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Reminders
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Linear time-invariant differential systems
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Rational symbols

LTIDS are definedin terms of polynomial symbols
R(&)w=0 Re R[E]*

(behavior #:.=the € (R,R") solutions)
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Rational symbols

LTIDS are definedin terms of polynomial symbols
R(&)w=0 Re R[E]*

(behavior .= the €* (R,R") solutions) but can also be
represented by rational | symbols

G(&)w=0 G e R(&)™™™
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Rational symbols

LTIDS are definedin terms of polynomial symbols

R(&)w=0 Re R[E]**"

(behavior .= the €* (R,R") solutions) but can also be
represented by rational | symbols

G(&)w=0 G e R(&)**"
Behavior := the set of solutions of
Q(L)w=0 QeR[E]*

whereG=P1Q, PQecRI[&]***, PandQ left coprime



Rational symbols

LTIDS are definedin terms of polynomial symbols
R(&)w=0 Re R[E]*

(behavior .= the €* (R,R") solutions) but can also be
represented by rational | symbols

G(§)w=0  GeR(§)*

This added flexibility ~» better results in certain problems,
e.g. parametrization of the set of stabilizing controllers
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Controllabllity c.s.
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Controllability and stabilizability

A 1S said to be controllable &

Vwi,Wo e A, 4T >0andw e £ such that ...

w
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Controllability and stabilizability

A 1S said to be controllable &

A 1S sald to be stabilizable &

AN

VYwe A, 3w € £ such that ...

Bfffffft.‘[_slvg@tirne

W’
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Controllability and stabilizability

A 1S said to be controllable &
A 1s said to be stabilizable &

2 1s said to be autonomous ;<

vw_e%B_,3 (1) wy e A, suchthat...

future (unique!)

V\w‘\_/\

time
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Controllability and stabilizability

A 1S said to be controllable &

A 1S sald to be stabilizable &

2 1s said to be autonomous ;<

2 1s said to be stable &

N

=

N~

lwe #| = [w(t) — 0ast — o]

stable = autonomous
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Stability

% is said to be stable (& [we #Z] = [w(t) — 0ast — o]

=

Stability in the sense ot Lyapunov
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R (&) and some of its subrings



Relevant rings

Field of (real) rationals

Subrings of interest

polynomials
proper rationals

stable rationals

proper stable rationals
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Relevant rings

unimodularity :< invertibility in the ring
Field of (real) rationals nonzero

Subrings of interest

polynomials nonzero constant
proper rationals biproper
stable rationals miniphase

proper stable rationals biproper & miniphase
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Relevant rings

unimodularity :< invertibility in the ring
Field of (real) rationals nonzero

Subrings of interest

polynomials nonzero constant

proper rationals biproper

stable rationals miniphase

proper stable rationals biproper & miniphase

unimodularity of square matrices over rings
& det er m nant unimodular

left primeness of matrices over rings
= |[[[F =UF'] = [U unimodular]]]]
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Representability

The LTIDS & admits a representation that is left prime over

°

rationals: always

°

proper rationals: always

stable rationals: Iff # Is stabilizable
proper stable rationals: iff £ is stabilizable

L I

# polynomials: iff # is controllable
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Representability

The LTIDS & admits a representation that is left prime over

# stable rationals: iff & is stabilizable
#® proper stable rationals: iff £ Is stabilizable

B stabilizable < 4G, matrix of rational functions, such that
(i) B =xernel (G(§))

(i) Gis proper (no poles atw)

(i) G :=1limit)_,G(A) has full row rank (no zeros at )

(iv) Ghasno polesinC, :={A € C|real(A >0}

(V) G(A) has fullrow rank ¥V A € C, (no zeros inC,)
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Representability

The LTIDS & admits a representation that is left prime over

# polynomials: iff # is controllable

B controllable < dR, matrix of polynomials, such that
(i) % =kernel (R(%))
(i) R(A) fullrowrank VA €C
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Preliminaries
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Unimodular completion
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Unimodular completion lemma

Let G be a matrix over one of our rings
(polynomial, proper rat., stable rat., proper stable rat.).

¢, Does there exist ¢ unimodular completion G’
i.e. a matrix G’ over that same ring such that

G
G/

IS unimodular (det er m nant is invertible in the ring) ?
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Unimodular completion lemma

Let G be a matrix over one of our rings
(polynomial, proper rat., stable rat., proper stable rat.).

i There exists aunimodular completion G’

i.e. a matrix G’ over that same ring such that

G
G/

IS unimodular (det er m nant is invertible in the ring)

If and only if

G is left prime over the ring !
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Synthesis

A Faclorization Approach

M. Vidyasagar
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Synthesis

A Faclorization Approach

M. Vidyasagar

Work and problems posed by
Kucera, Youla c.s., Desoer c.s., Sontag & Khargonekarr,

Francis, e.m.a.
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Unimodular completion lemma

G: 1 row, 2 columns

G=p q
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Unimodular completion lemma

G: 1 row, 2 columns

s<lpd s-[vi [
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Unimodular completion lemma

G: 1 row, 2 columns

_ r_ G| [P (
=lpa  G=|vy o |gl=]]
determinant = pPX+ Qy, unimodularity < px+qy=1

solvable forx,y < p & qcoprime < G = {p q} left prime
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Unimodular completion lemma

G: 1 row, 2 columns

_ r_ G| [P (
=lpa  G=|vy o |gl=]]
determinant = pPX+ Qy, unimodularity < px+qy=1

solvable forx,y < p & qcoprime < G = [p CI} left prime

Our rings are Hermite rings

G left prime < unimodularly completable < JH:GH =1 < - ..
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Control
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Control

Controller

Controlled system

Plant &2, controller ¢, controlled system £ZN%
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Control

Controller

Controlled system

Plant &2, controller ¢, controlled system £ZN%

|¢ is stabilizing | . [ZN% is stable]
& [[ we ZNE] = [w(t) — 0for t — oo ]]

|4 is deadbeat | < [#ZN% = {0}]
S [weNE]| = [w=0]
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Control

Controller

Controlled system

Plant &2, controller ¢, controlled system £ZN%

[¢ is a regular controller] ;< [+ % = €7 (R,RY)]
|¢ is a superregular controller] :< in addition,

[Vwe 2 VW € ¢ JvsuchthatwAgv,wW Agv e ZNE]
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Control

Plant &2, controller ¢, controlled system ZN%

[¢ is a regular controller] ;< [+ % = €7 (R,RY)]

|% is a superregular controller] ;< in addition,

[Vwe Z2,YW € ¥ Jvsuchthatwigv,wW Agv e P NE]

g
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w

time
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Reqgular & superregular
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Regular controller

Controller

Controlled system

Vve€* (R,RY) dwe & andw € ¥ such thatv=w+w
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Regular controller

Controller

Controlled system

Controller

Controlled system

regular = exogenous inputs unchanged after control
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Superregular controllers

Controller

Controlled system Controlled system

superregular = controller can be engaged at any time

Ywe Z VW ¢ ¥ 3vsuchthatwAgv,W AgveE P NE

v

____—

time

]
L

Interc’ions requiring ‘state preparation’ =- not superregular



Superregular controllers

Controller

Controlled system Controlled system

Usual feedback controllers are superregular

PID controllers are regular, but not superregular

Controllers that are regular, but not superregular, relevant:

control Is interconnection , not just signal processing
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Cardinalities

Let £ be a LTIDS. Define

p(#) := number of output components
= number of system equations= rank(R) = rank(G)
n(#) := number of state components

= dimension of state space- McMillan degree
m(A) = number of (free) input components

= (%) —p(H)
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(Super)regular & cardinalities

Controller

Controlled system

Plant &2, controller ¢, controlled system £ZN%
[¢ is a regular controller] ;< [+ %) =% (R,RY)]
< [p(ZNE)=p(ZF)+p(?)]

| is a superregular controller]
< in addition, [n(ZN€) =n(L)+n(%)]
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Existence of stabilizing controllers
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Existence

Proposition

2 is stabilizable«< d a reqular stabilizing controller

< d a superregular stabilizing controller
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Existence

Proposition

2 is stabilizable«< d a reqular stabilizing controller

< d a superregular stabilizing controller

2 Is controllable < d a reqular deadbeat controller

< 4 pole placement ...

3 a controller that is superregular & deadbeat!
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Parametrization of controllers
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Parametrization of regular stabilizing controllers

Start with G($)w=0 a (rational symbol based)
representation of the plant

Assume G left prime over ring of stable rational functions.
Iff the plant is stabilizable, such aG exists.
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Parametrization of regular stabilizing controllers

Start with G($)w=0 a (rational symbol based)
representation of the plant

Assume G left prime over ring of stable rational functions.
Iff the plant is stabilizable, such aG exists.

G| . .
= 3 G’ such that ol 'S unimodular over stable rat. f'ns.

—n. 29/



Parametrization of regular stabilizing controllers

Start with G($)w=0 a (rational symbol based)
representation of the plant

Assume G left prime over ring of stable rational functions.
Iff the plant is stabilizable, such aG exists.

G| . .
= 3 G’ such that ol 'S unimodular over stable rat. f'ns.

Par’ion of regular stabilizing controllers C($)w=0

C=FG+RCG

F, free over stable rationals,» unimodular over stable rat.
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Parametrization of superregular stabilizing controllers

Start with G($)w=0 a (rational symbol based)
representation of the plant

Assume G left prime over proper stable rational functions.
Iff the plant is stabilizable, such aG exists.

G| . .
= 3 G’ such that o IS unimodular over proper stable rat.

Par’ion of superregular stabilizing controllers C(&)w=0

C=FG+RG

F, free over proper st. rat., / unimodular over pr. st. rat.
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Parametrization of regular deadbeat controllers

R(&)w=0 a (polynomial symbol based) repr. of the plant.

Assume R left prime over ring of polynomials.
Iff the plant is controllable, such an R exists.

R| . . . .
= 3 R such that IS unimodular as a polynomial matrix.

R

Parametrization of regular deadbeat controllers C (& )w=0

C=FR+R

F free over polynomial matrices.
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Simplification

If we consider controllers ‘equivalent’ if they have the sane
controllable part (= same transfer function)

Par’ion of stabilizing (super)regular controllers C(&)w=0

C=FG+G

F free over (proper) stable rational.
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Parametrization of regular stabilizing controllers

Start with R($)w=0 a (polynomial symbol based) repr. of
the plant, for simplicity assumed controllable.

Assume R left prime over ring of polynomials.
Iff the plant is controllable, such an R exists.

R

= 3 R such that IS unimodular as a polynomial matrix.

R
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Parametrization of regular stabilizing controllers

Start with R($)w=0 a (polynomial symbol based) repr. of
the plant, for simplicity assumed controllable.

Assume R left prime over ring of polynomials.
Iff the plant is controllable, such an R exists.

R

= 3 R such that = IS unimodular as a polynomial matrix.

Par’ion of regular stabilizing controllers C (%) w=

C=FRR+RR

F, free over pol. matr., F, Hurwitz (i.e. det(F>) Hurwitz)
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A glimpse of the proof



Polynomial case

Start with the plant  R(&)w=0 assumed controllable

meansR(A) full row rank VA € C

l.e. Ris left prime as a polynomial matrix
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Polynomial case

Start with the plant  R(&)w=0 assumed controllable

meansR(A) full row rank VA € C

l.e. Ris left prime as a polynomial matrix

Therefore 3R such that RR, is unimodular
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Polynomial case

R
R

unimodular

Consider the controller C(&)w=0
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Polynomial case

R
R

unimodular

Consider the controller C(&)w=0

unimodularity = C= [Fl Fz}

R
R

=FR+RR

= every controller is of the form C=FR+RKkR
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Polynomial case

R
R

unimodular

Consider the controller C(&)w=0

= everycontroller is of the form C=FR+FER

~» controlled system

(§)w=0

R
R R |R

Regularity < F, square,determinant(F) # 0
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Polynomial case

R unimodular
R

Consider the controller C(&)w=0

= everycontroller is of the form C=FR+FER

~» controlled system (&)w=0

R
R R |R

Regularity < F, square,determinant(F) # 0
deadbeat< F unimodular ~» WLOG F, =1 ~» C=FR+FR
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Polynomial case

R unimodular
R

Consider the controller C(&)w=0

= everycontroller is of the form C=FR+FER

~» controlled system (&)w=0

R
R R |R

Regularity < F, square,determinant(F) # 0
deadbeat< F unimodular ~» WLOG F, =1 ~» C=FR+FR

stable < determinant(F) Hurwitz



Polynomial case

Consider the controller C(&)w=0

= everycontroller is of the form C=FR+FER

~» controlled system (&)w=0

R
R R |R

Regularity < F, square,determinant(F) # 0
deadbeat< F, unimodular ~» WLOG F, =1 ~» C=FR+FR

stable < determinant(F;) Hurwitz

... other proofs similar
... superregular
... advantages of rational representations
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Examples
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1o

A superregular controller

=0 ~ w; =0, wyfree
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A superregular controller

[1 O} WL =0 ~ w; =0, w,free

G:[l o}, G’:[o 1}
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A superregular controller

[1 O} WL =0 ~ w; =0, w,free

G:[l o}, G’:[o 1}

d

Controller: wo+a—w, =0, a >0 superregular & stabilizing

dt

Captured by first, but not by the simplified parametrization.
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A superregular controller

[1 O} WL =0 ~ w; =0, w,free

G=[1 o}, G’:[o 1}

d

Controller: wo+a—w, =0, a >0 superregular & stabilizing

dt
Captured by first, but not by the simplified parametrization.

Transfer function thinking has limitations.
It does not capture the uncontrollable part of a behavior.
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A regular, but not superregular, controller

Plant:

AR
M&a+Ka=F, w=(F.q
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A regular, but not superregular, controller

Plant: Controller:

w=(F, q)
|
w = (F, q) ‘

2 _ d
Mza+Kg=F, w= (F,q) F=-Dd

)
K <3
=
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A regular, but not superregular, controller

Controlled system:

AT T
2
MEq+DEq+Kg=0, F=-Dgq
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A regular, but not superregular, controller

Controlled system:

W
I

"'/’)’))
XXX

W
6‘6‘

\
!

WY
“““

;
)

((('0""""""""'
DA%

AT T
2
MEq+DEq+Kg=0, F=-Dgq

F
W

Reg. stab.c — [f(&) +h(&)| —h(E) — E2(F(&) +h(&))] h Hiitz
f—>—8—82 h—1+&4+E82 c— [1]|€&]

W — , R—[1] —1-¢&°], R—[1]&%]
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Summary
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Conclusion

Using rational symbol based representationss (&) w =0

that are left prime over suitable rings, we obtain
parametrizations of regular and superregular stabilizing
controllers

=~ Ku Cera-Youla parametrization, with proper attention for
the uncontrollable part
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Conclusion

Using rational symbol based representationss (&) w =0

that are left prime over suitable rings, we obtain
parametrizations of regular and superregular stabilizing
controllers

=~ Ku Cera-Youla parametrization, with proper attention for
the uncontrollable part

Other applications where rational symbols are indispensale:
2> unitary representations and behavioral model reduction.
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Thank you for your attention




Happy Birthday, Sagar!!!
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