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Reminders
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Linear time-invariant differential systems
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Rational symbols

LTIDS are definedin terms of polynomial symbols

R
(

d
dt

)

w = 0 R ∈ R [ξ ]•×w

(behavior B:= the C ∞ (R,Rw) solutions)

– p. 6/42



Rational symbols

LTIDS are definedin terms of polynomial symbols

R
(

d
dt

)
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Rational symbols

LTIDS are definedin terms of polynomial symbols

R
(

d
dt

)

w = 0 R ∈ R [ξ ]•×w

(behavior B:= the C ∞ (R,Rw) solutions) but can also be
represented by rational symbols

G
(

d
dt

)

w = 0 G ∈ R(ξ )•×w

Behavior := the set of solutions of

Q
(

d
dt

)

w = 0 Q ∈ R [ξ ]•×w

where G = P−1Q, P,Q ∈ R [ξ ]•×•
, P and Q left coprime
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Rational symbols

LTIDS are definedin terms of polynomial symbols

R
(

d
dt

)

w = 0 R ∈ R [ξ ]•×w

(behavior B:= the C ∞ (R,Rw) solutions) but can also be
represented by rational symbols

G
(

d
dt

)

w = 0 G ∈ R(ξ )•×w

This added flexibility ; better results in certain problems,
e.g. parametrization of the set of stabilizing controllers
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Controllability c.s.

– p. 7/42



Controllability and stabilizability

B is said to be controllable :⇔

∀ w1,w2 ∈ B, ∃ T ≥ 0 and w ∈ B such that ...

w

1

w

w

w

w

2
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time
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time

W W
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Controllability and stabilizability

B is said to be controllable :⇔

B is said to be stabilizable :⇔

∀ w ∈ B, ∃ w′ ∈ B such that ...

w’

w

0

W

time
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Controllability and stabilizability

B is said to be controllable :⇔

B is said to be stabilizable :⇔

B is said to be autonomous :⇔

∀ w− ∈ B−, ∃ (!) w+ ∈ B+ such that ...

future (unique!)

W

w
past

time
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Controllability and stabilizability

B is said to be controllable :⇔

B is said to be stabilizable :⇔

B is said to be autonomous :⇔

B is said to be stable :⇔ [[w ∈ B]] ⇒ [[w(t) → 0 ast → ∞]]

W

time

stable⇒ autonomous
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Stability

B is said to be stable :⇔ [[w ∈ B]] ⇒ [[w(t) → 0 ast → ∞]]

W

time

Stability in the sense of Lyapunov
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R(ξ ) and some of its subrings
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Relevant rings

Field of (real) rationals

Subrings of interest

polynomials

proper rationals

stable rationals

proper stable rationals
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Relevant rings

unimodularity :⇔ invertibility in the ring

Field of (real) rationals nonzero

Subrings of interest

polynomials nonzero constant

proper rationals biproper

stable rationals miniphase

proper stable rationals biproper & miniphase
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Relevant rings

unimodularity :⇔ invertibility in the ring

Field of (real) rationals nonzero

Subrings of interest

polynomials nonzero constant

proper rationals biproper

stable rationals miniphase

proper stable rationals biproper & miniphase

unimodularity of square matrices over rings
⇔ determinant unimodular

left primeness of matrices over rings

:⇔ [[[[F = UF ′]] ⇒ [[U unimodular ]]]]
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Representability

The LTIDS B admits a representation that is left prime over

rationals: always

proper rationals: always

stable rationals: iff B is stabilizable

proper stable rationals: iff B is stabilizable

polynomials: iff B is controllable
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Representability

The LTIDS B admits a representation that is left prime over

stable rationals: iff B is stabilizable

proper stable rationals: iff B is stabilizable

B stabilizable⇔∃G, matrix of rational functions, such that

(i) B = kernel
(

G
(

d
dt

))

(ii) G is proper (no poles at∞)

(iii) G∞ := limitλ→∞G(λ ) has full row rank (no zeros at∞)

(iv) G has no poles inC+ := {λ ∈ C | real(λ ≥ 0}

(v) G(λ ) has full row rank ∀ λ ∈ C+ (no zeros inC+)
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Representability

The LTIDS B admits a representation that is left prime over

polynomials: iff B is controllable

B controllable ⇔∃R, matrix of polynomials, such that

(i) B = kernel
(

R
(

d
dt

))

(ii) R(λ ) full row rank ∀ λ ∈ C
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Preliminaries
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Unimodular completion
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Unimodular completion lemma

Let G be a matrix over one of our rings
(polynomial, proper rat., stable rat., proper stable rat.).

¿ Does there exist aunimodular completion G′

i.e. a matrix G′ over that same ring such that
[

G
G′

]

is unimodular (determinant is invertible in the ring) ?
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Unimodular completion lemma

Let G be a matrix over one of our rings
(polynomial, proper rat., stable rat., proper stable rat.).

¡ There exists a unimodular completion G′

i.e. a matrix G′ over that same ring such that
[

G
G′

]

is unimodular (determinant is invertible in the ring)

if and only if

G is left prime over the ring !
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Work and problems posed by
Ku čera, Youla c.s., Desoer c.s., Sontag & Khargonekar,
Francis, e.m.a.
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Unimodular completion lemma

G: 1 row, 2 columns

G =
[

p q
]
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Unimodular completion lemma

G: 1 row, 2 columns

G =
[

p q
]

G′ =
[

−y x
]

[

G
G′

]

=

[

p q
−y x

]
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Unimodular completion lemma

G: 1 row, 2 columns

G =
[

p q
]

G′ =
[

−y x
]

[

G
G′

]

=

[

p q
−y x

]

determinant = px+qy, unimodularity ⇔ px+qy = 1

solvable forx,y ⇔ p & q coprime⇔ G =
[

p q
]

left prime
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Unimodular completion lemma

G: 1 row, 2 columns

G =
[

p q
]

G′ =
[

−y x
]

[

G
G′

]

=

[

p q
−y x

]

determinant = px+qy, unimodularity ⇔ px+qy = 1

solvable forx,y ⇔ p & q coprime⇔ G =
[

p q
]

left prime

Our rings are Hermite rings

G left prime ⇔ unimodularly completable ⇔∃H : GH = I ⇔·· ·
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Control
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Control

Plant Controller

Controlled system

Plant P, controller C , controlled system P ∩C
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Control

Plant Controller

Controlled system

Plant P, controller C , controlled system P ∩C

[[C is stabilizing ]] :⇔ [[P ∩C is stable]]

⇔ [[ [[w ∈ P ∩C ]] ⇒ [[w(t) → 0 for t → ∞]] ]]

[[C is deadbeat ]] :⇔ [[P ∩C = {0}]]
⇔ [[w ∈ P ∩C ]] ⇒ [[w = 0]]
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Control

Plant Controller

Controlled system

Plant P, controller C , controlled system P ∩C

[[C is a regular controller ]] :⇔ [[P +C = C ∞ (R,Rw)]]

[[C is a superregular controller]] :⇔ in addition,

[[∀w ∈ P,∀w′ ∈ C ∃v such that w∧0 v,w′∧0 v ∈ P ∩C ]]
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Control

Plant P, controller C , controlled system P ∩C

[[C is a regular controller ]] :⇔ [[P +C = C ∞ (R,Rw)]]

[[C is a superregular controller]] :⇔ in addition,

[[∀w ∈ P,∀w′ ∈ C ∃v such that w∧0 v,w′∧0 v ∈ P ∩C ]]

0

vw’

w 

W

time
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Regular & superregular
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Regular controller

Plant Controller

Controlled system

∀v ∈ C ∞ (R,Rw) ∃w ∈ P and w′ ∈ C such that v = w+w′

+

P C
w

w’

v

+
+

+
+

+
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Regular controller

Plant Controller

Controlled system

Controlled system

Plant Controller

regular ⇒ exogenous inputs unchanged after control
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Superregular controllers

Plant Controller

Controlled system Controlled system

Plant Controller

superregular⇒ controller can be engaged at any time

∀w ∈ P,∀w′ ∈ C ∃v such that w∧0 v,w′∧0 v ∈ P ∩C

0

vw’

w 

W

time

Interc’ions requiring ‘state preparation’ ⇒ not superregular
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Superregular controllers

Plant Controller

Controlled system Controlled system

Plant Controller

Usual feedback controllers are superregular

PID controllers are regular, but not superregular

Controllers that are regular, but not superregular, relevant:
control is interconnection , not just signal processing
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Cardinalities

Let B be a LTIDS. Define

p(B) := number of output components

= number of system equations= rank(R) = rank(G)

n(B) := number of state components

= dimension of state space= McMillan degree
m(B) := number of (free) input components

= w(B)−p(B)
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(Super)regular & cardinalities

Plant Controller

Controlled system

Plant P, controller C , controlled system P ∩C

[[C is a regular controller ]] :⇔ [[P +C ) = C ∞ (R,Rw)]]

⇔ [[p(P ∩C ) = p(P)+p(C )]]

[[C is a superregular controller]]
:⇔ in addition, [[n(P ∩C ) = n(P)+n(C )]]
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Existence of stabilizing controllers
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Existence

Proposition

P is stabilizable⇔ ∃ a regular stabilizing controller

⇔ ∃ a superregular stabilizing controller
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Existence

Proposition

P is stabilizable⇔ ∃ a regular stabilizing controller

⇔ ∃ a superregular stabilizing controller

P is controllable⇔ ∃ a regular deadbeat controller

⇔ ∃ pole placement ...

∄ a controller that is superregular & deadbeat!
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Parametrization of controllers
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Parametrization of regular stabilizing controllers

Start with G
(

d
dt

)

w = 0 a (rational symbol based)
representation of the plant

Assume G left prime over ring of stable rational functions.
Iff the plant is stabilizable, such aG exists.
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Parametrization of regular stabilizing controllers

Start with G
(

d
dt

)

w = 0 a (rational symbol based)
representation of the plant

Assume G left prime over ring of stable rational functions.
Iff the plant is stabilizable, such aG exists.

⇒∃ G′ such that

[

G
G′

]

is unimodular over stable rat. f’ns.
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Parametrization of regular stabilizing controllers

Start with G
(

d
dt

)

w = 0 a (rational symbol based)
representation of the plant

Assume G left prime over ring of stable rational functions.
Iff the plant is stabilizable, such aG exists.

⇒∃ G′ such that

[

G
G′

]

is unimodular over stable rat. f’ns.

Par’ion of regular stabilizing controllers C
(

d
dt

)

w = 0

C = F1G+F2G′

F1 free over stable rationals,F2 unimodular over stable rat.
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Parametrization of superregular stabilizing controllers

Start with G
(

d
dt

)

w = 0 a (rational symbol based)
representation of the plant

Assume G left prime over proper stable rational functions.
Iff the plant is stabilizable, such aG exists.

⇒∃ G′ such that

[

G
G′

]

is unimodular over proper stable rat.

Par’ion of superregular stabilizing controllers C
(

d
dt

)

w = 0

C = F1G+F2G′

F1 free over proper st. rat., F2 unimodular over pr. st. rat.
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Parametrization of regular deadbeat controllers

R
(

d
dt

)

w = 0 a (polynomial symbol based) repr. of the plant.

Assume R left prime over ring of polynomials.
Iff the plant is controllable, such an R exists.

⇒∃ R′ such that

[

R
R′

]

is unimodular as a polynomial matrix.

Parametrization of regular deadbeat controllers C
(

d
dt

)

w = 0

C = FR+R′

F free over polynomial matrices.
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Simplification

If we consider controllers ‘equivalent’ if they have the same
controllable part (∼= same transfer function)

Par’ion of stabilizing (super)regular controllers C
(

d
dt

)

w = 0

C = FG+G′

F free over (proper) stable rational.

– p. 32/42



Parametrization of regular stabilizing controllers

Start with R
(

d
dt

)

w = 0 a (polynomial symbol based) repr. of
the plant, for simplicity assumed controllable.

Assume R left prime over ring of polynomials.
Iff the plant is controllable, such an R exists.

⇒∃ R′ such that

[

R
R′

]

is unimodular as a polynomial matrix.

– p. 33/42



Parametrization of regular stabilizing controllers

Start with R
(

d
dt

)

w = 0 a (polynomial symbol based) repr. of
the plant, for simplicity assumed controllable.

Assume R left prime over ring of polynomials.
Iff the plant is controllable, such an R exists.

⇒∃ R′ such that

[

R
R′

]

is unimodular as a polynomial matrix.

Par’ion of regular stabilizing controllers C
(

d
dt

)

w = 0

C = F1R+F2R′

F1 free over pol. matr., F2 Hurwitz (i.e. det(F2) Hurwitz)
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A glimpse of the proof
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Polynomial case

Start with the plant R
(

d
dt

)

w = 0 assumed controllable

meansR(λ ) full row rank ∀λ ∈ C

i.e. R is left prime as a polynomial matrix
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Polynomial case

Start with the plant R
(

d
dt

)

w = 0 assumed controllable

meansR(λ ) full row rank ∀λ ∈ C

i.e. R is left prime as a polynomial matrix

Therefore ∃R′ such that

[

R
R′

]

is unimodular
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Polynomial case

[

R
R′

]

unimodular

Consider the controller C
(

d
dt

)

w = 0
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Polynomial case

[

R
R′

]

unimodular

Consider the controller C
(

d
dt

)

w = 0

unimodularity ⇒ C =
[

F1 F2

]

[

R
R′

]

= F1R+F2R′

⇒ everycontroller is of the form C = F1R+F2R′
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Polynomial case

[

R
R′

]

unimodular

Consider the controller C
(

d
dt

)

w = 0

⇒ everycontroller is of the form C = F1R+F2R′

; controlled system

[

I 0
F1 F2

][

R
R′

]

(

d
dt

)

w = 0

Regularity ⇔ F2 square,determinant(F2) 6= 0

– p. 35/42



Polynomial case

[

R
R′

]

unimodular

Consider the controller C
(

d
dt

)

w = 0

⇒ everycontroller is of the form C = F1R+F2R′

; controlled system

[

I 0
F1 F2

][

R
R′

]

(

d
dt

)

w = 0

Regularity ⇔ F2 square,determinant(F2) 6= 0

deadbeat⇔ F2 unimodular ; WLOG F2 = I ; C = FR+R′
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Polynomial case

[

R
R′

]

unimodular

Consider the controller C
(

d
dt

)

w = 0

⇒ everycontroller is of the form C = F1R+F2R′

; controlled system

[

I 0
F1 F2

][

R
R′

]

(

d
dt

)

w = 0

Regularity ⇔ F2 square,determinant(F2) 6= 0

deadbeat⇔ F2 unimodular ; WLOG F2 = I ; C = FR+R′

stable⇔ determinant(F2) Hurwitz
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Polynomial case

Consider the controller C
(

d
dt

)

w = 0

⇒ everycontroller is of the form C = F1R+F2R′

; controlled system

[

I 0
F1 F2

][

R
R′

]

(

d
dt

)

w = 0

Regularity ⇔ F2 square,determinant(F2) 6= 0

deadbeat⇔ F2 unimodular ; WLOG F2 = I ; C = FR+R′

stable⇔ determinant(F2) Hurwitz

... other proofs similar

... superregular

... advantages of rational representations
– p. 35/42



Examples
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A superregular controller

[

1 0
]

[

w1

w2

]

= 0 ; w1 = 0, w2 free
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A superregular controller

[

1 0
]

[

w1

w2

]

= 0 ; w1 = 0, w2 free

G =
[

1 0
]

, G′ =
[

0 1
]

– p. 37/42



A superregular controller

[

1 0
]

[

w1

w2

]

= 0 ; w1 = 0, w2 free

G =
[

1 0
]

, G′ =
[

0 1
]

Controller: w2+α
d
dt

w2 = 0, α > 0 superregular & stabilizing

Captured by first, but not by the simplified parametrization.
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A superregular controller

[

1 0
]

[

w1

w2

]

= 0 ; w1 = 0, w2 free

G =
[

1 0
]

, G′ =
[

0 1
]

Controller: w2+α
d
dt

w2 = 0, α > 0 superregular & stabilizing

Captured by first, but not by the simplified parametrization.

Transfer function thinking has limitations.
It does not capture the uncontrollable part of a behavior.
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A regular, but not superregular, controller

Plant:

w = (F, q)

M d2

dt2 q+Kq = F , w = (F,q)
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A regular, but not superregular, controller

Plant:

w = (F, q)

M d2

dt2 q+Kq = F , w = (F,q)

Controller:

w = (F, q)

F = −D d
dt q
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A regular, but not superregular, controller

Controlled system:

w = (F, q)

M d2

dt2q+D d
dt q+Kq = 0, F = −D d

dt q
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A regular, but not superregular, controller

Controlled system:

w = (F, q)

M d2

dt2q+D d
dt q+Kq = 0, F = −D d

dt q

w →

[

F
w

]

, R →
[

1 | −1−ξ 2
]

, R′ →
[

1 | ξ 2
]

Reg. stab.c →
[

f (ξ )+h(ξ )|−h(ξ )−ξ 2( f (ξ )+h(ξ ))
]

h H’itz

f →−ξ −ξ 2, h → 1+ξ +ξ 2, c → [ 1 | ξ ]
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Summary
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Conclusion

Using rational symbol based representationsG
(

d
dt

)

w = 0
that are left prime over suitable rings, we obtain
parametrizations of regular and superregular stabilizing
controllers

∼= Ku čera-Youla parametrization, with proper attention for
the uncontrollable part
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Conclusion

Using rational symbol based representationsG
(

d
dt

)

w = 0
that are left prime over suitable rings, we obtain
parametrizations of regular and superregular stabilizing
controllers

∼= Ku čera-Youla parametrization, with proper attention for
the uncontrollable part

Other applications where rational symbols are indispensable:
L2 unitary representations and behavioral model reduction.
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Thank you for your attention
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Happy Birthday, Sagar !!!
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