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Outline

◮ Open and connected

◮ Mathematical models, dynamical systems

◮ Latent variables

◮ Modeling by tearing, zooming, and linking

◮ Hierarchical features

◮ Terminals versus ports

◮ Passivity
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Theme
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Features of modern engineering systems

◮ open

◮ interconnected

◮ modular

◮ dynamic
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Features of modern engineering systems

◮ open

◮ interconnected

◮ modular

◮ dynamic

Aim of today’s lecture:

develop a suitable mathematical language

aimed at computer-assisted modeling.

– p. 4/62



Open

SYSTEM

ENVIRONMENT

Boundary

Systems interact with their environment
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Connected

Systems consist of an architecture of interconnected subsystems
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Prototypical example

2N

1

Electrical
circuit

wires

Open : interaction through

wires, ‘terminals’
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Prototypical example

2N

1

Electrical
circuit

wires

Open : interaction through

wires, ‘terminals’

interconnection of standard modules
R’s, L’s, C′s, transistors, transformers, diodes,. . .
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Mathematical models
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The behavior

Assume that we have a phenomenon that produces‘events’.

Phenomenon

event

We view a deterministic model for a phenomenon as a
prescription of which eventscan, and which cannotoccur.
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The behavior

Assume that we have a phenomenon that produces‘events’.

Phenomenon

event

universum of events: U

behavior of model: B ⊆ U

We view a deterministic model for a phenomenon as a
prescription of which eventscan, and which cannotoccur.

The set of events which, according to the model, are possible
is called the behavior of the model, denoted byB.
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The dynamic behavior

In dynamical systems, the ‘events’ are maps,
with the time-axis as the domain,
and the signal space as the co-domain.

Hence events are functions of time.

Phenomenon

event

signal space

time
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The dynamic behavior

Phenomenon

event

signal space

time

It is convenient to distinguish in the notation

the domain of the maps, thetime set
and the codomain, thesignal space

the set where the functions take on their values.
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The dynamic behavior

Formal definition: A dynamical system:⇔ (T,W,B)

T ⊆ R time set
W signal space

B ⊆ W
T the behavior

a family of trajectories T → W

w : T → Rw ∈ B ⇔ w is compatible with the model
w : T → Rw /∈ B ⇔ the model forbids w
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The dynamic behavior

Formal definition: A dynamical system:⇔ (T,W,B)

T ⊆ R time set
W signal space

B ⊆ W
T the behavior

a family of trajectories T → W

w : T → Rw ∈ B ⇔ w is compatible with the model
w : T → Rw /∈ B ⇔ the model forbids w

today, T = R, continuous-timesystems
W = Rw, for somew ∈ N

B ⊆ (Rw)R is a family of time trajectories
taking values in a (finite-dimensional) vector space.
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Example: terminal behavior of an electrical circuit

2N

1

Electrical
circuit

terminal

event =(terminal potentials, terminal currents) : R → R2N

Throughout: flow variables > 0 into the system.
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Example: terminal behavior of an electrical circuit

2N

1

Electrical
circuit

terminal

event =(terminal potentials, terminal currents) : R → R2N

T = R, W = R2N

B = all
(V1, I1, . . .VN , IN) : R → R

2N

compatible with
the circuit architecture
and component values
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Behavioral models

The behavior is all there is.
Equivalence of models, properties of models,

controllability, stabilizability,
symmetries, dissipativity, system identification, etc.,

must all refer to the behavior.
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Controllability
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Controllability

Assume thatΣ = (R,W,B) is time-invariant
(to avoid irrelevant complications)

and T = R (for the sake of concreteness)

Σ is said to be controllable :⇔
for all w1,w2 ∈ B, there existsT ≥ 0 and w ∈ B such that

w(t) =

{

w1(t) for t < 0
w2(t −T ) for t ≥ T
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In pictures

1

w
2

w

time

W

2w

1

w

w

time

W W

controllability ⇔ concatenability of trajectories after a delay

– p. 16/62



LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔
the behavior consists of the set of solutions of a system of
linear constant coefficient ODEs

R0w+R1
d
dt

w+ · · ·+Rn

dn

dtn
w = 0.

R0,R1, · · · ,Rn ∈ R•×w real matrices that parametrize the
system, andw : R → Rw.
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LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔
the behavior consists of the set of solutions of a system of
linear constant coefficient ODEs

R0w+R1
d
dt

w+ · · ·+Rn

dn

dtn
w = 0.

R0,R1, · · · ,Rn ∈ R•×w real matrices that parametrize the
system, andw : R → Rw. In polynomial matrix notation

R
(

d
dt

)

w = 0

with R(ξ ) = R0 +R1ξ + · · ·+Rnξ n ∈ R [ξ ]•×w

a polynomial matrix.
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Controllability tests

Controllability theorem

◮ The behaviorB of R
(

d
dt

)

w = 0 is controllable;

◮ rank(R(λ )) is the same for allλ ∈ C;

◮ B allows an image representationsw = M
(

d
dt

)

ℓ;
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Controllability tests

Controllability theorem

◮ The behaviorB of R
(

d
dt

)

w = 0 is controllable;

◮ rank(R(λ )) is the same for allλ ∈ C;

◮ B allows an image representationsw = M
(

d
dt

)

ℓ;

◮
...

◮ the R [ξ ]-module 〈R〉 is closed;

◮ R [ξ ]1×w /〈R〉 is torsion free.
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Controllability tests

Controllability theorem

◮ The behaviorB of R
(

d
dt

)

w = 0 is controllable;

◮ rank(R(λ )) is the same for allλ ∈ C;

◮ B allows an image representationsw = M
(

d
dt

)

ℓ;

◮
...

◮ the R [ξ ]-module 〈R〉 is closed;

◮ R [ξ ]1×w /〈R〉 is torsion free.

◮ There exist computer-algebra based tests.

◮ Explains the notorious common factor problem for

p

(

d
dt

)

y = q

(

d
dt

)

u
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Manifest and latent variables
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First principles models

First principles models invariably contain auxiliary vari ables
in addition to the variables whose behavior we intend to
model.

manifest variables : the variables the model aims at.

latent variables :
auxiliary variables introduced during the modeling process.
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Example: an RLC circuit

Model the port behavior of

L
R

+

−
V

I R L

C

C
��

��

�� ��

T = R,W = R
2,w =

[

V
I

]

V = port voltage
I = port current
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Example: an RLC circuit

Model the port behavior of

L
R

+

−
V

I R L

C

C
��

��

�� ��

T = R,W = R
2,w =

[

V
I

]

V = port voltage
I = port current

This example involves 2-terminal electrical components.
Many methods for modeling such circuits have been
developed.
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Choice of latent variables

Here we follow modified nodal analysis (MNA). We associate
with the circuit a digraph, and choose as latent variables
the potentials of the vertices and thecurrents in the edges

L
R

+

−
V

I R L

C

C
��

��

�� ��

4

d

b

e f
��

1

32

a

c

��

��
��
��
��

��

��

;
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Choice of latent variables

Here we follow modified nodal analysis (MNA). We associate
with the circuit a digraph, and choose as latent variables
the potentials of the vertices and thecurrents in the edges

L
R

+

−
V

I R L

C

C
��

��

�� ��

4

d

b

e f
��

1

32

a

c

��

��
��
��
��

��

��

manifest variables: V, I

latent variables: (V1,V2,V3,V4); (Ia, Ib, Ic, Id, Ie, I f )
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Behavioral equations tableau

KCL : vertex 1 : Ia = Ic + Id

vertex 2 : Ic = Ie

vertex 3 : Id = I f

vertex 4 : Ib = Ig + Ih

Constitutive edge c: V1−V2 = RCIc

equations: edge d: V1−V3 = L d
dt Id

edge e: C d
dt (V2−V4) = Ie

edge f: V3−V4 = RLI f

Manifest port voltage : V = V1−V4

variables: port current : I = Ia
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Behavioral equations

In total 10 latent variables: (V1,V2,V3,V4); (Ia, Ib, Ic, Id, Ie, I f )

2 manifest variables: (V, I)

10 equations.

Which equation(s) govern(s)(V, I)?

For the case at hand, a simple calculation leads to:
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The port equation

The port behavior B consists of the solutions of:

Case 1: CRC 6=
L

RL

(

RC

RL
+

(

1+
RC

RL

)

CRC
d
dt

+CRC
L

RL

d2

dt2

)

V

=

(

1+CRC
d
dt

)(

1+
L
RL

d
dt

)

RC I

Case 2: CRC =
L

RL
(

RC

RL
+CRC

d
dt

)

V =

(

1+CRC
d
dt

)

RC I
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The elimination problem

Assume that the behavior of the manifest and latent variables
jointly, Bextended, has a certain structure.

Does the manifest behaviorB retain this structure?

‘Structure’: linearity, open, closed, (semi-)algebraic variety,
polyhedron, governed by LMIs, solution set of a system of
ODEs, linear constant coefficients ODEs, PDEs ...

Important question, from a system theoretic, modeling, and
practical point of view.
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Projection

Bextended

B

U
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Elimination theorem

The elimination theorem for LTIDSs

The projection of the set of solutions
of a system of linear constant coefficient ODEs

is again the set of solutions
of a system of linear constant coefficient ODEs .
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Elimination theorem

The elimination theorem for LTIDSs

The projection of the set of solutions
of a system of linear constant coefficient ODEs

is again the set of solutions
of a system of linear constant coefficient ODEs .

◮ There exist computer-algebra based algorithms for
elimination for LTIDSs.

◮ There is no nonlinear elimination theorem.
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Interconnection architecture
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Objective

Formalize modeling of interconnected systems.
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Modeling by tearing, zooming, and linking

TEARING

LINKING

ZOOMING
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Formailization

Architecture:

graph with leaves leaf

vertex

edge

vertices ; systems with terminals
edges ; connected terminals
leaves ; interaction with environment

terminals ; system variables
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Behavioral equations

1. Module specification for each vertex.
Relation among the variables on the terminals.

2. Interconnection equations for each edge.
Equating the variables on the terminals associated
with the same edge.

3. Manifest variable assignment
Specifies the variables of interest.
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Behavioral equations

1. Module specification for each vertex.
Relation among the variables on the terminals.

A specification of the behavior of the terminal variables
of the subsystems stored as (parametrized) modules in a
data-base.

2. Interconnection equations for each edge.
Equating the variables on the terminals associated
with the same edge.

Interconnection laws stored in a data-base.
Laws depend on terminal type:
electrical / mechanical / hydraulic / etc.

3. Manifest variable assignment
Specifies the variables of interest.
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Behavioral equations

1. Module specification for each vertex.
Relation among the variables on the terminals.
Terminal behavior of subcircuits.

2. Interconnection equations for each edge.
Equating the variables on the terminals associated
with the same edge.

V1 = V2, I1 + I2 = 0

3. Manifest variable assignment
Potentials and currents on the external terminals.
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Hierarchy
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New modules from old ones

Tearing, zooming, linking is hierarchical :

leaf

vertex

edge
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New modules from old ones

Tearing, zooming, linking is hierarchical :

leaf

vertex

edge

Embed modules in vertices, obtain behavioral equations for
the interconnected system, eliminate the latent variables,
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New modules from old ones

Tearing, zooming, linking is hierarchical :

leaf

vertex

edge

Terminals

MODULE

Embed modules in vertices, obtain behavioral equations for
the interconnected system, eliminate the latent variables, and
use interconnected systemas a module with terminals in a
new interconnection architecture.
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Example

2

1 3

4

!! Model relation betweenV1, I1,V2, I2 !!
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Tearing

2

1 3

4

View as interconnection of 5 subsystems:
one trafo,
two 4-terminal RRLC ladders,
two 3-terminal RLC circuits.

Model the subsystems one-by-one.
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Hierarchy

Subsystems 1 and 4
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Hierarchy

Subsystems 1 and 4

Tearing
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Hierarchy

Subsystems 1 and 4

Tearing Zooming
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Hereditary

Subsystems 2 and 3 Model 4-terminal circuit
1

2 3

4
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Hereditary

Subsystems 2 and 3 Model 4-terminal circuit
1

2 3

4Specialize:I4 = 0,
eliminate V4

1

2 3
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Hereditary

Subsystems 2 and 3 Model 4-terminal circuit
1

2 3

4Specialize:I4 = 0,
eliminate V4

1

2 3

SetI2 = I3 = 0,
eliminate V2,V3,

setV ′
4 = V ′′

4 = V4,

I′4 + I′′4 = I4,
eliminate V4, I4.

1

4′ 4′′
– p. 39/62



Linking

All interconnections are of electrical type

Ileft

Ileft

Iright

Iright

Vleft

Vleft

Vright

Vright

Interconnection equations:

potential left = potential right ; Vleft = Vright

current left + current right = 0 ; Ileft + Iright = 0
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Terminals versus ports
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Bond graphs

variables
shared
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Bond graphs

effort
flow

Premise: Interconnection variables consist of

an effort and a flow effort × flow = power

Interconnection ⇔
[efforts equal] & [flows sum to 0]

⇒ power equal

‘Power is the universal currency of physical systems’
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Effort times flow

Interconnection variables:

◮ voltage & current

◮ force & velocity

◮ pressure & mass flow

◮ temperature &
heat flow

temperature
◮ ...
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Effort times flow

Interconnection variables:

◮ voltage & current

◮ force & velocity

◮ pressure & mass flow

◮ temperature &
heat flow

temperature
◮ ...

Do interconnections really equate efforts and flows, with
effort × flow = power?

– p. 43/62



Effort times flow

Interconnection variables:

◮ voltage & current

◮ force & velocity

◮ pressure & mass flow

◮ temperature &
heat flow

temperature
◮ ...

Do interconnections really equate efforts and flows, with
effort × flow = power?

Terminals are for interconnection, portsare for energy transfer

We illustrate this, for electrical interconnections only.
– p. 43/62



Terminals versus ports

2N

1

Electrical
circuit

terminals

Terminal variables and behavior (N terminals, 2N real
variables in total – a potential and a current for each
terminal):

(V1, I1,V2, I2, . . . ,VN , IN) ; behavior B ⊆
(

R
2N)R
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Definition of a port

Port 1

Port 2

Port k

Circuit

A subset of the terminals forms a port :⇔

sum currents on port terminals = 0

adding any, but the same, function of time
to each of the port terminal potentials,
but not to the other terminal potentials

⇒ a new set of legal potentials.
– p. 45/62



Definition of a port

Port 1

Port 2

Port k

Circuit

(

V1, I1 . . . ,Vp, Ip ,Vp+1, . . . , In
)

∈ B,α : R → R

⇓

(

V1 +α , I1, . . . ,Vp +α , Ip ,Vp+1, . . . , In
)

∈ B I1 + · · ·+ Ip = 0
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Definition of a port

Port 1

Port 2

Port k

Circuit

Equivalenty: the behavioral equations contain the variables
V1,V2 . . . ,Vp only as the differences

Vi −Vj for i, j = 1, ...p

and contain as a ‘consequence’ the equation

I1 + I2 + · · ·+ Ip = 0
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Kirchhoff’s laws

2N

1

Electrical
circuit

terminals
All the terminals together form a port

(

V1, I1 . . . ,VN , IN

)

∈ B,α : R → R

⇓
(

V1 +α , I1, . . . ,VN +α , IN

)

∈ B

I1 + · · ·+ IN = 0
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Kirchhoff’s laws

2N

1

Electrical
circuit

terminals
All the terminals together form a port

(

V1, I1 . . . ,VN , IN

)

∈ B,α : R → R

⇓
(

V1 +α , I1, . . . ,VN +α , IN

)

∈ B

I1 + · · ·+ IN = 0

Viewed as ‘laws’ governing electrical circuits, these may be
thought of as the KVL & KCL .
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Power and energy

Circuit

Port

The energy that flows into the circuit along the terminals
1,2, . . . ,p during the interval [t1, t2] equals

∫ t2

t1
Σk=1,...,pVk(t) Ik(t)dt

provided these terminals form a port!
– p. 47/62



Terminals versus ports

Circuit 1 Circuit 2

Circuit 3

Start with 3 circuits, to be interconnected along the indicated
terminals.
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Terminals versus ports

Circuit 1 Circuit 2

Circuit 3

Circuit 1 Circuit 2

Circuit 3

Interconnection through terminals, energy transfer through
ports. One cannot speak about

“the energy transferred from circuit 1 to circuit 2”

unless their interconnected terminals form a port.
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Inherited properties
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Properties of behaviors

The view of a system as a behavior allows to deduce that
important properties are preserved under interconnection, as

◮ KVL & KCL

◮ passivity

◮ reciprocity

◮ linearity, time-invariance

◮ B is the kernel of a system of constant coefficient ODEs
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Properties of behaviors

◮ KVL & KCL

◮ passivity
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Kirchhoff’s laws

ElectricalElectrical
circuit 1 circuit 2

Assume the individual circuits satisfy KVL and KCL (that is,
the terminals form a port),
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Kirchhoff’s laws

ElectricalElectrical
circuit 1 circuit 2

Assume the individual circuits satisfy KVL and KCL (that is,
the terminals form a port), then so do the external terminals
of the interconnection

ElectricalElectrical
circuit 1 circuit 2

⇒ Any interconnection of electrical components satisfies
KVL and KCL.
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Dissipativity

How should one define dissipativity?

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

rate of supply   
absorbed

sDissipative
System
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Dissipativity

How should one define dissipativity?

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

rate of supply   
absorbed

sDissipative
System

For example, ‘passivity’

supply = power   

electrical terminals

ΣterminalsVkIk
Circuit
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Storage

Consider the system(R,R,S )

And (R,R×R,Sextended)

Assume(R,R×R,Sextended) ; (R,R,S ) after projection.
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Storage

Consider the system(R,R,S ) s ∈ S means
s : R → R is thesupply rate as a function of time.

And (R,R×R,Sextended) (s,V ) ∈ Sextended means
s : R → R, is thesupply rate,
V : R → R is thestorageas a function of time.

Definition: Call V a storage :⇔

V (t2) ≤V (t1)+
∫ t2

t1
s(t)dt

for all (s,V ) ∈ Sextended and t1 ≤ t2.

Equivalently,
d
dt

V ≤ s
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Storage

Consider the system(R,R,S ) s ∈ S means
s : R → R is thesupply rate as a function of time.

And (R,R×R,Sextended) (s,V ) ∈ Sextended means
s : R → R, is thesupply rate,
V : R → R is thestorage

Definition: Call V a storage :⇔

V (t2) ≤V (t1)+
∫ t2

t1
s(t)dt

for all (s,V ) ∈ Sextended and t1 ≤ t2.

Equivalently,
d
dt

V ≤ s

supply

storage

dissipation
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Definition of dissipativity

Theorem: The following two conditions are equivalent:

◮ For all s ∈ S , there existsK ∈ R such that

−

∫ T

0
s(t)dt < K for all T > 0.

◮ There exists a non-negative storage

V (t2) ≤V (t1)+

∫ t2

t1
s(t)dt
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Definition of dissipativity

Theorem: The following two conditions are equivalent:

◮ For all s ∈ S , there existsK ∈ R such that

−

∫ T

0
s(t)dt < K for all T > 0.

◮ There exists a non-negative storage

V (t2) ≤V (t1)+

∫ t2

t1
s(t)dt

With s = Σterminals VkIk, either of these two equivalent
conditions leads to a good definition ofpassivity for circuits.
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Passivity of electrical circuits

ElectricalElectrical
circuit 1 circuit 2

Assume the individual circuits are passive,
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Passivity of electrical circuits

ElectricalElectrical
circuit 1 circuit 2

Assume the individual circuits are passive, then so is the
interconnection

ElectricalElectrical
circuit 1 circuit 2

⇒ An interconnection of passive electrical components is
passive.
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Reflections
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Classical circuit theory

Classical circuit theory evolves around adigraph with
2-terminal elements or external ports in the edges and
connections in the vertices.

vertex

edge
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Classical circuit theory

Classical circuit theory evolves around adigraph with
2-terminal elements or external ports in the edges and
connections in the vertices. For example,

��

R
L

C

C

LRI

V
−

+
�� ��

��

��

;

��
��
��
��

�� ��

��
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Limitations

◮ Deals with 2-terminal ports (mainly with 2-terminal
elements) and with 2-terminal external ports.

◮ Is port oriented, and does not articulate that
terminals, not ports, make the interconnections.

◮ The external ports are especially bothersome: how do
we know what the environment will be?

◮ It is not hierarchical .

The key is to use a(di)graph with leaves
rather than a digraph.
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Vertices and edges

In circuit graphs,
subsystems are in the edges ,connections are in the vertices

vertex

edge
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Vertices and edges

In circuit graphs,
subsystems are in the edges ,connections are in the vertices

vertex

edge

leaf

vertex

edge

Contrast with tearing, zooming, linking:
subsystems are in the vertices , connections are in the edges
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Ceterum censeo

The input/output approach as the primary and universal
view of open systems is a misconception.

Physical systems are not signal processors !
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Ceterum censeo

The input/output approach as the primary and universal
view of open systems is a misconception.

Physical systems are not signal processors !

Signals and Systems ; Signals and Signal Processors!
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Three thoughts to take home

1. A dynamical system = a family of trajectories.

2. Interconnection = variable sharing

3. Control = interconnection
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Want to read about it? See
The behavioral approach to open and interconnected systems,
Control Systems Magazine, volume 27, pages 46-99, 2007.

The lecture frames are available from/at
http://www.esat.kuleuven.be/∼jwillems
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Want to read about it? See
The behavioral approach to open and interconnected systems,
Control Systems Magazine, volume 27, pages 46-99, 2007.

The lecture frames are available from/at
http://www.esat.kuleuven.be/∼jwillems

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you
– p. 62/62


	small �colorbox {black}{skyblue}{white Outline}
	small �colorbox {black}{skyblue}{white Features of modern engineering systems}
	small �colorbox {black}{skyblue}{white Features of modern engineering systems}

	small �colorbox {black}{skyblue}{white Open}
	small �colorbox {black}{skyblue}{white Connected}
	htwo htwo small �colorbox {black}{skyblue}{white Prototypical example}
	htwo htwo small �colorbox {black}{skyblue}{white Prototypical example}

	small �colorbox {black}{skyblue}{white The behavior}
	small �colorbox {black}{skyblue}{white The behavior}

	small �colorbox {black}{skyblue} {white The dynamic behavior}
	small �colorbox {black}{skyblue} {white The dynamic behavior}

	small �colorbox {black}{skyblue}{white The dynamic behavior}
	small �colorbox {black}{skyblue}{white The dynamic behavior}

	small �colorbox {black}{skyblue}{white Example: terminal behavior of an electrical circuit}
	small �colorbox {black}{skyblue}{white Example: terminal behavior of an electrical circuit}

	small �colorbox {black}{skyblue}{white Behavioral models}
	small �colorbox {black}{skyblue}{white Controllability}
	small �colorbox {black}{skyblue}{white In pictures}
	small �colorbox {black}{skyblue}{white LTIDSs}
	small �colorbox {black}{skyblue}{white LTIDSs}

	small �colorbox {black}{skyblue}{white Controllability tests}
	small �colorbox {black}{skyblue}{white Controllability tests}
	small �colorbox {black}{skyblue}{white Controllability tests}

	small �colorbox {black}{skyblue}{white First principles models}
	small �colorbox {black}{skyblue}{white Example: an RLC circuit}
	small �colorbox {black}{skyblue}{white Example: an RLC circuit}

	small �colorbox {black}{skyblue}{white Choice of latent variables}
	small �colorbox {black}{skyblue}{white Choice of latent variables}

	small �colorbox {black}{skyblue}{white Behavioral equations tableau}
	small �colorbox {black}{skyblue}{white Behavioral equations}
	small �colorbox {black}{skyblue}{white The port equation}
	small �colorbox {black}{skyblue}{white The elimination problem}
	small �colorbox {black}{skyblue}{white Projection}
	small �colorbox {black}{skyblue}{white Elimination theorem}
	small �colorbox {black}{skyblue}{white Elimination theorem}

	small �colorbox {black}{skyblue}{white Objective}
	small �colorbox {black}{skyblue}{white Modeling by tearing, zooming, and linking}
	small �colorbox {black}{skyblue}{white Formailization}
	small �colorbox {black}{skyblue}{white Behavioral equations}
	small �colorbox {black}{skyblue}{white Behavioral equations}
	small �colorbox {black}{skyblue}{white Behavioral equations}

	small �colorbox {black}{skyblue}{white New modules from old ones}
	small �colorbox {black}{skyblue}{white New modules from old ones}
	small �colorbox {black}{skyblue}{white New modules from old ones}

	small �colorbox {black}{skyblue}{white Example}
	small �colorbox {black}{skyblue}{white Tearing}
	small �colorbox {black}{skyblue}{white Hierarchy}
	small �colorbox {black}{skyblue}{white Hierarchy}
	small �colorbox {black}{skyblue}{white Hierarchy}

	small �colorbox {black}{skyblue}{white Hereditary}
	small �colorbox {black}{skyblue}{white Hereditary}
	small �colorbox {black}{skyblue}{white Hereditary}

	small �colorbox {black}{skyblue}{white Linking}
	small �colorbox {black}{skyblue}{white Bond graphs}
	small �colorbox {black}{skyblue}{white Bond graphs}

	small �colorbox {black}{skyblue}{white Effort times flow}
	small �colorbox {black}{skyblue}{white Effort times flow}
	small �colorbox {black}{skyblue}{white Effort times flow}

	small �colorbox {black}{skyblue}{white Terminals versus ports}
	small �colorbox {black}{skyblue}{white Definition of a port}
	small �colorbox {black}{skyblue}{white Definition of a port}
	small �colorbox {black}{skyblue}{white Definition of a port}

	small �colorbox {black}{skyblue}{white Kirchhoff's laws}
	small �colorbox {black}{skyblue}{white Kirchhoff's laws}

	small �colorbox {black}{skyblue}{white Power and energy}
	small �colorbox {black}{skyblue}{white Terminals versus ports}
	small �colorbox {black}{skyblue}{white Terminals versus ports}

	small �colorbox {black}{skyblue}{white Properties of behaviors}
	small �colorbox {black}{skyblue}{white Properties of behaviors}

	small �colorbox {black}{skyblue}{white Kirchhoff's laws}
	small �colorbox {black}{skyblue}{white Kirchhoff's laws}

	small �colorbox {black}{skyblue}{white Dissipativity}
	small �colorbox {black}{skyblue}{white Dissipativity}

	small �colorbox {black}{skyblue}{white Storage}
	small �colorbox {black}{skyblue}{white Storage}
	small �colorbox {black}{skyblue}{white Storage}

	small �colorbox {black}{skyblue}{white Definition of dissipativity}
	small �colorbox {black}{skyblue}{white Definition of dissipativity}

	small �colorbox {black}{skyblue}{white Passivity of electrical circuits}
	small �colorbox {black}{skyblue}{white Passivity of electrical circuits}

	small �colorbox {black}{skyblue}{white Classical circuit theory}
	small �colorbox {black}{skyblue}{white Classical circuit theory}

	small �colorbox {black}{skyblue}{white Limitations}
	small �colorbox {black}{skyblue}{white Vertices and edges}
	small �colorbox {black}{skyblue}{white Vertices and edges}

	small �colorbox {black}{skyblue}{white Ceterum censeo}
	small �colorbox {black}{skyblue}{white Ceterum censeo}

	small �colorbox {black}{skyblue}{white Three thoughts to take home}
	 
	 


