

OPEN DYNAMICAL SYSTEMS

Their aims and origins

JAN C. WILLEMS K.U. Leuven

Liège, October 15, 2010

- How are open systems formalized?
- How are systems interconnected?
- How is energy transferred between systems?

SYSTEMS

- Open
- Interconnected
- Modular
- **Dynamic**

The ever-increasing computing power allows to model complex interconnected systems accurately by tearing, zooming, and linking.

 \rightsquigarrow Simulation, model based design, ...

Systems are 'open', they interact with their environment.

How are such systems formalized?

Interconnected systems interact.

How is this interaction formalized?

Modularity

Systems consist of the interconnection of repeated **building blocks.**

Essential for computer-assisted modeling.

Modularity

Systems consist of the interconnection of repeated **building blocks.**

Essential for computer-assisted modeling.

Examples:

electrical circuits → resistors, capacitors, inductors, transistors, diodes, sources, etc. mechanical devices → masses, springs, dampers, connecting bars, joints, etc. Dynamical

Main interest: the evolution over time.

How do the variables evolve in the long-term? Are there excessive transients? Do small variations drastically change the future? etc.

TEARING, ZOOMING, LINKING

;; Model the behavior of selected variables !!

;; Model the behavior of selected variables !!

Proceed until subsystems ('modularity') are obtained whose model is known from first principles, or stored in a database.

model for component variables + linking equations \sim model of behavior of the black box variables.

Tearing, zooming, & linking \Leftrightarrow computer assisted modeling.

The ever-increasing computing power allows to model complex interconnected systems accurately.

But requires the **right mathematical concepts**

- for dynamical system,
- for interconnection,
- for interconnection architecture.

HOW IT ALL BEGAN ...

Planetary motion

How, for heaven's sake, does it move?

Kepler's laws

Variable: the position as a function of time.

- K1: ellipse, sun in focus,
- **K2:** = areas in = times,
- K3: square of the period = third power of major axis.

Johannes Kepler (1571–1630)

Acceleration = function of position and velocity \sim

$$\frac{d^2}{dt^2}w(t) = A(w(t), \frac{d}{dt}w(t)).$$

Via calculus and calculations: K1, K2, & K3 \Leftrightarrow

Newton's version

The motion of a planet is completely determined by its initial position and initial velocity.

This led to the idea of a (deterministic) closed system.

The paradigm of closed systems

Motion completely determined by initial conditions. No environmental influences.

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930-)

 \sim differential equations, chaos, cellular automata, etc.

The paradigm of closed systems

Motion completely determined by initial conditions. No environmental influences.

Inadequate for modeling:

How could they forget about Newton's second law, about Maxwell's equations, about thermodynamics, about tearing, zooming & linking? **Newton's laws**

Gravitation:
$$F_1(t) = mM \frac{\vec{1}_{w(t)}}{||w(t)||^2}$$
Second law: $F_2(t) = m \frac{d^2}{dt^2} w(t)$ Third law: $F_1(t) + F_2(t) = 0$

Newton painted by William Blake

$$\frac{d^2}{dt^2}w(t) + \frac{\vec{1}_{w(t)}}{||w(t)||^2} = 0$$

INPUT/OUTPUT VIEW

Appealing: cause & effect, stimulus & response, etc.

Appealing: cause & effect, stimulus & response, etc.

Developed mainly in electrical engineering since \pm 1920, for circuit analysis and synthesis, and in control engineering.

These models do not cope well with initial conditions, very awkward framework for nonlinear models.

Lord Rayleigh (1842-1919)

Oliver Heaviside (1850-1925)

Norbert Wiener (1894-1964)

Paradigm shift

Around 1960, the model class shifted to

$$\frac{d}{dt}x(t) = f(x(t), u(t)), \qquad y(t) = h(x(t), u(t)).$$

The generation of outputs from inputs is viewed as follows

x(0) and $u(\cdot)$ lead to $x(\cdot)$ through $\frac{d}{dt}x(t) = f(x(t), u(t))$ $x(\cdot)$ and $u(\cdot)$ lead to $y(\cdot)$ throughy(t) = h(x(t), u(t)).

 \sim a vigorous research program, encompassing all aspects of dynamical modeling, signal processing, and control...

Rudolf Kalman (1930-)

INTERCONNECTION

Signal flow graphs

'Pathways'.
Signal flows graphs

Examples: combinations of

INADEQUACIES of I/O THINKING

Problems with I/O

Physical laws dictate the simultaneous occurrence of events.
 No cause/effect is implied.

Problems with I/O

- Physical laws dictate the simultaneous occurrence of events.
 No cause/effect is implied.
- Interconnection of physical systems leads to variable sharing.
 - Not signal transmission.

A physical system is not a signal processor.

Systems with terminals

Systems with terminals

<u>interaction variables</u>: <u>currents</u> & <u>voltages</u>. measurable by ammeters and voltmeters. What is the cause and what is the effect? What is the stimulus and what is the response?

Systems with terminals

At each terminal: a **position** and a **force**. More generally, **position**, **force**, **angle**, **torque**. What is the cause and what is the effect? What is the stimulus and what is the response?

Other domains

Thermal systems:

At each terminal: a temperature and a heat flow.

Hydraulic systems:

At each terminal: a **pressure** and a **mass flow.**

Multidomain systems:

Systems with terminals of different types, as motors, pumps, etc.

At each terminal, there are many simultaneous variables. Why and how should we separate these in stimulus and response?

Connection of terminals

By interconnecting, the terminal variables are equated.

Interconnection of electrical circuits

The V's are potentials. We silently used Kirchhoff's voltage law.

Interconnection of mechanical systems

Other domains

Thermal systems:

At each terminal: a temperature and a heat flow.

 $T_N = T_{N'}$ and $Q_N + Q_{N'} = 0$.

Hydraulic systems:

At each terminal: a pressure and a mass flow.

$$p_N = p_{N'}$$
 and $f_N + f_{N'} = 0$.

Sharing variables

 $V_N = V_{N'}$ and $I_N + I_{N'} = 0$, $q_N = q_{N'}$ and $F_N + F_{N'} = 0$, $T_N = T_{N'}$ and $Q_N + Q_{N'} = 0$, $p_N = p_{N'}$ and $f_N + f_{N'} = 0$, :

Interconnection \Leftrightarrow **variable sharing.**

An interconnection usually involves *more than one* variable. Signal flow graphs with pathways involving *a single* variable between two systems should be scrutinized with skepticism.

The BEHAVIORAL APPROACH

The behavior

A model tells which events are possible.

It does not articulate a cause/effect,

stimulus/response relation.

The dynamic behavior

<u>Definition</u>: A *dynamical system* : \Leftrightarrow ($\mathbb{T}, \mathbb{W}, \mathscr{B}$), with

- - W the signal space,
- $\blacktriangleright \mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}} \text{ the behavior.}$

 $w \in \mathscr{B}$ means:the model allows the trajectory w, $w \notin \mathscr{B}$ means:the model forbids the trajectory w.

Behavioral models

The behavior captures the essence of what a model is.

The behavior is all there is. Equivalence of models, properties of models, symmetries, system identification, etc. must all refer to the behavior.

Every 'good' scientific theory is prohibition: it forbids certain things to happen. The more it forbids, the better it is.

Karl Popper (1902-1994)

Technical development

There has been an extensive development that deals with

system theory, control, system identification, etc.

from this point of view, with systems 'behaviors' and interconnection 'variable sharing'.

WHAT NEW DOES THIS BRING?

CONTROL as INTERCONNECTION

Feedback control

Behavioral control

Behavioral control

control = interconnection.

controlled system

control = **integrated** system design.

Suspension control in Formula 1

Nigel Mansell victorious in 1992 with an active damper.

Active dampers were banned in 1994 to break the dominance of the Williams team.

Suspension control in Formula 1

Later, Renault successfully used a passive 'tuned mass damper'.

Banned in 2006,

under the 'movable aerodynamic devices' clause.

Suspension control in Formula 1

Kimi Räikkönen wins the 2005 Grand Prix in Spain with McLaren's 'J-damper', i.e., an inerter.
A passive suspension with no (~ small) mass.

ENERGY TRANSFER

How does energy flow from the environment to a system?

How is energy transferred between systems?

How does energy flow from the environment to a system?

How is energy transferred between systems?

Energy is NOT an 'extensive' quantity.

Interconnection versus energy transfer

Terminals are for interconnection.

Ports are for energy transfer.

A 'port' is a set of terminals with a special property (related to Kirchhoff's current law).

One cannot speak about

"the energy transferred from system 1 to system 2" or "from the environment to system 1",

unless the relevant terminals form a port.
CONCLUSION

<u>Reference</u>: The behavioral approach to open and interconnected systems, *Control Systems Magazine*, volume 27, pages 46-99, 2007.

Copies of the lecture frames will be available from/at

Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems

