

SYSTEM INTERCONNECTION

Jan C. Willems
K.U. Leuven, Flanders, Belgium

Outline

Open and connected
Mathematical models, dynamical systems
Latent variables
Modeling by tearing, zooming, and linking
Hierarchical features
Terminals versus ports
Passivity

Theme

Features of modern engineering systems

open

interconnected
modular
dynamic

- open
- interconnected
modular
dynamic
Aim of today's lecture:
develop a suitable mathematical language
aimed at computer-assisted modeling.

Systems interact with their environment

Connected

Systems consist of an architecture of interconnected subsystems

Open : interaction through wires, 'terminals'

Open : interaction through
wires, 'terminals'

Open : interaction through
wires, 'terminals'

Prototypical example

interconnection of standard modules R 's, L^{\prime} 's, $C^{\prime} s$, transistors, transformers, diodes, ...

Mathematical models

Assume that we have a phenomenon that produces 'events'.

We view a deterministic model for a phenomenon as a prescription of which events can, and which cannot occur.

The behavior

Assume that we have a phenomenon that produces 'events'.

We view a deterministic model for a phenomenon as a prescription of which events can, and which cannot occur.

The set of events which, according to the model, are possible is called the behavior of the model, denoted by \mathscr{B}.

The dynamic behavior

In dynamical systems, the 'events' are maps, with the time-axis as the domain, and the signal space as the co-domain.
Hence events are functions of time.

The dynamic behavior

It is convenient to distinguish in the notation
the domain of the maps, the time set and the codomain, the signal space the set where the functions take on their values.

The dynamic behavior

Formal definition: A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$

$$
\begin{array}{l|l}
\mathbb{T} \subseteq \mathbb{R} & \text { time set } \\
\mathbb{W} & \text { signal space }
\end{array}
$$

$\mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}} \quad$ the behavior
a family of trajectories $\mathbb{T} \rightarrow \mathbb{W}$
$w: \mathbb{T} \rightarrow \mathbb{R}^{w} \in \mathscr{B} \Leftrightarrow w$ is compatible with the model
$w: \mathbb{T} \rightarrow \mathbb{R}^{\boldsymbol{w}} \notin \mathscr{B} \Leftrightarrow$ the model forbids w

The dynamic behavior

Formal definition: A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$

$$
\begin{array}{ll}
\mathbb{T} \subseteq \mathbb{R} & \text { time set } \\
\mathbb{W} & \text { signal space } \\
\mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}} & \begin{array}{l}
\text { the behavior } \\
\text { a family of trajectories } \mathbb{T} \rightarrow \mathbb{W}
\end{array}
\end{array}
$$

$w: \mathbb{T} \rightarrow \mathbb{R}^{w} \in \mathscr{B} \Leftrightarrow w$ is compatible with the model
$w: \mathbb{T} \rightarrow \mathbb{R}^{\mathrm{w}} \notin \mathscr{B} \Leftrightarrow$ the model forbids w
today, $\quad \mathbb{T}=\mathbb{R}, \quad$ continuous-time systems $\mathbb{W}=\mathbb{R}^{\mathrm{w}}, \quad$ for some $\mathrm{w} \in \mathbb{N}$
$\mathscr{B} \subseteq\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{R}}$ is a family of time trajectories taking values in a (finite-dimensional) vector space.

Example: terminal behavior of an electrical circuit

event $=($ terminal potentials, terminal currents $): \mathbb{R} \rightarrow \mathbb{R}^{2 N}$
Throughout: flow variables >0 into the system.

Example: terminal behavior of an electrical circuit

$$
\begin{aligned}
& \mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{R}^{2 N} \\
& \mathscr{B}= \\
& \quad \text { all } \\
& \quad\left(V_{1}, I_{1}, \ldots V_{N}, I_{N}\right): \mathbb{R} \rightarrow \mathbb{R}^{2 N} \\
& \quad \begin{array}{l}
\text { compatible with } \\
\\
\quad \text { the circuit architecture } \\
\\
\quad \text { and component values }
\end{array}
\end{aligned}
$$

event $=\left(\right.$ terminal potentials, terminal currents) $: \mathbb{R} \rightarrow \mathbb{R}^{2 N}$

Behavioral models

The behavior is all there is.
Equivalence of models, properties of models, controllability, stabilizability,
symmetries, dissipativity, system identification, etc., must all refer to the behavior.

Controllability

Controllability

Assume that $\Sigma=(\mathbb{R}, \mathbb{W}, \mathscr{B})$ is time-invariant
(to avoid irrelevant complications)
and $\mathbb{T}=\mathbb{R} \quad$ (for the sake of concreteness)
Σ is said to be controllable : \Leftrightarrow
for all $w_{1}, w_{2} \in \mathscr{B}$, there exists $T \geq 0$ and $w \in \mathscr{B}$ such that

$$
w(t)=\left\{\begin{array}{lll}
w_{1}(t) & \text { for } & t<0 \\
w_{2}(t-T) & \text { for } & t \geq T
\end{array}\right.
$$

In pictures

controllability \Leftrightarrow concatenability of trajectories after a delay

LTIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is
a linear time-invariant differential system (LTIDS) : \Leftrightarrow the behavior consists of the set of solutions of a system of linear constant coefficient ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

$R_{0}, R_{1}, \cdots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$ real matrices that parametrize the system, and $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}}$.

LTIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is
a linear time-invariant differential system (LTIDS) : \Leftrightarrow the behavior consists of the set of solutions of a system of linear constant coefficient ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

$R_{0}, R_{1}, \cdots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$ real matrices that parametrize the system, and $w: \mathbb{R} \rightarrow \mathbb{R}^{w}$. In polynomial matrix notation

$$
R\left(\frac{d}{d t}\right) w=0
$$

with $R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}} \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$
a polynomial matrix.

Controllability tests

Controllability theorem

The behavior \mathscr{B} of $R\left(\frac{d}{d t}\right) w=0$ is controllable; $\operatorname{rank}(R(\lambda))$ is the same for all $\lambda \in \mathbb{C}$; \mathscr{B} allows an image representations $w=M\left(\frac{d}{d t}\right) \ell$;

Controllability tests

Controllability theorem

The behavior \mathscr{B} of $R\left(\frac{d}{d t}\right) w=0$ is controllable; $\operatorname{rank}(R(\lambda))$ is the same for all $\lambda \in \mathbb{C}$; \mathscr{B} allows an image representations $w=M\left(\frac{d}{d t}\right) \ell$;
!
the $\mathbb{R}[\xi]$-module $\langle R\rangle$ is closed;
$\mathbb{R}[\xi]^{1 \times w} /\langle R\rangle$ is torsion free.

Controllability tests

Controllability theorem

The behavior \mathscr{B} of $R\left(\frac{d}{d t}\right) w=0$ is controllable; $\operatorname{rank}(R(\lambda))$ is the same for all $\lambda \in \mathbb{C}$; \mathscr{B} allows an image representations $w=M\left(\frac{d}{d t}\right) \ell$;
!
the $\mathbb{R}[\xi]$-module $\langle R\rangle$ is closed;
$\mathbb{R}[\xi]^{1 \times \mathrm{w}} /\langle R\rangle$ is torsion free.
There exist computer-algebra based tests.
Explains the notorious common factor problem for

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u
$$

Manifest and latent variables

First principles models

First principles models invariably contain auxiliary variables in addition to the variables whose behavior we intend to model.
manifest variables : the variables the model aims at.
latent variables :
auxiliary variables introduced during the modeling process.

Example: an RLC circuit

Model the port behavior of

$$
\begin{array}{r}
\mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{R}^{2}, w=\left[\begin{array}{l}
V \\
I
\end{array}\right] \\
V=\text { port voltage } \\
I=\text { port current }
\end{array}
$$

Example: an RLC circuit

Model the port behavior of

$$
\begin{array}{r}
\mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{R}^{2}, w=\left[\begin{array}{l}
V \\
I
\end{array}\right] \\
V=\text { port voltage } \\
I=\text { port current }
\end{array}
$$

This example involves 2-terminal electrical components. Many methods for modeling such circuits have been developed.

Choice of latent variables

Here we follow modified nodal analysis (MNA). We associate with the circuit a digraph, and choose as latent variables the potentials of the vertices and the currents in the edges

Choice of latent variables

Here we follow modified nodal analysis (MNA). We associate with the circuit a digraph, and choose as latent variables the potentials of the vertices and the currents in the edges

manifest variables: V, I
latent variables:

$$
\left(V_{1}, V_{2}, V_{3}, V_{4}\right) ;\left(I_{a}, I_{b}, I_{c}, I_{d}, I_{e}, I_{f}\right)
$$

Behavioral equations tableau

KCL :
vertex 1 :
vertex 2 :
vertex 3 :
vertex 4 :

$$
\begin{aligned}
I_{a} & =I_{c}+I_{d} \\
I_{c} & =I_{e} \\
I_{d} & =I_{f} \\
I_{b} & =I_{g}+I_{h}
\end{aligned}
$$

Constitutive equations:
edge c :
edge d:
edge e :
edge f :
port voltage :
port current :
$V=V_{1}-V_{4}$
$I=I_{a}$

Behavioral equations

In total 10 latent variables:	$\left(V_{1}, V_{2}, V_{3}, V_{4}\right) ;\left(I_{a}, I_{b}, I_{c}, I_{d}, I_{e}, I_{f}\right)$
$\mathbf{2}$ manifest variables:	(V, I)
$\mathbf{1 0}$ equations.	

Which equation(s) govern(s) (V, I) ?
For the case at hand, a simple calculation leads to:

The port equation

The port behavior \mathscr{B} consists of the solutions of:
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
&\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
&=\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

The elimination problem

Assume that the behavior of the manifest and latent variables jointly, $\mathscr{B}_{\text {extended }}$, has a certain structure.

Does the manifest behavior \mathscr{B} retain this structure?
'Structure': linearity, open, closed, (semi-)algebraic variety, polyhedron, governed by LMIs, solution set of a system of ODEs, linear constant coefficients ODEs, PDEs ...

Important question, from a system theoretic, modeling, and practical point of view.

Projection

Dlimination theorem

The elimination theorem for LTIDSs

The projection of the set of solutions of a system of linear constant coefficient ODEs is again the set of solutions of a system of linear constant coefficient ODEs .

Elimination theorem

The elimination theorem for LTIDSs

The projection of the set of solutions of a system of linear constant coefficient ODEs is again the set of solutions of a system of linear constant coefficient ODEs .

There exist computer-algebra based algorithms for elimination for LTIDSs.

There is no nonlinear elimination theorem.

Interconnection architecture

Objective

Formalize modeling of interconnected systems.

Modeling by tearing, zooming, and linking

LINKING

Formailization

Architecture: graph with leaves

vertices \leadsto systems with terminals edges \leadsto connected terminals
leaves \leadsto interaction with environment
terminals \leadsto system variables

Behavioral equations

1. Module specification for each vertex. Relation among the variables on the terminals.
2. Interconnection equations for each edge.

Equating the variables on the terminals associated with the same edge.
3. Manifest variable assignment

Specifies the variables of interest.

Behavioral equations

1. Module specification for each vertex.

Relation among the variables on the terminals. A specification of the behavior of the terminal variables of the subsystems stored as (parametrized) modules in a data-base.
2. Interconnection equations for each edge.

Equating the variables on the terminals associated with the same edge.
Interconnection laws stored in a data-base. Laws depend on terminal type: electrical / mechanical / hydraulic / etc.
3. Manifest variable assignment

Specifies the variables of interest.

Behavioral equations

1. Module specification for each vertex.

Relation among the variables on the terminals. Terminal behavior of subcircuits.
2. Interconnection equations for each edge.

Equating the variables on the terminals associated with the same edge.
$V_{1}=V_{2}, I_{1}+I_{2}=0$
3. Manifest variable assignment

Potentials and currents on the external terminals.

Hierarchy

New modules from old ones

Tearing, zooming, linking is hierarchical :

New modules from old ones

Tearing, zooming, linking is hierarchical :

Embed modules in vertices, obtain behavioral equations for the interconnected system, eliminate the latent variables,

New modules from old ones

Tearing, zooming, linking is hierarchical :

Embed modules in vertices, obtain behavioral equations for the interconnected system, eliminate the latent variables, and use interconnected system as a module with terminals in a new interconnection architecture.

Example

!! Model relation between $V_{1}, I_{1}, V_{2}, I_{2}$!!

Tearing

View as interconnection of $\mathbf{5}$ subsystems: one trafo, two 4-terminal RRLC ladders, two 3-terminal RLC circuits.

Model the subsystems one-by-one.

Hierarchy

Subsystems 1 and 4

Hierarchy

Subsystems 1 and 4

Tearing

Hierarchy

Subsystems 1 and 4

Tearing

Zooming

Subsystems 2 and 3
Model 4-terminal circuit

Subsystems 2 and 3

Specialize: $I_{4}=0$, eliminate V_{4}

Model 4-terminal circuit

Hereditary

Subsystems 2 and 3

Specialize: $I_{4}=0$, eliminate V_{4}

Model 4-terminal circuit

Set $I_{2}=I_{3}=0$, eliminate V_{2}, V_{3}, set $V_{4}^{\prime}=V_{4}^{\prime \prime}=V_{4}$,

$$
I_{4}^{\prime}+I_{4}^{\prime \prime}=I_{4},
$$

eliminate V_{4}, I_{4}.

Linking

All interconnections are of electrical type

Interconnection equations:

Terminals versus ports

Bond graphs

Premise: Interconnection variables consist of an effort and a flow effort \times flow $=$ power

Interconnection \Leftrightarrow
[efforts equal] \& [flows sum to 0]
\Rightarrow power equal
'Power is the universal currency of physical systems'

Interconnection variables:

- voltage \& current
force \& velocity
pressure \& mass flow
temperature $\& \frac{\text { heat flow }}{\text { temperature }}$

Efiort times flow

Interconnection variables:

- voltage \& current
force \& velocity
pressure \& mass flow
temperature $\& \frac{\text { heat flow }}{\text { temperature }}$

Do interconnections really equate efforts and flows, with effort \times flow $=$ power?

Efiort times flow

Interconnection variables:
voltage \& current
force \& velocity
pressure \& mass flow
temperature \& $\frac{\text { heat flow }}{\text { temperature }}$

Do interconnections really equate efforts and flows, with

$$
\text { effort } \times \text { flow }=\text { power? }
$$

Terminals are for interconnection, ports are for energy transfer
We illustrate this, for electrical interconnections only.

Terminals versus ports

Terminal variables and behavior (N terminals, $2 N$ real variables in total - a potential and a current for each terminal):

$$
\left(V_{1}, I_{1}, V_{2}, I_{2}, \ldots, V_{N}, I_{N}\right) \leadsto \text { behavior } \mathscr{B} \subseteq\left(\mathbb{R}^{2 N}\right)^{\mathbb{R}}
$$

Definition of a port

A subset of the terminals forms a port : \Leftrightarrow
sum currents on port terminals = 0
adding any, but the same, function of time to each of the port terminal potentials, but not to the other terminal potentials \Rightarrow a new set of legal potentials.

Definition of a port

$$
\left(\boxed{V_{1}, I_{1} \ldots, V_{\mathrm{p}}, I_{\mathrm{p}}}, V_{\mathrm{p}+1}, \ldots, I_{\mathrm{n}}\right) \in \mathscr{B}, \alpha: \mathbb{R} \rightarrow \mathbb{R}
$$

\Downarrow
$\left(\begin{array}{|}V_{1}+\alpha, I_{1}, \ldots, V_{\mathrm{p}}+\alpha, I_{\mathrm{p}}\end{array}, V_{\mathrm{p}+1}, \ldots, I_{\mathrm{n}}\right) \in \mathscr{B}$

$$
I_{1}+\cdots+I_{\mathrm{p}}=0
$$

Definition of a port

Equivalenty: the behavioral equations contain the variables $V_{1}, V_{2} \ldots, V_{\mathrm{p}}$ only as the differences

$$
V_{\mathrm{i}}-V_{\mathrm{j}} \quad \text { for } \mathrm{i}, \mathrm{j}=1, \ldots \mathrm{p}
$$

and contain as a 'consequence' the equation

$$
I_{1}+I_{2}+\cdots+I_{\mathrm{p}}=0
$$

Kirchhoff's laws

All the terminals together form a port

$$
\begin{gathered}
\left(\begin{array}{|c}
\left(\begin{array}{|}
V_{1}, I_{1} \ldots, V_{N}, I_{N}
\end{array}\right) \in \mathscr{B}, \alpha: \mathbb{R} \rightarrow \mathbb{R} \\
\Downarrow \\
\left(\begin{array}{|c}
V_{1}+\alpha, I_{1}, \ldots, V_{N}+\alpha, I_{N}
\end{array}\right) \in \mathscr{B} \\
I_{1}+\cdots+I_{N}
\end{array}=0\right.
\end{gathered}
$$

Kirchhoff's laws

All the terminals together form a port

$$
\begin{gathered}
\left(\begin{array}{|}
\left(\begin{array}{|}
V_{1}, I_{1} \ldots, V_{N}, I_{N}
\end{array}\right) \in \mathscr{B}, \alpha: \mathbb{R} \rightarrow \mathbb{R} \\
\Downarrow \\
\left(\begin{array}{|c}
V_{1}+\alpha, I_{1}, \ldots, V_{N}+\alpha, I_{N}
\end{array}\right) \in \mathscr{B} \\
I_{1}+\cdots+I_{N} & =0
\end{array}\right.
\end{gathered}
$$

Viewed as 'laws' governing electrical circuits, these may be thought of as the KVL \& KCL .

Power and energy

The energy that flows into the circuit along the terminals $1,2, \ldots, \mathrm{p}$ during the interval $\left[t_{1}, t_{2}\right]$ equals

$$
\int_{t_{1}}^{t_{2}} \Sigma_{\mathrm{k}=1, \ldots, \mathrm{p}} V_{\mathrm{k}}(t) I_{\mathrm{k}}(t) d t
$$

provided these terminals form a port!

Terminals versus ports

Start with 3 circuits, to be interconnected along the indicated terminals.

Terminals versus ports

Interconnection through terminals, energy transfer through ports. One cannot speak about
"the energy transferred from circuit 1 to circuit 2"
unless their interconnected terminals form a port.

Inherited properties

Properties of behaviors

The view of a system as a behavior allows to deduce that important properties are preserved under interconnection, as

```
KVL & KCL
passivity
reciprocity
linearity, time-invariance
\mathscr { B } \text { is the kernel of a system of constant coefficient ODEs}
```

- KVL \& KCL
passivity

Kirchhoff's laws

Assume the individual circuits satisfy KVL and KCL (that is, the terminals form a port),

Kirchhoff's laws

Assume the individual circuits satisfy KVL and KCL (that is, the terminals form a port), then so do the external terminals of the interconnection

\Rightarrow Any interconnection of electrical components satisfies
KVL and KCL.

Dissipativity

How should one define dissipativity?

Dissipativity

How should one define dissipativity?

For example, 'passivity'
electrical terminals
supply = power
Circuit $\Sigma_{\text {terminals }} V_{\mathrm{k}} I_{\mathrm{k}}$

Consider the system $(\mathbb{R}, \mathbb{R}, \mathscr{S})$

And $\left(\mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathscr{S}_{\text {extended }}\right)$

Assume $\left(\mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathscr{S}_{\text {extended }}\right) \sim(\mathbb{R}, \mathbb{R}, \mathscr{S})$ after projection.

Storage

Consider the system $(\mathbb{R}, \mathbb{R}, \mathscr{S}) \quad s \in \mathscr{S}$ means $s: \mathbb{R} \rightarrow \mathbb{R}$ is the supply rate as a function of time.

And $\left(\mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathscr{S}_{\text {extended }}\right) \quad(s, V) \in \mathscr{S}_{\text {extended }}$ means $s: \mathbb{R} \rightarrow \mathbb{R}$, is the supply rate, $V: \mathbb{R} \rightarrow \mathbb{R}$ is the storage as a function of time.

Definition: Call V a storage $: \Leftrightarrow$

$$
V\left(t_{2}\right) \leq V\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} s(t) d t
$$

for all $(s, V) \in \mathscr{S}$ extended and $t_{1} \leq t_{2}$.
Equivalently, $\frac{d}{d t} V \leq s$

Storage

Consider the system $(\mathbb{R}, \mathbb{R}, \mathscr{S}) \quad s \in \mathscr{S}$ means $s: \mathbb{R} \rightarrow \mathbb{R}$ is the supply rate as a function of time.

And $\left(\mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathscr{S}_{\text {extended }}\right) \quad(s, V) \in \mathscr{S}_{\text {extended }}$ means $s: \mathbb{R} \rightarrow \mathbb{R}$, is the supply rate,
$V: \mathbb{R} \rightarrow \mathbb{R}$ is the storage

Definition: Call V a storage $: \Leftrightarrow$

$$
V\left(t_{2}\right) \leq V\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} s(t) d t
$$

for all $(s, V) \in \mathscr{S}$ extended and $t_{1} \leq t_{2}$.
Equivalently, $\frac{d}{d t} V \leq s$

Definition of dissipativity

Theorem: The following two conditions are equivalent:
For all $s \in \mathscr{S}$, there exists $K \in \mathbb{R}$ such that

$$
-\int_{0}^{T} s(t) d t<K \text { for all } T>0
$$

- There exists a non-negative storage

$$
V\left(t_{2}\right) \leq V\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} s(t) d t
$$

Definition of dissipativity

Theorem: The following two conditions are equivalent:
For all $s \in \mathscr{S}$, there exists $K \in \mathbb{R}$ such that

$$
-\int_{0}^{T} s(t) d t<K \text { for all } T>0
$$

There exists a non-negative storage

$$
V\left(t_{2}\right) \leq V\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} s(t) d t
$$

With $s=\Sigma_{\text {terminals }} V_{k} I_{k}$, either of these two equivalent conditions leads to a good definition of passivity for circuits.

Passivity of electrical circuits

Assume the individual circuits are passive,

Passivity of electrical circuits

Assume the individual circuits are passive, then so is the interconnection

\Rightarrow An interconnection of passive electrical components is passive.

Reflections

Classical circuit theory

Classical circuit theory evolves around a digraph with 2-terminal elements or external ports in the edges and connections in the vertices.

Classical circuit theory

Classical circuit theory evolves around a digraph with 2-terminal elements or external ports in the edges and connections in the vertices. For example,

Limitations

Deals with 2-terminal ports (mainly with 2-terminal elements) and with 2 -terminal external ports.
Is port oriented, and does not articulate that terminals, not ports, make the interconnections.

The external ports are especially bothersome: how do we know what the environment will be?

- It is not hierarchical.

The key is to use a (di)graph with leaves
rather than a digraph.

Vertices and edges

In circuit graphs, subsystems are in the edges, connections are in the vertices

Vertices and edges

In circuit graphs, subsystems are in the edges, connections are in the vertices

Contrast with tearing, zooming, linking: subsystems are in the vertices, connections are in the edges

Ceterum censeo

The input/output approach as the primary and universal view of open systems is a misconception. Physical systems are not signal processors !

Ceterum censeo

The input/output approach as the primary and universal view of open systems is a misconception. Physical systems are not signal processors !

Signals and Systems \leadsto Signals and Signal Processors!

Three thoughts to take home

1. A dynamical system = a family of trajectories.
2. Interconnection = variable sharing
3. Control = interconnection

Want to read about it? See

The behavioral approach to open and interconnected systems,
Control Systems Magazine, volume 27, pages 46-99, 2007.
The lecture frames are available from/at
http://www.esat.kuleuven.be/~jwillems

Want to read about it? See

The behavioral approach to open and interconnected systems,
Control Systems Magazine, volume 27, pages 46-99, 2007.
The lecture frames are available from/at
http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you

Thank you

Thank you
Thank you

