On the occasion of Sagar's 60-th

PARAMETRIZATION of STABILIZING CONTROLLERS

Jan Willems, K.U. Leuven, Flanders, Belgium

& Yataka Yamamoto, Kyoto University, Japan

SagarFest, Hyderabad, India

January 7, 2008

Adrianus VI 1459–1523

Erasmus de la Valleé Poussin Lemaître 1469–1536 1866–1962 1894–1966

Reminders

Linear time-invariant differential systems

$$\frac{R\left(\frac{d}{dt}\right)w=0}{R\in\mathbb{R}\left[\xi\right]^{\bullet\times\mathtt{w}}}$$

(behavior \mathscr{B} := the $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ solutions)

$$\frac{R\left(\frac{d}{dt}\right)w=0}{R\in\mathbb{R}\left[\xi\right]^{\bullet\times\mathbb{W}}}$$

(behavior \mathscr{B} := the $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W})$ solutions) but can also be represented by **rational** symbols

$$G\left(\frac{d}{dt}\right)w=0$$
 $G\in\mathbb{R}(\xi)^{\bullet imes w}$

$$\frac{R\left(\frac{d}{dt}\right)w=0}{R\in\mathbb{R}\left[\xi\right]^{\bullet\times w}}$$

(behavior \mathscr{B} := the $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ solutions) but can also be represented by **rational** symbols

$$G\left(\frac{d}{dt}\right)w = 0 \qquad \qquad G \in \mathbb{R}(\xi)^{\bullet \times w}$$

Behavior := the set of solutions of

$$Q\left(\frac{d}{dt}\right)w=0$$
 $Q\in\mathbb{R}\left[\xi\right]^{\bullet imes w}$

where $G = P^{-1}Q$, $P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}$, P and Q left coprime

$$\frac{R\left(\frac{d}{dt}\right)w=0}{R\in\mathbb{R}\left[\xi\right]^{\bullet\times w}}$$

(behavior \mathscr{B} := the $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W})$ solutions) but can also be represented by **rational** symbols

$$G\left(\frac{d}{dt}\right)w = 0$$
 $G \in \mathbb{R}(\xi)^{\bullet \times w}$

This added flexibility → better results in certain problems, e.g. parametrization of the set of stabilizing controllers

Controllability c.s.

 \mathscr{B} is said to be **controllable** : \Leftrightarrow

 $\forall w_1, w_2 \in \mathscr{B}, \exists T \ge 0 \text{ and } w \in \mathscr{B} \text{ such that } \dots$

 \mathscr{B} is said to be **controllable** : \Leftrightarrow

 \mathscr{B} is said to be stabilizable : \Leftrightarrow

 $\forall w \in \mathscr{B}, \exists w' \in \mathscr{B}$ such that ...

 \mathscr{B} is said to be **controllable** : \Leftrightarrow

 \mathscr{B} is said to be stabilizable : \Leftrightarrow

 \mathscr{B} is said to be **autonomous** : \Leftrightarrow

$$\forall w_{-} \in \mathscr{B}_{-}, \exists (!) w_{+} \in \mathscr{B}_{+} \text{ such that } \dots$$

 \mathscr{B} is said to be controllable :
 :

 \mathscr{B} is said to be stabilizable :
 :

 \mathscr{B} is said to be autonomous :
 :

 \mathscr{B} is said to be stable :
 $[w \in \mathscr{B}] \Rightarrow [w(t) \to 0 \text{ as } t \to \infty]$

 \mathscr{B} is said to be stable $:\Leftrightarrow [w \in \mathscr{B}] \Rightarrow [w(t) \to 0 \text{ as } t \to \infty]$

$\mathbb{R}(\xi)$ and some of its subrings

Field of (real) rationals

Subrings of interest

polynomials proper rationals stable rationals

proper stable rationals

unimodularity $:\Leftrightarrow$ invertibility in the ring

Field of (real) rationalsnonzero

Subrings of interest

polynomialsnonzero constantproper rationalsbiproperstable rationalsminiphaseproper stable rationalsbiproper & miniphase

unimodularity $:\Leftrightarrow$ invertibility in the ring

Field of (real) rationalsnonzero

Subrings of interest

polynomialsnonzero constantproper rationalsbiproperstable rationalsminiphaseproper stable rationalsbiproper & miniphase

unimodularity of square matrices over rings ⇔ determinant **unimodular**

left primeness of matrices over rings

$$:\Leftrightarrow \ \left[\!\left[\!\left[F = UF'\right]\!\right] \Rightarrow \left[\!\left[U \text{ unimodular}\right]\!\right]\!\right]$$

The LTIDS *B* admits a representation that is left prime over

- rationals: always
- proper rationals: always
- **stable rationals: iff** *B* is **stabilizable**
- **proper stable rationals: iff** *B* is **stabilizable**
- **polynomials: iff** \mathscr{B} is controllable

The LTIDS *B* admits a representation that is left prime over

- **stable rationals: iff** *B* is **stabilizable**
- **proper stable rationals: iff** *B* is **stabilizable**

 \mathfrak{B} stabilizable $\Leftrightarrow \exists G$, matrix of rational functions, such that

- (i) $\mathfrak{B} = \operatorname{kernel}\left(G\left(\frac{d}{dt}\right)\right)$
- (ii) G is proper (no poles at ∞)
- (iii) $G^{\infty} := \text{limit}_{\lambda \to \infty} G(\lambda)$ has full row rank (no zeros at ∞)
- (iv) G has no poles in $\mathbb{C}_+ := \{\lambda \in \mathbb{C} \mid \texttt{real}(\lambda \ge 0\}$
- (v) $G(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}_+$ (no zeros in \mathbb{C}_+)

The LTIDS *B* admits a representation that is **left prime** over

polynomials: iff *B* is controllable

 \mathfrak{B} controllable $\Leftrightarrow \exists R$, matrix of polynomials, such that

- (i) $\mathfrak{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$
- (ii) $R(\lambda)$ full row rank $\forall \ \lambda \in \mathbb{C}$

Preliminaries

Unimodular completion

Unimodular completion lemma

Let G be a matrix over one of our rings (polynomial, proper rat., stable rat., proper stable rat.).

¿ Does there exist a unimodular completion G'i.e. a matrix G' over that same ring such that

$$\begin{bmatrix} G \\ G' \end{bmatrix}$$

is unimodular (determinant is invertible in the ring) ?

Unimodular completion lemma

Let G be a matrix over one of our rings (polynomial, proper rat., stable rat., proper stable rat.).

; There exists a unimodular completion G'

i.e. a matrix G' over that same ring such that

is unimodular (determinant is invertible in the ring)

if and only if

G is **left prime** over the ring !

Work and problems posed by Kučera, Youla c.s., Desoer c.s., Sontag & Khargonekar, Francis, e.m.a. **Unimodular completion lemma**

G: 1 row, 2 columns

$$G = \begin{bmatrix} p & q \end{bmatrix}$$

Unimodular completion lemma

G: 1 row, 2 columns

$$G = \begin{bmatrix} p & q \end{bmatrix} \qquad G' = \begin{bmatrix} -y & x \end{bmatrix} \qquad \begin{bmatrix} G \\ G' \end{bmatrix} = \begin{bmatrix} p & q \\ -y & x \end{bmatrix}$$

G: 1 row, 2 columns

$$G = \begin{bmatrix} p & q \end{bmatrix} \qquad G' = \begin{bmatrix} -y & x \end{bmatrix} \qquad \begin{bmatrix} G \\ G' \end{bmatrix} = \begin{bmatrix} p & q \\ -y & x \end{bmatrix}$$

determinant = px + qy, unimodularity $\Leftrightarrow px + qy = 1$

solvable for $x, y \Leftrightarrow p$ & q coprime $\Leftrightarrow G = \begin{bmatrix} p & q \end{bmatrix}$ left prime

G: 1 row, 2 columns

$$G = \begin{bmatrix} p & q \end{bmatrix} \qquad G' = \begin{bmatrix} -y & x \end{bmatrix} \qquad \begin{bmatrix} G \\ G' \end{bmatrix} = \begin{bmatrix} p & q \\ -y & x \end{bmatrix}$$

determinant = px + qy, unimodularity $\Leftrightarrow px + qy = 1$

solvable for $x, y \Leftrightarrow p$ & q coprime $\Leftrightarrow G = \begin{bmatrix} p & q \end{bmatrix}$ left prime

Our rings are **Hermite rings**

G left prime \Leftrightarrow unimodularly completable $\Leftrightarrow \exists H : GH = I \Leftrightarrow \cdots$

Control

Plant \mathscr{P} , controller \mathscr{C} , controlled system $\mathscr{P} \cap \mathscr{C}$

Plant \mathscr{P} , controller \mathscr{C} , controlled system $\mathscr{P} \cap \mathscr{C}$

$\begin{bmatrix} \mathscr{C} \text{ is stabilizing} \end{bmatrix} :\Leftrightarrow \quad \begin{bmatrix} \mathscr{P} \cap \mathscr{C} \text{ is stable} \end{bmatrix} \\ \Leftrightarrow \begin{bmatrix} \begin{bmatrix} w \in \mathscr{P} \cap \mathscr{C} \end{bmatrix} \Rightarrow \begin{bmatrix} w(t) \to 0 \text{ for } t \to \infty \end{bmatrix} \end{bmatrix} \\ \begin{bmatrix} \mathscr{C} \text{ is deadbeat} \end{bmatrix} :\Leftrightarrow \begin{bmatrix} \mathscr{P} \cap \mathscr{C} = \{0\} \end{bmatrix} \\ \Leftrightarrow \begin{bmatrix} w \in \mathscr{P} \cap \mathscr{C} \end{bmatrix} \Rightarrow \begin{bmatrix} w = 0 \end{bmatrix} \end{aligned}$

Plant \mathscr{P} , controller \mathscr{C} , controlled system $\mathscr{P} \cap \mathscr{C}$

 $\llbracket \mathscr{C} \text{ is a } \operatorname{regular } \operatorname{controller} \rrbracket :\Leftrightarrow \llbracket \mathscr{P} + \mathscr{C} = \mathscr{C}^{\infty} (\mathbb{R}, \mathbb{R}^{w}) \rrbracket$ $\llbracket \mathscr{C} \text{ is a } \operatorname{superregular } \operatorname{controller} \rrbracket :\Leftrightarrow \text{ in addition,}$

 $\llbracket \forall w \in \mathscr{P}, \forall w' \in \mathscr{C} \ \exists v \text{ such that } w \wedge_0 v, w' \wedge_0 v \in \mathscr{P} \cap \mathscr{C} \rrbracket$

Plant \mathscr{P} , controller \mathscr{C} , controlled system $\mathscr{P} \cap \mathscr{C}$

 $\llbracket \mathscr{C} \text{ is a } \operatorname{\mathbf{regular}} \operatorname{\mathbf{controller}} \rrbracket :\Leftrightarrow \llbracket \mathscr{P} + \mathscr{C} = \mathscr{C}^{\infty} \left(\mathbb{R}, \mathbb{R}^{\mathsf{w}} \right) \rrbracket$

 $\llbracket \mathscr{C}$ is a superregular controller $\rrbracket :\Leftrightarrow$ in addition,

 $\llbracket \forall w \in \mathscr{P}, \forall w' \in \mathscr{C} \ \exists v \text{ such that } w \wedge_0 v, w' \wedge_0 v \in \mathscr{P} \cap \mathscr{C} \rrbracket$

Regular & superregular

Regular controller

$\forall v \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \ \exists w \in \mathscr{P} \text{ and } w' \in \mathscr{C} \text{ such that } v = w + w'$

Regular controller

Controlled system

regular \Rightarrow exogenous inputs unchanged after control

Superregular controllers

Controlled system

superregular \Rightarrow controller can be engaged at any time

Interc'ions requiring 'state preparation' \Rightarrow **not superregular**

Superregular controllers

Controlled system

Usual feedback controllers are superregular

PID controllers are regular, but not superregular

Controllers that are regular, but not superregular, relevant: control is interconnection, not just signal processing Cardinalities

Let \mathscr{B} be a LTIDS. Define

- $p(\mathscr{B}) :=$ number of output components
 - = **number of system equations** = rank(R) = rank(G)
- $n(\mathscr{B}) :=$ number of state components
 - = dimension of state space = McMillan degree
- $m(\mathscr{B}) :=$ number of (free) input components

$$= w(\mathscr{B}) - p(\mathscr{B})$$

(Super)regular & cardinalities

Plant \mathscr{P} , controller \mathscr{C} , controlled system $\mathscr{P} \cap \mathscr{C}$

 $\begin{bmatrix} \mathscr{C} \text{ is a } \text{ regular } \text{ controller} \end{bmatrix} :\Leftrightarrow \begin{bmatrix} \mathscr{P} + \mathscr{C} \end{pmatrix} = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\texttt{w}}) \end{bmatrix}$ $\Leftrightarrow \begin{bmatrix} p(\mathscr{P} \cap \mathscr{C}) = p(\mathscr{P}) + p(\mathscr{C}) \end{bmatrix}$

 $\begin{bmatrix} \mathscr{C} \text{ is a } \text{ superregular } \text{ controller} \end{bmatrix} \\ :\Leftrightarrow \text{ in addition, } \begin{bmatrix} n(\mathscr{P} \cap \mathscr{C}) = n(\mathscr{P}) + n(\mathscr{C}) \end{bmatrix}$

Existence of stabilizing controllers

Proposition

\mathscr{P} is stabilizable $\Leftrightarrow \exists$ a regular stabilizing controller

 $\Leftrightarrow \exists$ a superregular stabilizing controller

Proposition

\mathscr{P} is stabilizable $\Leftrightarrow \exists$ a regular stabilizing controller

 $\Leftrightarrow \exists$ a superregular stabilizing controller

\mathscr{P} is controllable $\Leftrightarrow \exists$ a regular deadbeat controller $\Leftrightarrow \exists$ pole placement ...

 \nexists a controller that is superregular & deadbeat!

Parametrization of controllers

Start with $G\left(\frac{d}{dt}\right)w = 0$ a (rational symbol based) representation of the plant

Assume *G* left prime over ring of stable rational functions. Iff the plant is stabilizable, such a *G* exists.

Start with $G\left(\frac{d}{dt}\right)w = 0$ a (rational symbol based) representation of the plant

Assume *G* left prime over ring of stable rational functions. Iff the plant is stabilizable, such a G exists.

Start with $G\left(\frac{d}{dt}\right)w = 0$ a (rational symbol based) representation of the plant

Assume *G* left prime over ring of stable rational functions. Iff the plant is stabilizable, such a *G* exists.

 $\Rightarrow \exists G' \text{ such that } \begin{vmatrix} G \\ G' \end{vmatrix} \text{ is unimodular over stable rat. f'ns.}$

Par'ion of regular stabilizing controllers $C\left(\frac{d}{dt}\right)w = 0$

 $C = F_1 G + F_2 G'$

 F_1 free over stable rationals, F_2 unimodular over stable rat.

Start with $G\left(\frac{d}{dt}\right)w = 0$ a (rational symbol based) representation of the plant

Assume *G* left prime over proper stable rational functions. Iff the plant is stabilizable, such a *G* exists.

Par'ion of superregular stabilizing controllers $C\left(\frac{d}{dt}\right)w = 0$

 $\Rightarrow \exists G' \text{ such that } \begin{vmatrix} G \\ G' \end{vmatrix} \text{ is unimodular over proper stable rat.}$

 $C = F_1 G + F_2 G'$

 F_1 free over proper st. rat., F_2 unimodular over pr. st. rat.

Parametrization of regular deadbeat controllers

 $R\left(\frac{d}{dt}\right)w = 0$ a (polynomial symbol based) repr. of the plant.

Assume *R* left prime over ring of polynomials. Iff the plant is controllable, such an *R* exists.

$$\Rightarrow \exists R' \text{ such that}$$

 $\frac{\left|\begin{array}{c}R\\R'\end{array}\right|}{R'}$ is unimodular as a polynomial matrix.

Parametrization of regular deadbeat controllers $C\left(\frac{d}{dt}\right)w = 0$

$$C = FR + R'$$

F free over polynomial matrices.

Simplification

If we consider controllers 'equivalent' if they have the same controllable part (\cong same transfer function)

Par'ion of stabilizing (super)regular controllers $C\left(\frac{d}{dt}\right)w = 0$

C = FG + G'

F free over (proper) stable rational.

Start with $R\left(\frac{d}{dt}\right)w = 0$ a (polynomial symbol based) repr. of the plant, for simplicity assumed controllable.

Assume *R* left prime over ring of polynomials. Iff the plant is controllable, such an *R* exists.

 $\Rightarrow \exists R' \text{ such that } \begin{vmatrix} R \\ R' \end{vmatrix} \text{ is unimodular as a polynomial matrix.}$

Start with $R\left(\frac{d}{dt}\right)w = 0$ a (polynomial symbol based) repr. of the plant, for simplicity assumed controllable.

Assume *R* left prime over ring of polynomials. Iff the plant is controllable, such an *R* exists.

 $\Rightarrow \exists R' \text{ such that } \begin{vmatrix} R \\ R' \end{vmatrix} \text{ is unimodular as a polynomial matrix.}$

Par'ion of regular stabilizing controllers $C\left(\frac{d}{dt}\right)w = 0$

$$C = F_1 R + F_2 R'$$

 F_1 free over pol. matr., F_2 Hurwitz (i.e. det (F_2) Hurwitz)

A glimpse of the proof

means $R(\lambda)$ full row rank $\forall \lambda \in \mathbb{C}$

i.e. *R* is left prime as a polynomial matrix

Start with the plant $R\left(\frac{d}{dt}\right)w = 0$ **assumed controllable**

means $R(\lambda)$ full row rank $\forall \lambda \in \mathbb{C}$

i.e. *R* is left prime as a polynomial matrix

Therefore $\exists R'$ such that $\begin{vmatrix} R \\ R' \end{vmatrix}$ is unimodular

Consider the controller

$$C\left(\frac{d}{dt}\right)w = 0$$

Consider the controller $C\left(\frac{d}{dt}\right)w = 0$

unimodularity
$$\Rightarrow$$
 $C = \begin{bmatrix} F_1 & F_2 \end{bmatrix} \begin{bmatrix} R \\ R' \end{bmatrix} = F_1 R + F_2 R'$

 \Rightarrow every controller is of the form

$$C = F_1 R + F_2 R'$$

Consider the controller $C\left(\frac{d}{dt}\right)w = 0$

 \Rightarrow every controller is of the form

$$C = F_1 R + F_2 R'$$

$$\rightarrow \text{ controlled system } \begin{bmatrix} I & 0 \\ F_1 & F_2 \end{bmatrix} \begin{bmatrix} R \\ R' \end{bmatrix} \left(\frac{d}{dt} \right) w = 0$$

Regularity \Leftrightarrow F_2 square, determinant $(F_2) \neq 0$

Consider the controller $C\left(\frac{d}{dt}\right)w = 0$

 \Rightarrow every controller is of the form

$$C = F_1 R + F_2 R'$$

$$\Rightarrow \text{ controlled system } \begin{bmatrix} I & 0 \\ F_1 & F_2 \end{bmatrix} \begin{bmatrix} R \\ R' \end{bmatrix} \left(\frac{d}{dt} \right) w = 0$$

Regularity \Leftrightarrow F_2 square, determinant $(F_2) \neq 0$ deadbeat \Leftrightarrow F_2 unimodular \rightsquigarrow WLOG $F_2 = I \implies C = FR + R'$

Consider the controller $C\left(\frac{d}{dt}\right)w = 0$

 \Rightarrow every controller is of the form

$$C = F_1 R + F_2 R'$$

$$\rightarrow \text{ controlled system } \begin{bmatrix} I & 0 \\ F_1 & F_2 \end{bmatrix} \begin{bmatrix} R \\ R' \end{bmatrix} \left(\frac{d}{dt} \right) w = 0$$

Regularity \Leftrightarrow F_2 square, determinant $(F_2) \neq 0$ deadbeat \Leftrightarrow F_2 unimodular \rightsquigarrow WLOG $F_2 = I \implies C = FR + R'$ stable \Leftrightarrow determinant (F_2) Hurwitz

Consider the controller
$$C\left(\frac{d}{dt}\right)w = 0$$

 $\Rightarrow \text{ every controller is of the form } C = F_1 R + F_2 R'$ $\sim \text{ controlled system } \begin{bmatrix} I & 0 \\ F_1 & F_2 \end{bmatrix} \begin{bmatrix} R \\ R' \end{bmatrix} \left(\frac{d}{dt}\right) w = 0$

Regularity \Leftrightarrow F_2 square, determinant $(F_2) \neq 0$ deadbeat \Leftrightarrow F_2 unimodular \rightsquigarrow WLOG $F_2 = I \implies C = FR + R'$ stable \Leftrightarrow determinant (F_2) Hurwitz

- ... other proofs similar
- ... superregular
- ... advantages of rational representations

Examples

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = 0 \quad \rightsquigarrow \quad w_1 = 0, \quad w_2 \text{ free}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = 0 \quad \rightsquigarrow \quad w_1 = 0, \quad w_2 \text{ free}$$
$$G = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad G' = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = 0 \quad \rightsquigarrow \quad w_1 = 0, \quad w_2 \text{ free}$$
$$G = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad G' = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Controller: $w_2 + \alpha \frac{d}{dt} w_2 = 0$, $\alpha > 0$ superregular & stabilizing

Captured by first, but not by the simplified parametrization.

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = 0 \quad \rightsquigarrow \quad w_1 = 0, \quad w_2 \text{ free}$$
$$G = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad G' = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Controller: $w_2 + \alpha \frac{d}{dt} w_2 = 0$, $\alpha > 0$ superregular & stabilizing

Captured by first, but not by the simplified parametrization.

Transfer function thinking has limitations. It does not capture the uncontrollable part of a behavior.

Plant: w = (F, q) $M \frac{d^2}{dt^2}q + Kq = F, w = (F, q)$

Controlled system:

Controlled system:

Conclusion

Using **rational symbol** based representations $G\left(\frac{d}{dt}\right)w = 0$ that are left prime over suitable rings, we obtain parametrizations of regular and superregular stabilizing controllers

 \cong Kučera-Youla parametrization, with proper attention for the uncontrollable part

Conclusion

Using **rational symbol** based representations $G\left(\frac{d}{dt}\right)w = 0$ that are left prime over suitable rings, we obtain parametrizations of regular and superregular stabilizing controllers

 \cong Kučera-Youla parametrization, with proper attention for the uncontrollable part

Thank you for your attention

Happy Birthday, Sagar !!!

