. A kernel is an image if and only if the system is controllable.

Hold mutatis mutandis for discrete-time and for PDEs.

INTERCONNECTION

Connection of terminals

By interconnecting, the terminal variables are equated.

Interconnection of circuits

$$
V_{N}=V_{N^{\prime}} \quad \text { and } \quad I_{N}+I_{N^{\prime}}=0
$$

Behavior after interconnection:
$\mathscr{B}_{1} \sqcap \mathscr{B}_{2}$
$:=\left\{\left(V_{1}, \ldots, V_{N-1}, V_{1^{\prime}}, \ldots, V_{N^{\prime}-1}, I_{1}, \ldots, I_{N-1}, I_{1^{\prime}}, \ldots, I_{N^{\prime}-1}\right) \mid\right.$
$\exists V, I$ such that

$$
\begin{aligned}
& \left(V_{1}, \ldots, V_{N-1}, V, I_{1}, \ldots, I_{N-1}, I\right) \in \mathscr{B}_{1} \text { and } \\
& \left.\left(V_{1^{\prime}}, \ldots, V_{N^{\prime}-1}, V, I_{1^{\prime}}, \ldots, I_{N^{\prime}-1},-I\right) \in \mathscr{B}_{2}\right\} .
\end{aligned}
$$

Interconnection of circuits

$~$ more terminals and more circuits connected

Interconnection of 1-D mechanical systems

$$
q_{N}=q_{N^{\prime}} \quad \text { and } \quad F_{N}+F_{N^{\prime}}=0
$$

Other terminal types

Thermal systems:

At each terminal: a temperature and a heat flow.

$$
T_{N}=T_{N^{\prime}} \quad \text { and } \quad Q_{N}+Q_{N^{\prime}}=0
$$

Hydraulic systems:
At each terminal: a pressure and a mass flow.

$$
p_{N}=p_{N^{\prime}} \quad \text { and } \quad f_{N}+f_{N^{\prime}}=0
$$

Sharing variables

$$
\begin{array}{ccr}
V_{N}=V_{N^{\prime}} \quad \text { and } \quad I_{N}+I_{N^{\prime}}=0, \\
q_{N}=q_{N^{\prime}} & \text { and } \quad F_{N}+F_{N^{\prime}}=0, \\
T_{N}=T_{N^{\prime}} & \text { and } & Q_{N}+Q_{N^{\prime}}=0, \\
p_{N}=p_{N^{\prime}} & \text { and } & f_{N}+f_{N^{\prime}}=0, \\
& \vdots &
\end{array}
$$

Interconnection means variable sharing.

TEARING, ZOOMING, and LINKING

Tearing

ii Model the behavior of selected variables !!

Tearing

ii Model the behavior of selected variables !!

Zooming

Zoom $\rightarrow \sim \sim$

Zooming

Hierarchically $\leadsto \sim \sim \sim$

Proceed until subsystems ('modularity') are obtained whose model is known, from first principles, or stored in a database.

Linking

Linking

Link $\leadsto へ っ へ$

Linking

Link $\leadsto \sim \leadsto \sim$

Model:

- component behavior

- sharing equations
- elimination
\leadsto behavior of the manifest variables.
Tearing, zooming, and linking \sim computer assisted modeling.

JUXTAPOSITION

ENERGY TRANSFER

PORTS

Energy

Energy := a physical quantity transformable into heat.

Energy

Energy := a physical quantity transformable into heat.

For example capacitor \rightarrow resistor \rightarrow heat. Energy on capacitor $=\frac{1}{2} C V^{2}$

Electrical ports

Terminals $\{1,2, \ldots, p\}$ form a port $: \Leftrightarrow$

$$
\begin{aligned}
& \left(V_{1}, \ldots, V_{p}, V_{p+1}, \ldots, V_{N}, I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}\right) \in \mathscr{B} \\
& \quad \Rightarrow \quad I_{1}+I_{2}+\cdots+I_{p}=0 . \quad \text { port } \text { KCL' }
\end{aligned}
$$

$\mathrm{KCL} \Rightarrow$ all terminals together form a port.

Electrical ports

If terminals $\{1,2, \ldots, p\}$ form a port, then
power in along these terminals $=V_{1}(t) I_{1}(t)+\cdots+V_{p}(t) I_{p}(t)$,
energy in $=\int_{t_{1}}^{t_{2}}\left[V_{1}(t) I_{1}(t)+\cdots+V_{p}(t) I_{p}(t)\right] d t$.
This interpretation in terms of power and energy is not valid unless these terminals form a port !

Examples

R, L, C's, and their interconnection into a 2-terminal circuit form ports

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.
We cannot speak about
'the energy transferred from $\{1,2\}$ to $\{3,4\}$ '.

Examples

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

Terminals $\{1,2\}$ and $\{3,4\}$ form a port.

MECHANICAL PORTS

Mechanical ports

Terminals $\{1,2, \ldots, p\}$ form a (mechanical) port $: \Leftrightarrow$

$$
\begin{gathered}
\left(q_{1}, \ldots, q_{p}, q_{p+1}, \ldots, q_{N}, F_{1}, \ldots, F_{p}, F_{p+1}, \ldots, F_{N}\right) \in \mathscr{B}, \\
\Rightarrow \quad F_{1}+F_{2}+\cdots+F_{p}=0 . \quad \text { 'port KFL' }
\end{gathered}
$$

Power and energy

If terminals $\{1,2, \ldots, p\}$ form a port, then

$$
\text { power in }=F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)
$$

energy in $=\int_{t_{1}}^{t_{2}}\left(F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)\right) d t$.

This interpretation in terms of power and energy is not valid unless these terminals form a port !

Example

$\underline{\text { Spring }}$

$$
F_{1}+F_{2}=0, \quad K\left(q_{1}-q_{2}\right)=F_{1}
$$

Example

Damper

$$
F_{1}+F_{2}=0, \quad D \frac{d}{d t}\left(q_{1}-q_{2}\right)=F_{1}
$$

Springs and dampers, and their interconnection form ports.

A mass

$$
M \frac{d^{2}}{d t^{2}} q=F
$$

does not satisfy KFL

Not a port!!!

Consequences

We discuss 3 consequences of the fact that a mass is not a port.

- The inerter

Motion energy
Energy as an extensive quantity

THE INERTER

Mechanical synthesis

A mass (not a port) is NOT the mechanical analogue of a capacitor (a port).

RLC synthesis $\nLeftarrow\rangle$ Damper-Spring-Mass synthesis

Is there a mechanical analogue of a capacitor?

The inerter

$$
B \frac{d^{2}}{d t^{2}}\left(q_{1}-q_{2}\right)=F_{1}, \quad F_{1}+F_{2}=0 \quad \text { satisfies } \mathbf{K F L} \leadsto \text { a port }
$$

Malcolm Smith
Springs, dampers, inerters, \& their interconnections \leadsto ports!

Electrical-mechanical analogies

voltage $V \leftrightarrow v$ velocity

current $I \leftrightarrow F$ force

Resistor	Damper
$\frac{1}{R}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$D\left(v_{1}-v_{2}\right)=F_{1}, F_{1}+F_{2}=0$
Inductor	Spring
$\frac{1}{L}\left(V_{1}-V_{2}\right)=\frac{d}{d t} I_{1}, I_{1}+I_{2}=0$	$K\left(v_{1}-v_{2}\right)=\frac{d}{d t} F_{1}, F_{1}+F_{2}=0$
Capacitor	Inerter
$C \frac{d}{d t}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$B \frac{d}{d t}\left(v_{1}-v_{2}\right)=F_{1}, F_{1}+F_{2}=0$

electrical RLC synthesis \Leftrightarrow mechanical DSI synthesis

BEHAVIORAL CONTROL

Example of behavioral control: A 'quarter car'

Example of behavioral control: A 'quarter car'

Example of behavioral control: A 'quarter car'

Example of behavioral control: A 'quarter car'

Suspension control in Formula 1

Nigel Mansell victorious in 1992 with an active damper suspension.

Active dampers were banned in 1994 to break the dominance of the Williams team.

Suspension control in Formula 1

Renault successfully used a passive 'tuned mass damper' suspension in 2005/2006.

Tuned mass dampers were banned in 2006, under the 'movable aerodynamic devices' clause.

Suspension control in Formula 1

inerter

Kimi Räikkönen wins the 2005 Grand Prix in Spain with McLaren's 'J-damper', i.e., Smith's inerter.

AUGUST 21, 2008

Ingenuity still brings success in Formula 1

ShareThis

For years engineers have complained that the rules of Formula 1 mean that there is little room left for innovation but Cambridge University's engineering department has just revealed that this is not the case at all.

Professor Malcolm Smith, a fellow of Gonville and Caius College, created an innovative suspension system in the late 1990s and this was patented by the univarcity The first details were published in 2002 in the obscure Institute of Electrical and Electronics Engineers's publication called Transactions on Automatic Control. 7 nis was spoted by the boitms at meLaren and an exclusive deal was negotiated to allow the team to use the technology in F1. The new system was first used at the Spanish GP in 2005 and Kimi Raikkonen won.

The team used the name "J Damper" to describe the unit - in an effort to confuse the opposition - but it has now been revealed that it is actually called "an inerter". This is

MOTION ENERGY

Back to the mass

$$
M \frac{d^{2}}{d t^{2}} q=F \Rightarrow \frac{d}{d t} \frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2}=F^{\top} \frac{d}{d t} q
$$

Back to the mass

$$
\begin{aligned}
& M \frac{d^{2}}{d t^{2}} q=F \Rightarrow \frac{d}{d t} \frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2}=F^{\top} \frac{d}{d t} q \\
& \text { If } F^{\top} \frac{d}{d t} q \text { is not power, } \\
& \text { is } \frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2} \text { not stored (kinetic, motion) energy??? }
\end{aligned}
$$

Kinetic energy and invariance under uniform motions

M

What is the kinetic energy?

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} M\|v\|^{2}
$$

Willem 's Gravesande 1688-1742

Émilie du Châtelet 1706-1749

This expression is not invariant under uniform motion.

Motion energy

What is the motion energy?
What quantity is transformable into heat?

$$
\mathscr{E}_{\text {motion }}=\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

Invariant under uniform motion.

Dissipation into heat

Can be justified by mounting a damper between the masses.

$$
\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

is the heat dissipated in the damper.

Motion energy

Generalization to N masses.

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Motion energy

With external forces.

(KFL) $\sum_{i \in\{1,2, \ldots, N\}} F_{i}=0 \Rightarrow \frac{d}{d t} \mathscr{E}_{\text {motion }}=\sum_{i \in\{1,2, \ldots, N\}} F_{i}^{\top} v_{i}$.

Motion energy

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Distinct from the classical expression of the kinetic energy,

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2}
$$

Motion energy

Reconciliation: $M_{N+1}=\infty, F_{N+1}=-\left(F_{1}+F_{2}+\cdots+F_{N}\right)$,

measure velocities w.r.t. this infinite mass ('ground'), then

$$
\begin{array}{r}
\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N, N+1\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}+M_{N+1}}\left\|v_{i}-v_{j}\right\|^{2} \\
\longrightarrow \quad \frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2}
\end{array}
$$

ENERGY as an

EXTENSIVE QUANTITY

Motion energy

Motion energy is not an extensive quantity, it is not additive.

Total motion energy \neq sum of the parts.
Power and energy involve 'action at a distance'.

PORTS and TERMINALS

Energy transfer

One cannot speak about
"the energy transferred from system 1 to system $2 "$ or "from the environment to system 1 ",
unless the relevant terminals form a port.

Terminals are for interconnection,

ports are for energy transfer.

CONCLUSION

Favorite textbooks

Favorite textbooks

simals and SIGNAL PROCESSORS

Reference: The behavioral approach to open and interconnected systems, Control Systems Magazine, volume 27, pages 46-99, 2007.

Copies of the lecture frames will be available from/at
Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

