

ENERGY FLOW in INTERCONNECTED SYSTEMS

JAN C. WILLEMS
K.U. Leuven, Flanders, Belgium

How are open systems formalized?
How are systems interconnected?
How is energy transferred between systems?
Are energy transfer and interconnection related?

Theme

How are open systems formalized?
How are systems interconnected ?
How is energy transferred between systems?
Are energy transfer and interconnection related?

We deal only with electrical circuits and 1-dimensional mechanical systems.

Other applications: hydraulic systems, chemical systems, thermal systems, ...

SYSTEMS

- Open
- Interconnected
- Modular

Dynamic

Features

- Open
- Interconnected
- Modular

Dynamic
The ever-increasing computing power allows to model complex interconnected systems accurately by tearing, zooming, and linking.
\leadsto Simulation, model based design, ...

Example: A 'quarter car'

Example: A 'quarter car'

Open systems

Environment

Systems are 'open', they interact with their environment.

Open systems

Environment

Systems are 'open', they interact with their environment.

How are such systems formalized?
How is energy transferred from the environment to a system?

Interacting systems

Interconnected systems interact.

Interconnected systems interact.
How is this interaction formalized?
How is energy transferred between systems?
Are energy transfer and interconnection related?

Motivation

The ever-increasing computing power allows to model complex interconnected systems accurately by tearing, zooming, and linking.
$\leadsto \quad$ Simulation, model based design, ...

Requires the right mathematical concepts for

- dynamical system,
- interconnection,
- interconnection architecture.

SYSTEMS with TERMINALS

Electrical circuit

At each terminal:

a potential (!) and a current (counted >0 into the circuit),

Electrical circuit

At each terminal:

a potential (!) and a current (counted >0 into the circuit),
\leadsto behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$.
$\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B}$ means:
this potential/current trajectory is compatible with the circuit architecture and its element values.

Mechanical device

At each terminal: a position and a force.
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.
More generally, a position, force, angle, and torque.

Other domains

Thermal systems:
At each terminal: a temperature and a heat flow.

Hydraulic systems:
At each terminal: a pressure and a mass flow.

Multidomain systems:
Systems with terminals of different types, as motors, pumps, etc.

Contrast with input/output systems

Contrast with input/output systems

Input/output thinking is inappropriate for physical systems. A physical system is not a signal processor.

This observation \leadsto behavioral approach with \mathscr{B} central.
Early sources:

Brockway McMillan

Robert Newcomb

KVL and KCL

terminals

Kirchhoff's voltage law (KVL):

$$
\begin{aligned}
& \llbracket\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \text { and } \alpha: \mathbb{R} \rightarrow \mathbb{R} \rrbracket \\
& \quad \Rightarrow \llbracket\left(V_{1}+\alpha, V_{2}+\alpha, \ldots, V_{N}+\alpha, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \rrbracket .
\end{aligned}
$$

Equivalently, the behavioral equations contain the V_{i} 's only through the potential differences $V_{i}-V_{j}$.

KVL and KCL

terminals

Kirchhoff's voltage law (KVL):

$$
\begin{aligned}
& \llbracket\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \text { and } \alpha: \mathbb{R} \rightarrow \mathbb{R} \rrbracket \\
& \quad \Rightarrow \llbracket\left(V_{1}+\alpha, V_{2}+\alpha, \ldots, V_{N}+\alpha, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \rrbracket .
\end{aligned}
$$

Kirchhoff's current law (KCL):

$$
\llbracket\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \rrbracket \Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{N}=0 \rrbracket .
$$

Examples

$$
V_{1}-V_{2}=R I_{1} \quad I_{1}+I_{2}=0
$$

Examples

$$
C \frac{d}{d t}\left(V_{1}-V_{2}\right)=I_{1} \quad I_{1}+I_{2}=0
$$

Examples

$$
L \frac{d}{d t} I_{1}=V_{1}-V_{2} \quad I_{1}+I_{2}=0
$$

Examples

$$
V_{1}-V_{2}=n\left(V_{3}-V_{4}\right),-n I_{1}=I_{3} \quad I_{1}+I_{2}=0, I_{3}+I_{4}=0
$$

INTERCONNECTION

Interconnection of circuits

$$
V_{N}=V_{N^{\prime}} \quad \text { and } \quad I_{N}+I_{N^{\prime}}=0
$$

Interconnection of circuits

$$
V_{N}=V_{N^{\prime}} \quad \text { and } \quad I_{N}+I_{N^{\prime}}=0
$$

Behavior after interconnection:
$\mathscr{B}_{1} \sqcap \mathscr{B}_{2}$
$:=\left\{\left(V_{1}, \ldots, V_{N-1}, V_{1^{\prime}}, \ldots, V_{N^{\prime}-1}, I_{1}, \ldots, I_{N-1}, I_{1^{\prime}}, \ldots, I_{N^{\prime}-1}\right) \mid\right.$
$\exists V, I$ such that

$$
\begin{aligned}
& \left(V_{1}, \ldots, V_{N-1}, V, I_{1}, \ldots, I_{N-1}, I I\right) \in \mathscr{B}_{1} \text { and } \\
& \left.\left(V_{1^{\prime}}, \ldots, V_{N^{\prime}-1}, V, I_{1^{\prime}}, \ldots, I_{N^{\prime}-1},-I\right) \in \mathscr{B}_{2}\right\} .
\end{aligned}
$$

Interconnection of circuits

$~$ more terminals and more circuits connected

Preservation of properties

$\llbracket \mathscr{B}_{1}, \mathscr{B}_{2}$ satisfies KVL $\rrbracket \Rightarrow \llbracket$ so does $\mathscr{B}_{1} \sqcap \mathscr{B}_{2} \rrbracket$
$\llbracket \mathscr{B}_{1}, \mathscr{B}_{2}$ satisfies KCL $\rrbracket \Rightarrow \llbracket$ so does $\mathscr{B}_{1} \sqcap \mathscr{B}_{2} \rrbracket$

Interconnection of 1-D mechanical systems

$$
q_{N}=q_{N^{\prime}} \quad \text { and } \quad F_{N}+F_{N^{\prime}}=0
$$

Other terminal types

Thermal systems:

At each terminal: a temperature and a heat flow.

$$
T_{N}=T_{N^{\prime}} \quad \text { and } \quad Q_{N}+Q_{N^{\prime}}=0
$$

Hydraulic systems:
At each terminal: a pressure and a mass flow.

$$
p_{N}=p_{N^{\prime}} \quad \text { and } \quad f_{N}+f_{N^{\prime}}=0
$$

Sharing variables

$$
\begin{array}{ccr}
V_{N}=V_{N^{\prime}} & \text { and } & I_{N}+I_{N^{\prime}}=0, \\
q_{N}=q_{N^{\prime}} & \text { and } & F_{N}+F_{N^{\prime}}=0, \\
T_{N}=T_{N^{\prime}} & \text { and } & Q_{N}+Q_{N^{\prime}}=0, \\
p_{N}=p_{N^{\prime}} & \text { and } & f_{N}+f_{N^{\prime}}=0, \\
& \vdots &
\end{array}
$$

Interconnection means variable sharing.

Sharing variables

$$
\begin{array}{ccr}
V_{N}=V_{N^{\prime}} \quad \text { and } \quad I_{N}+I_{N^{\prime}}=0, \\
q_{N}=q_{N^{\prime}} & \text { and } \quad F_{N}+F_{N^{\prime}}=0, \\
T_{N}=T_{N^{\prime}} & \text { and } & Q_{N}+Q_{N^{\prime}}=0, \\
p_{N}=p_{N^{\prime}} & \text { and } & f_{N}+f_{N^{\prime}}=0, \\
& \vdots &
\end{array}
$$

'through' and 'across'? 'effort' and 'flow'? product = power?

Contrast with signal flow graphs

Not appropriate for describing the interaction of physical systems.

A physical system is not a signal processor.

ENERGY TRANSFER

Our intuition has been built to think of energy as an extensive quantity,

Energy as an extensive quantity

Our intuition has been built to think of energy as an extensive quantity, meaning that it is additive

$$
E_{\mathrm{total}}=E_{1}+E_{2}
$$

Energy as an extensive quantity

Our intuition has been built to think of energy as an extensive quantity,

that flows in and out and between systems along the interconnected interfaces (terminals).

Energy as an extensive quantity

Our intuition has been built to think of energy as an extensive quantity, that flows in and out and between systems along the interconnected terminals).

Some methodologies for modeling interconnected systems, as bond-graph modeling and port-Hamiltonian systems, are based on this thinking.

Henry Paynter

Arjan van der Schaft

In many situations, this view is correct. Mass, volume, and energy in the form of heat are extensive quantities.

Energy as an extensive quantity

In many situations, this view is correct. Mass, volume, and energy in the form of heat are extensive quantities.

However, energy is more subtle for other forms.

Kinetic energy is not additive.
Same with energy due to gravitational attraction, due Coulomb forces, etc. Heat is a special, extensive, form of energy.

Energy as an extensive quantity

In many situations, this view is correct. Mass, volume, and energy in the form of heat are extensive quantities.

However, energy is more subtle for other forms.

Kinetic energy is not additive.
Same with energy due to gravitational attraction, due Coulomb forces, etc. Heat is a special, extensive, form of energy.

Energy and power are not a 'local' quantities. They involve 'action at a distance'.

PORTS

Ports

Ports

Terminals $\{1,2, \ldots, p\}$ form a port $: \Leftrightarrow$
$\left(V_{1}, \ldots, V_{p}, V_{p+1}, \ldots, V_{N}, I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}\right) \in \mathscr{B}$

$$
\Rightarrow \quad I_{1}+\cdots+I_{p}=0 . \quad \text { 'port KCL'. }
$$

$(K V L \&) K C L \Rightarrow$ all terminals together form a port.

Ports

If terminals $\{1,2, \ldots, p\}$ form a port, then
power in along these terminals $=V_{1}(t) I_{1}(t)+\cdots+V_{p}(t) I_{p}(t)$,
energy in $=\int_{t_{1}}^{t_{2}}\left(V_{1}(t) I_{1}(t)+\cdots+V_{p}(t) I_{p}(t)\right) d t$.
This interpretation in terms of power and energy is not valid unless these terminals form a port !

Dissipation into heat

Justification:

Examples

2-terminal 1-port devices:

resistors, capacitors, inductors, any 2-terminal circuit composed of these.

Examples

3-terminal 1-port devices:

transistors, Y^{\prime} 's, $\Delta^{\prime} \mathbf{\prime}$.

Examples

4-terminal 2-port devices:

Transformers, gyrators.

Examples

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

Are ports common?

Theorem: Consider an electrical circuit consisting of an interconnection of (linear passive) R's, L's, and C's. If every pair of terminals of the circuit graph is connected, then the only port is the one that consists of all the terminals.

Are ports common?

Corollary: Consider an electrical circuit consisting of an interconnection of (linear passive) 2-terminal 1-port impedances. If every pair of terminals of the circuit graph is connected, then
the only port is the one that consists of all the terminals.

Follows from the theorem, combined with Bott-Duffin (every positive real impedance can be viewed as an RLC circuit).

In order to have non-trivial ports, we need
2-port building blocks like transformers in the circuit.

Independence

$$
\begin{aligned}
& \left(V_{1}, \ldots, V_{p}, V_{p+1}, \ldots, V_{N}, I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}\right) \in \mathscr{B}, \alpha: \mathbb{R} \rightarrow \mathbb{R} \\
& \Rightarrow\left(V_{1}+\alpha, \ldots, V_{p}+\alpha, V_{p+1}, \ldots, V_{N}, I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}\right) \in \mathscr{B}
\end{aligned}
$$

'port KVL'

For linear passive circuits, there holds

port KVL \Leftrightarrow port KCL.

We require port KCL

$$
I_{1}+I_{2}+\cdots+I_{p}=0
$$

DIGRESSION: RLC SYNTHESIS

RLC circuits

Relationship between V and I

$$
d\left(\frac{d}{d t}\right) V=n\left(\frac{d}{d t}\right) I \quad n, d \quad \text { real polynomials. }
$$

RLC circuits

Relationship between V and I

$$
d\left(\frac{d}{d t}\right) V=n\left(\frac{d}{d t}\right) I \quad n, d \quad \text { real polynomials. }
$$

Which polynomial pairs (n, d) can occur?

Positive realness

Theorem: The following are equivalent Z is realizable using (positive, linear) $R, L, C ' s$ and transformers.
$Z=\frac{n}{d} \quad$ is positive real i.e., $\boldsymbol{\operatorname { R e a l }}(s) \geq 0 \Rightarrow \boldsymbol{\operatorname { R e a l }}(Z(s)) \geq 0$.
$>\quad Z=$
$>\quad \ldots$

Positive realness

In 1949 Raoul Bott and Richard Duffin dramatically improved Otto Brune's 1931 result.

Theorem: The following are equivalent

- Z is realizable using (positive, linear) $R, L, C ' s$ without transformers.

$$
Z=\frac{n}{d} \quad \text { is positive real }
$$

$$
\text { i.e., } \boldsymbol{\operatorname { R e a l }}(s) \geq 0 \Rightarrow \operatorname{Real}(Z(s)) \geq 0
$$

Raoul Bott

(1-D) MECHANICAL SYSTEMS

The behavior

At each terminal: a position and a force .
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.

The behavior

At each terminal: a position and a force .
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.

What are the analogues of $\mathrm{KVL}, \mathrm{KCL}$, of port?

The behavior

invariance under uniform motion : $\Leftrightarrow\left(q_{1}, q_{2}, \ldots, q_{N}\right.$, $\left.F_{1}, F_{2}, \ldots, F_{N}\right) \in \mathscr{B}$ and $v: t \in \mathbb{R} \mapsto(a+b t) \in \mathbb{R}^{\bullet}$, imply $\left(q_{1}+v, q_{2}+v, \ldots, q_{N}+v, F_{1}, F_{2}, \ldots, F_{N}\right) \in \mathscr{B}$.

Kirchhoff's force law (KFL) : $\Leftrightarrow\left(q_{1}, q_{2}, \ldots, q_{N}\right.$, $\left.F_{1}, F_{2}, \ldots, F_{N}\right) \in \mathscr{B}$ implies $F_{1}+F_{2}+\cdots+F_{N}=0$.

Interconnection

$$
q_{N}=q_{N^{\prime}} \quad \text { and } \quad F_{N}+F_{N^{\prime}}=0
$$

Mechanical ports

Terminals $\{1,2, \ldots, p\}$ form a (mechanical) port $: \Leftrightarrow$

$$
\left(q_{1}, \ldots, q_{p}, q_{p+1}, \ldots, q_{N}, F_{1}, \ldots, F_{p}, F_{p+1}, \ldots, F_{N}\right) \in \mathscr{B}
$$

$$
F_{1}+F_{2}+\cdots+F_{p}=0
$$

Power and energy

If terminals $\{1,2, \ldots, p\}$ form a port, then

$$
\text { power in }=F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)
$$

and

$$
\text { energy in }=\int_{t_{1}}^{t_{2}}\left(F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)\right) d t
$$

This interpretation in terms of power and energy is not valid unless these terminals form a port !

Examples

$$
F_{1}+F_{2}=0, \quad K\left(q_{1}-q_{2}\right)=F_{1} .
$$

Examples

$$
F_{1}+F_{2}=0, \quad D \frac{d}{d t}\left(q_{1}-q_{2}\right)=F_{1}
$$

Springs and dampers, and the interconnection of springs and dampers are ports.

Examples

$$
M \frac{d^{2}}{d t^{2}} q=F
$$

Not a port!!!

DIGRESSION: MECHANICAL SYNTHESIS

Electrical and mechanical synthesis

Relationship between V and I

$$
d\left(\frac{d}{d t}\right) V=n\left(\frac{d}{d t}\right) I \quad n, d \quad \text { real polynomials. }
$$

$$
Z=\frac{n}{d} \text { positive real }
$$

Electrical and mechanical synthesis

What mechanical impedances are realizable using passive mechanical devices (dampers, springs, and masses)?

Is it possible to use RLC synthesis to obtain mechanical synthesis?

Electrical and mechanical synthesis

Relationship between F and q

$$
d\left(\frac{d}{d t}\right) q=n\left(\frac{d}{d t}\right) F \quad n, d \quad \text { real polynomials. }
$$

$$
Z(s)=\frac{s n(s)}{d(s)} \text { positive real ??? }
$$

naive!

Electrical-mechanical analogies

voltage $V \leftrightarrow v$ velocity
current $I \leftrightarrow F$ force

Resistor	Damper
$\frac{1}{R}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$D\left(v_{1}-v_{2}\right)=F_{1}, F_{1}+F_{2}=0$
Inductor	Spring
$\frac{1}{L}\left(V_{1}-V_{2}\right)=\frac{d}{d t} I_{1}, I_{1}+I_{2}=0$	$K\left(v_{1}-v_{2}\right)=\frac{d}{d t} F_{1}, F_{1}+F_{2}=0$
Capacitor	Mass
$C \frac{d}{d t}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$M \frac{d}{d t} v=F$

Electrical-mechanical analogies

$$
V \leftrightarrow v
$$

$$
I \leftrightarrow F
$$

The electrical analogue of a mass is a 'grounded' capacitor.

Electrical synthesis \nRightarrow mechanical synthesis.

The inerter

$$
B \frac{d^{2}}{d t^{2}}\left(q_{1}-q_{2}\right)=F_{1}, \quad F_{1}+F_{2}=0
$$

Electrical-mechanical analogies

Resistor	
$\frac{1}{R}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$D\left(v_{1}-v_{2}\right)=F_{1}, F_{1}+F_{2}=0$
Inductor	
$\frac{1}{L}\left(V_{1}-V_{2}\right)=\frac{d}{d t} I_{1}, I_{1}+I_{2}=0$	$K\left(v_{1}-v_{2}\right)=\frac{d}{d t} F_{1}, F_{1}+F_{2}=0$
Spring	
$C \frac{d}{d t}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$B \frac{d}{d t}\left(v_{1}-v_{2}\right)=F_{1}, F_{1}+F_{2}=0$

electrical RLC synthesis \Leftrightarrow mechanical SDI synthesis.

RLC and SDI

RLC and SDI

Relationship between F and Δ

$$
d\left(\frac{d}{d t}\right) \Delta=n\left(\frac{d}{d t}\right) F \quad n, d \quad \text { real polynomials. }
$$

$$
\text { Realizable iff } \quad Z(s)=\frac{s n(s)}{d(s)} \text { positive real }
$$

Relevance of passive synthesis

Electrical domain:

Theoretical (electrical) engineering highlight (<1960 's).
Until 1950's important for filter design.
Eclipsed by the introduction of solid state technology (transistors, etc.)

Relevance of passive synthesis

Electrical domain:

Theoretical (electrical) engineering highlight ($<$ 1960's).
Until 1950's important for filter design. Eclipsed by the introduction of solid state technology (transistors, etc.)

Mechanical domain: Recent interest.
requires no energy supply
simple design
reliability
safety

Hazards of active suspensions

Nelson Piquet crash in the Indy $\mathbf{5 0 0}$ practice in 1992

Nelson Piquet

Success of passive suspensions

Raikkonen wins the 2005 Grand Prix in Spain with McLaren and Smith's 'J-damper'.

Kimi Raikkonen

Success of passive suspensions

F1 TEAMS FIND EXTRA GRIP WITH NEW DAMPER SET-UP

SEVERAL FORMULA1 teams have beenusinga'mass damper' this season in orderto damp outtyre bouncingrequenciesthrough comers and therebykeep the grip more consistent
withstandanearthquake where they $950-1050 \mathrm{~kg}$, so he's gotamore put the watertank on the roof-so constantload. It's averygoodidea. thatwhen the building sways, the waterisgoing in the opposite directionat the same frequency. "Inthiscase, as the caris going , the tyee is going down and vice Renaultand Red Bullare knownto eusing suchasystem andit sbelieved that FerrariandWililams-and perhapsotherstoo-also haveititited. It's a simple mechanical device comprising aweight (believed tobe of around 9kgj on a spring.

GaryAnderson explainedits

 purpose: Youseeacarbouncing, suchas whenithitsakerb. Thiswill be ataround $\mathrm{\beta}-9 \mathrm{~Hz}$ on the tyres. This device will getanequal frequency going in the opposite direction. It'sa versa, With this, the car will still bounceat the samefrequencybut. the amplitude will bedampeddown. Ifyoutake an averagetyre contactloadand assumesay 1000 kg you'dypicallysee avariation of $9-1100 \mathrm{~kg}$, But the diverneeds tofeel sure of whathe's got as he goesinto the comer. Is that 900 or 1100 ? With a weight of around 10 kgyou

Success of passive suspensions

Secrets of the inerter revealed

20 August 2008

A Cambridge University invention which was kept a closely-guarded secret because of the hidden advantage it offered to a Formula 1 racing team is finally being made available for widespread use.

For years, the mysterious "J-Damper", a vehicle suspension device described as the F1 technical innovation of the year, was carefully codenamed and concealed to prevent it from being copied by rivals.

McLaren agreed an exclusive right with the University to exploit the technology, but confidentiality restrictions ensured that other F1 teams were kept in the dark. Internet fan-sites and blogs began to buzz with speculation about what the device actually was.

Now, with the lifting of the confidentiality agreement, the secret of the "JDamper ${ }^{n}$ can finally be revealed. Cambridge Enterprise, the University's commercialisation office, has signed a licence agreement with the American firm Penske Racing Shocks, enabling Penske to supply them to any team in F1.

In fact, the device was first conceived by its creator, Professor Malcolm Smith, as long ago as 1997 and raced for the first time by McLaren in 2005, when Kimi Raikkonen achieved a victory for the team at the Spanish Grand Prix.

The term "J-Damper" itself was merely a codename to keep the technology secret from potential competitors for as long as possible. Its proper name is

KINETIC ENERGY

Back to the mass

$$
M \frac{d^{2}}{d t^{2}} q=F \Rightarrow \frac{d}{d t} \frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2}=F^{\top} \frac{d}{d t} q
$$

If $F^{\top} v$ is not power, is then $\frac{1}{2} M\|v\|^{2}$ not the stored (kinetic) energy ???

Kinetic energy and invariance under uniform motions

What is the kinetic energy?

Kinetic energy and invariance under uniform motions

M

What is the kinetic energy?

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} M\|v\|^{2}
$$

Willem 's Gravesande 1688-1742

Émilie du Châtelet 1706-1749

This formula is not invariant under uniform motion.

Kinetic energy and invariance under uniform motions

What is the kinetic energy?

Kinetic energy and invariance under uniform motions

What is the kinetic energy?

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

Invariant under uniform motion.
Can be justified by mounting a damper or a spring between the masses.

Dissipation into heat

Justification

$\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}$ is the heat dissipated in the damper.

Kinetic energy

Generalization to N masses.

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

$$
\mathbf{K F L} \Rightarrow \quad \frac{d}{d t} \mathscr{E}_{\text {kinetic }}=\sum_{i \in\{1,2, \ldots, N\}} F_{i}^{\top} v_{i} .
$$

Kinetic energy

Kinetic energy is not an extensive quantity, it is not additive.

Total kinetic energy \neq sum of the parts.

Kinetic energy

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Distinct from the classical expression of the kinetic energy,

$$
\mathscr{E}_{\text {classical }}=\frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2} .
$$

Kinetic energy

Reconciliation: $M_{N+1}=\infty, F_{N+1}=-\left(F_{1}+F_{2}+\cdots+F_{N}\right)$,

measure velocities w.r.t. this infinite mass ('ground'), then

$$
\begin{gathered}
\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N, N+1\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}+M_{N+1}}\left\|v_{i}-v_{j}\right\|^{2} \\
\longrightarrow \quad \frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2} .
\end{gathered}
$$

PORTS and TERMINALS

Energy transfer

One cannot speak about
" the energy transferred from circuit 1 to circuit 2 " or "from the environment to circuit 1 ",
unless the relevant terminals form a port.
Analogously for mechanical systems, etc.

Conclusions

Dynamical system \cong a behavior.
Interconnection \cong variable sharing.
Energy transfer happens via ports, hence it involves action at a distance.
Interconnection is 'local', power and energy transfer involve 'action at a distance’.

Conclusions

Dynamical system \cong a behavior.
Interconnection \cong variable sharing.
Energy transfer happens via ports, hence it involves action at a distance.

Interconnection is 'local', power and energy transfer involve 'action at a distance’.
Electrical ports \Leftrightarrow KCL.
Mechanical ports \Leftrightarrow KFL.
New expression for kinetic energy, invariant under UM.

Conclusions

Dynamical system \cong a behavior.
Interconnection \cong variable sharing.
Energy transfer happens via ports, hence it involves action at a distance.
Interconnection is 'local', power and energy transfer involve 'action at a distance’.
Electrical ports \Leftrightarrow KCL.
Mechanical ports \Leftrightarrow KFL.
New expression for kinetic energy, invariant under UM.
Terminals are for interconnection,
ports are for energy transfer.

Copies of the lecture frames will be available from/at

Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

