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In honor of Manfred Deistler on the occasion of his retirement
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ARMAX
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ARMAX systems

Aoy(t) + Ay(t+1) + -+ + A y(t+Ly)

= Xou(t) + Xqu(t+1) -

- ... 4+ XL2u(t_

+ Mpe(t) + Me(t+1) -

_L2)

e Mng(t_
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ARMAX systems

Aoy(t) + Aay(t+1) + -+ + ApY(t+Li)
— X()U(t) -+ X1U(t—|—1) + - 4 XLQU(t ——LQ)
+ Mog(t) —+ Mlg(t—l—l) 4+ - 4 ML3€(t——L3)

A(o)y=X(o)u+M(o)e

o =theshift, of(t):=f(t+1)
A, X, M: real polynomial matrices
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ARMAX systems

A(o)y=X(o)u+M(o)e

o =theshift, of(t):=f(t+1)
A, X, M: real polynomial matrices

y,u:Z — RP R™ uinput, y output
the variables whose dynamic relation is modeled
£:7 — RY disturbances,'noise’

A: Auto R egressive-part
M: Moving A verage-part
X . E Xogenous-part
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ARMAX systems

Equivalent model class
oX = Ax+Bu+ Ge,y = Cx+ Du+ Je

o =theshift, of(t):=f(t+1)
y,u: Z — RP R™ uinput, y output
the variables whose dynamic behavior is modeled
£:7Z — Rf disturbance, ‘noise’
X . Z — R™ auxiliary state variables
A,B,C,G,D.,J: real matrices
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Modeling idea

environment

modelled variables




Modeling idea

environment

disturbances
noise

system

inputs

outputs

modelled variables
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Modeling idea

Example
wind
outside temperature
solar radiation
fan velocity == | inside temperature

Inertia ~ difference equation with lags= ARMAX

—n. 5/3¢



Modeling idea

system
u Y
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Modeling idea

inputs

U

disturbances
‘ [ | [ | [ | ‘ g
system - |outputs
—-
y

Typical assumptions

>

>
>
>

£ a stationary stochastic (vector) process
u a stochastic process, typically independent of

suitable assumptions oA, M, X
= y stochastic process
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Modeling idea

disturbances
‘ | | | ‘ g
inputs | * system " |outputs
U y
Reflections:
» the separation of system variables
INto Inputs u and outputsy
» the stochastic nature of disturbance inputss
» the input nature of external disturbances
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Modeling idea

disturbances
‘ | | | ‘ g
inputs | * system " |outputs
U y
Reflections:
» separation of system variables
INto Inputs u and outputsy

» the stochastic nature of disturbance inputse
» the input nature of external disturbances
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INPUTS and OUTPUTS




Closed systems

modelled variables

If the system variables are completely generated ‘interndy’,
we speak of closed systems .
Deterministic case x(t + 1) = f(x(t)) or $x= f(x), w=h(x).
Stochastic case  x(t+1) = f(x(t),&(t)),
or dx = f(x)dt + h(x)de, w = h(x).
. Internal noise
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Closed systems

modelled variables

But closed systems do not form a good model class:

» they do not cope with interconnection, with tearing
» the basic laws of physics are not closed systems
» implicitly forces to model the environment
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Closed systems

modelled variables

How to model interaction with the environment?
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Open systems

Classical approach:

environment

system

|5utputs

jli

modelled variables

~ X(t+1) = F(x(t),u(t)), y(t) = h(x(t),u(t)),w= (u,y), or
X(t+1) = T(x(1),u(t), (1)), y(t) = h(x(t),u(t ),E(t)) = (U,Y),

or transfer functions, or ARMAX systems,..
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Open systems

Classical approach:

environment

system

|5utputs

jli

modelled variables

~ X(t+1) = F(x(t),u(t)), y(t) = h(x(t),u(t)),w= (u,y), or
X(t+1) = T(x(t),u(t),e(t)), y(t) = h(x(t), (),Et) = (U,Y),

or transfer functions, or ARMAX systems,..

Does this input/output partition respect the physics?
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Input/output thinking

The input/output view as theprimary and universal
concept for open systems is misconception
It fails in the first examples.
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Input/output thinking

The input/output view as the primary and universal concept br

open systems is a misconception. It fails in the first exampsde

volume

pressure
temperature
guantity

The gas law imposes the relation ol PV = NT .

It makes no sense to view this in an input/output way.

—n. 9/3¢



Input/output thinking

The input/output view as the primary and universal concept br

open systems is a misconception. It fails in the first exampde

(potential, current)

Electrical
circuit

The circuit imposes a relation on

Vla |17V27 |27 XK 7VN7 ly

Only after modeling = voltage or current driven terminals.
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Input/output thinking

Maxwell’'s equations

. 1
0.E = =
&P
B d -
OxE = ——B
8 ot
0-B = 0,
. 1. 0.
2 .
COxB = —j+—E
8 on—l_dt

10 variables, 8 equations= d free variables.

But it makes no sense to declare some variables as inputs...
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Input/output thinking

The input/output view as the primary and universal
concept for open systems is misconception
It fails in the first examples.

The strongest argument against input/output
thinking comes from system interconnection

variable sharing not output-to-input assignment

IS the mechanism to interconnect systems.
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BEHAVIORS




Behavioral systems - deterministic case

A (static) model is a subset# of the universum % of
possible outcomes of a phenomenon.
% is the behavior of the model.

A dynamical system = (T,W,%4), with

TCR the time set

W the signal space
2 CWT  the behavior
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Behavioral systems - deterministic case

A dynamical system = (T,W,%4), with

TCR the time set

W the signal space
#C W'  the behavior

So, a dynamical system is merely a family of
time-trajectories taking values in a signal space.

If W =RY, then all variables are treated on the same
level. When analyzing%, some components ofv € A
may be ‘free’, In a sense ‘inputs’.
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Behavioral systems - deterministic case

A dynamical system = (T,W,%4), with

TCR the time set

W the signal space
#C W'  the behavior

A rich theory has been developed in this
deterministic case, featuring new viewpoints,
e.g. about LTIDSs, about controllability, etc.
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Linear time-invariant difference systems

The dynamical system> = (Z,R", %) is said to be
» linear ;< 2 C (R)% s linear
» time-invariant & % = 0%

» complete .
[we B < Wit t,] € Bl 1, forall t,tz € Z]
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Linear time-invariant difference systems

The following are equivalent for Z = (Z,R", %)
» 2 Is linear, time-invariant, complete
» P C (RY)” linear, shift-invariant, and closed

» da polynomial matrix Re R**¥|&] such that
B={w:Z — R" | R(o)w= 0}
that is, Z Is the solution set of
Row(t) +Ryw(t+1)+---+Rw(t+L)=0forall t € Z

‘kernel representation’
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Linear time-invariant difference systems

The following are equivalent for Z = (Z,R", %)

» A IS the solution set of
Row(t) +Ryw(t+1)+---+Rw(t+L)=0forall t € Z

‘kernel representation’

» R and R’ define the same system
< their rows generate
the sameR[&, & ~1]-module
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Linear time-invariant difference systems

The following are equivalent for Z = (Z,R", %)

» A IS the solution set of
Row(t) +Ryw(t+1)+---+Rw(t+L)=0forall t € Z

‘kernel representation’

» R and R’ define the same system
< their rows generate
the sameR[&, & ~1]-module

» done-to-one relation between
LTIDSs and R[€, € ~]-modules
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STOCHASTIC BEHAVIORS

STATIC CASE




Static case

‘Regression’ y=Lu+¢
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Static case

‘Regression’ y=Lu+¢
¢ models the uncertainty of the ‘law’

y=Lu

Classical: € 1Is a random vector.
But what should one assume abouti?
And about the relation betweenu and £?
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Static case

‘Regression’ y=Lu+¢

Classical: € Is a random vector.
But what should one assume aboui?
And about the relation betweenu and £?

Sinceu is ‘external’, generated by the environment,
one should not state anything about.
Modeling a system should not require modeling the
environment!

We also want to treatu and y on the same level
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Stochastic static linear system

Recall the classical definition of an abstract random
variable (A,.o7,P) with
A the space of elementary events
</ a sigma-algebra of subsets ok
P: ./ — [0,1] a probability measure || "S55

In what is called ann-dimensional real random
vector, we obtain (R*, o7, P)

with &7 the sigma-algebra of Borel subsets aR".
Our proposal is that (even for regression!), we should
not take the Borel sigma-algebra.
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Stochastic static linear system

Definition: A stochastic static linear system Is a
random variable

(R™, o7, P)

with o7 the sigma-algebra of subsets dR” defined as
follows In terms of a linear subspacédl. C R*®

o ={SCR*|S=S+1L,S C R" Borel}
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Stochastic static linear system

Definition: A stochastic static linear system Is a
random variable

(R™, o7, P)

with o7 the sigma-algebra of subsets dR” defined as
follows In terms of a linear subspacédl. C R*®

o ={SCR*|S=S+1L,S C R" Borel}

Special cases
L ={0} classical random vector

PL)= 1 deterministic case
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In pictures

Sets for which the probability is defined:

y

measurable set

Borel
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Representation

A stochastic static linear system oR” admits a
representation

Rw=¢

with R a real matrix and
€ a classical real random vector.

Special cases
R=1 ~ w=¢ classical random vector
E=0 ~ Rw=0 deterministic system

dimension(kernel(R)) = degrees of freedom.
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Regression

» Casen = 2. Def. says that y—au
IS random but that uandy are NOT random
variables (in the formal sense that the
projections are not ‘measurable’ maps.)

» This is the intention of a regression model.
There is no claim in such a model that
uis random or deterministic,
or that ¢ is dependent or independent ofi or .
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Examples

How do you weigh a cow?

weight — a circumference

IS a random variable, not the weight or the
circumference.
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Examples

Johnson-Nyqguist

resistor noise thermal

NoISEe

resistor
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After Interconnection, I.e., after modeling the

Interconnection

environment, we obtain

system 1

modelled
variables

system 2
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Interconnection
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Leading to the o-algebra generated by the
Intersections, and the product measure

Special caselL, = {u= 0},

uis then a random variable independent ofe;.



noisel

resistorl

Example

noise2

resistor2

| — f1té&
Ri+Ro

Vi — Vo = (Ri+R2)&1+R1&

Ri+Ro

—n. 22/3¢



Regression

(i-e., of the
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STOCHASTIC BEHAVIORS

DYNAMIC CASE




Stochastic linear time-invariant system

A stochastic linear time-invariant dynamical system
IS given by a stationary random process and

a polynomial matrix Re R**¥|&].

The behavior consists of alw : Z — R" such that

R(o)w=¢
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Stochastic linear time-invariant system

A stochastic linear time-invariant dynamical system
IS given by a stationary random process and

a polynomial matrix Re R**¥|&].

The behavior consists of alw : Z — R" such that

R(o)w=¢

In particular, there exists .#, an
R[&, &~ 1-submodule ofR[&, & ~1]¥, such that

[f e #] = [f' (0,0 !)wis a stationary proces$
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Stochastic linear time-invariant system

In particular, there exists .#, an
R[&, &~ 1-submodule of R[€, & ~1]¥, such that

[f e #] = [f' (0,07 !)wis a stationary proces$

In fact, .# = the module generated by the transposes
of the rows of R.
f f' =hR thenf (0,07 )w=h(o,071)e.

—n. 25/3¢



Stochastic linear time-invariant system

In particular, there exists .#, an
R[&, &~ 1-submodule of R[€, & ~1]¥, such that

[f e #] = [f' (0,07 !)wis a stationary proces$

In fact, .# = the module generated by the transposes

of the rows of R.
f f' =hR thenf (0,07 )w=h(o,071)e.

To be worked out
Representation questions, their unigueness,
system identification issues,. .
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MODELING DISTURBANCES

AS STOCHASTIC PROCESSES




Stochastics in ARMAX systems

= ":'I:El.!.'—- = [ h|=1.r

IJNEAH

A(0)y = X(0)u+M(a)e

The mathematics behind SYSTEM
IDENTI FICAI ION
ARMAX systems are among the most :

elegant, appealing, and subtle
In system theory.

But what about the modeling aspect?
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Stochastics in ARMAX systems

A(o)y=X(o)u+M(o)e

What is the rationale of assuming
that the disturbancese are
stochastic processes?

Should one interpret probability
In the sense o relative frequency ?
or in the sense oidegree of belief ?

= ":'I:El.::-rf:l Il1=1.r

IJNEAH

SYSTEM
IDENTIFICATION
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Degree of belief

If probabllity in ARMAX system identification is to
be interpreted In the sense of degree of belief, then

» whatis the sense of worrying about consistency
and asymptotic efficiency in SYSID?
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Degree of belief

If probabllity in ARMAX system identification is to
be interpreted In the sense of degree of belief, then

>

what is the sense of worrying about consistency
and asymptotic efficiency in SYSID?

why should we care abouttheir degree of
belief?
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Degree of belief

If probabllity in ARMAX system identification is to
be interpreted In the sense of degree of belief, then

>

what is the sense of worrying about consistency
and asymptotic efficiency in SYSID?

why should we care abouttheir degree of
belief?

why not simply stick to least squares, and be
much more parsimonious in expressing beliefs?
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Relative frequency

When there is a clear existing real ensemble,
relative frequencies are clear and real. Is this the case
In time-series and uncertain dynamical systems?
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Relative frequency

When there is a clear existing real ensemble,
relative frequencies are clear and real. Is this the case
In time-series and uncertain dynamical systems?

wind
outside temperature
solar radiation

Py

fan velocity | ——=

= | inside temperature

Are these ‘disturbances’ stochastic processes, even
approximatey? If so, why?
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Uncertainty

The universal use of probability as a panacea for
modeling uncertainty in systems and control (and
elsewhere) is for me a constant source of discomfort,
for a feeling of Das Unbehagen in der Kultur
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|s probabilty real?

What is the probability of heads ?

Many seem to believe that the randomness is
In the coin!
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Is probabilty real?

“The propensity to give heads is as much

a property of the coin as its mass, and the

stable long run frequency found on repeated trials
IS an objective fact of nature independent of

anyone’s knowledge of it” 1. Hacking, p. 14.

—n. 31/3¢



Is probabilty real?

“The numbersp, [the probability of the outcome r]
should in fact be regarded a physical constants of the

particular die that we are using” H. Cramer, p. 154

What is the probability of heads ?

PRINCETON LANOMARKS
[N MATHEMATICS

Mathematical
Methods
of Statistics
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Physics or stochastics?

Persi Diaconis builds a coin tosser

and discovered that if the coin Is tossed exactly the
same way, It falls on the same side 100% of the time.
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Physics or stochastics?

The press appears indignified:

The Not So Random Coin Toss

o Listen | by David Kestenbaum

Flipping a coin may not be the fairest way to
settle disputes. About a decade ago,
statistician Persi Diaconis started to wonder
if the cutcome of a coin flip really is just a
matter of chance. He had Harvard
University engineers build him a mechanical
; Larger Image of the coin flipper. Diaconis, now at Stanford

Machine University, found that if a coin is launched
exactly the same way, it lands exactly the

R T same way.

otatistician Fersi

Diaconis' mechanical

The randomness in a coin toss, it appears,
coin flipper. is introduced by sloppy humans. Each
human-generated flip has a different height
and speed, and is caught at a different
angle, giving different cutcomes.
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Physics or stochastics?

The press appears indignified:

The Not So Random Coin Toss

SLEN ) by David Kestenbaum

- lipping a coin may not be the fairest way to
Sloppy humanS ?777 ettle disputes. About a decade ago,

statistician Persi Diaconis started to wonder
if the cutcome of a coin fl|p really is just a

sloppy professorswheindoctrinate

Lar ger lm: Aige O LE GO INpPRern. Liacois, now at c.n’[E'r"fD"d

studentsand Journallgts to' b@lrevgm | e

exact ly the same way, it

The randomness in a coin toss, it appears,
is introduced by sloppy humans. Each
human-generated flip has a different height
and speed, and is caught at a different
angle, giving different cutcomes.
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Physics or stochastics?

The scientists come to the following conclusions:

We conclude that coin tossing is ‘physics’, not ‘random

P. Diaconis, S. Holmes and R. Montgomery, Dynamical bias irhe coin toss,

S AM Review, 2007, page 211.

| could have told them that without the benefit of a
machine...
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Physics or stochastics?

The scientists come to the following conclusions:

If we have this much trouble analyzing a common
coin toss, the reader can imagine the difficulty we
have with interpreting typical stochastic assumptions
INn econometric analysis

Agreed, from the bottom of my heart!
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CONCLUSIONS




Conclusions

» An open stochastic system is best defined In
terms of unusual og-algebra.
~» a crisper definition, which does not require
Input/output separation,
and avoids the discussion of statistical
dependence of input and noise.
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Conclusions

» | am uncomfortable with the use of probability
as a panacea for uncertainty.
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Conclusions

» | am uncomfortable with the use of probability
as a panacea for uncertainty.

» | find it difficult to fathom the origin of the
conviction that uncertainty Is intrinsic in some
systems, e.g., coins and dice, and wiggly
time-series. Comes (in part) from
misunderstanding ‘closed’ versus ‘open’ systems.

Possible exception: QM.
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Copies of the lecture frames will be available from/at
Jan. Wl | ens@sat . kul euven. be

http://ww. esat. kul euven. be/ ~jw || ens
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Copies of the lecture frames will be available from/at

Jan. Wl | ens@sat . kul euven. be

http://ww. esat. kul euven. be/ ~jw || ens

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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Manfred, enjoy your retirement!
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