On the occasion of Sagar's 60-th

PARAMETRIZATION

of

STABILIZING CONTROLLERS

Jan Willems, K.U. Leuven, Flanders, Belgium
\&

Yataka Yamamoto, Kyoto University, Japan

Adrianus VI 1459-1523

Erasmus de la Valleé Poussin
Lemaître
1469-1536 1866-1962 1894-1966

Reminders

Linear time-invariant differential systems

Rational symbols

LTIDS are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions)

Rational symbols

LTIDS are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {w }}\right)$ solutions) but can also be represented by rational symbols

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

Rational symbols

LTIDS are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$ solutions) but can also be represented by rational symbols

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

Behavior := the set of solutions of

$$
Q\left(\frac{d}{d t}\right) w=0 \quad Q \in \mathbb{R}[\xi]^{\bullet \times \mathbb{w}}
$$

where $G=P^{-1} Q, \quad P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \quad P$ and Q left coprime

Rational symbols

LTIDS are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions) but can also be represented by rational symbols

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

This added flexibility \leadsto better results in certain problems, e.g. parametrization of the set of stabilizing controllers

Controllability c.s.

Controllability and stabilizability

\mathscr{B} is said to be controllable $: \Leftrightarrow$
$\forall w_{1}, w_{2} \in \mathscr{B}, \exists T \geq 0$ and $w \in \mathscr{B}$ such that ...

Controllability and stabilizability

\mathscr{B} is said to be controllable $: \Leftrightarrow$
\mathscr{B} is said to be stabilizable $: \Leftrightarrow$
$\forall w \in \mathscr{B}, \exists w^{\prime} \in \mathscr{B}$ such that...

Controllability and stabilizability

\mathscr{B} is said to be controllable $: \Leftrightarrow$
\mathscr{B} is said to be stabilizable $: \Leftrightarrow$
\mathscr{B} is said to be autonomous $: \Leftrightarrow$

$$
\forall w_{-} \in \mathscr{B}_{-}, \exists(!) w_{+} \in \mathscr{B}_{+} \text {such that } . . .
$$

Controllability and stabilizability

\mathscr{B} is said to be controllable $: \Leftrightarrow$
\mathscr{B} is said to be stabilizable $: \Leftrightarrow$
\mathscr{B} is said to be autonomous : \Leftrightarrow
\mathscr{B} is said to be stable $: \Leftrightarrow \quad \llbracket w \in \mathscr{B} \rrbracket \Rightarrow \llbracket w(t) \rightarrow 0$ as $t \rightarrow \infty \rrbracket$

stable \Rightarrow autonomous

Stability

\mathscr{B} is said to be stable $: \Leftrightarrow \llbracket w \in \mathscr{B} \rrbracket \Rightarrow \llbracket w(t) \rightarrow 0$ as $t \rightarrow \infty \rrbracket$

Stability in the sense of Lyapunov

$\mathbb{R}(\xi)$ and some of its subrings

Relevant rings

Field of (real) rationals

Subrings of interest

polynomials
proper rationals
stable rationals
proper stable rationals

Relevant rings

unimodularity $: \Leftrightarrow$ invertibility in the ring
Field of (real) rationals nonzero

Subrings of interest

$$
\begin{array}{lc}
\text { polynomials } & \text { nonzero constant } \\
\text { proper rationals } & \text { biproper } \\
\text { stable rationals } & \text { miniphase } \\
\text { proper stable rationals } \quad \text { biproper \& miniphase }
\end{array}
$$

Relevant rings

unimodularity $: \Leftrightarrow$ invertibility in the ring

Field of (real) rationals
nonzero

Subrings of interest

$$
\begin{array}{lc}
\text { polynomials } & \text { nonzero constant } \\
\text { proper rationals } & \text { biproper } \\
\text { stable rationals } & \text { miniphase }
\end{array}
$$

$$
\text { proper stable rationals } \quad \text { biproper } \& \text { miniphase }
$$

unimodularity of square matrices over rings
\Leftrightarrow determinant unimodular
left primeness of matrices over rings

$$
: \Leftrightarrow \llbracket \llbracket F=U F^{\prime} \rrbracket \Rightarrow \llbracket U \text { unimodular } \rrbracket \rrbracket
$$

Representability

The LTIDS \mathscr{B} admits a representation that is left prime over

- rationals: always
- proper rationals: always
- stable rationals: iff \mathscr{B} is stabilizable
- proper stable rationals: iff \mathscr{B} is stabilizable
- polynomials: iff \mathscr{B} is controllable

Representability

The LTIDS \mathscr{B} admits a representation that is left prime over

- stable rationals: iff \mathscr{B} is stabilizable
- proper stable rationals: iff \mathscr{B} is stabilizable
\mathfrak{B} stabilizable $\Leftrightarrow \exists G$, matrix of rational functions, such that
(i) $\mathfrak{B}=$ kernel $\left(G\left(\frac{d}{d t}\right)\right)$
(ii) G is proper (no poles at ∞)
(iii) $G^{\infty}:=\operatorname{limit}_{\lambda \rightarrow \infty} G(\lambda)$ has full row rank (no zeros at ∞)
(iv) G has no poles in $\mathbb{C}_{+}:=\{\lambda \in \mathbb{C} \mid \operatorname{real}(\lambda \geq 0\}$
(v) $G(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}_{+}\left(\right.$no zeros in $\left.\mathbb{C}_{+}\right)$

Representability

The LTIDS \mathscr{B} admits a representation that is left prime over

- polynomials: iff \mathscr{B} is controllable
\mathfrak{B} controllable $\Leftrightarrow \exists R$, matrix of polynomials, such that
(i) $\mathfrak{B}=$ kernel $\left(R\left(\frac{d}{d t}\right)\right)$
(ii) $R(\lambda)$ full row $\operatorname{rank} \forall \lambda \in \mathbb{C}$

Preliminaries

Unimodular completion

Unimodular completion lemma

Let G be a matrix over one of our rings (polynomial, proper rat., stable rat., proper stable rat.).
i Does there exist a unimodular completion G^{\prime}
i.e. a matrix G^{\prime} over that same ring such that

$$
\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]
$$

is unimodular (determinant is invertible in the ring) ?

Unimodular completion lemma

Let G be a matrix over one of our rings (polynomial, proper rat., stable rat., proper stable rat.).
¿ There exists a unimodular completion G^{\prime}
i.e. a matrix G^{\prime} over that same ring such that

$$
\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]
$$

is unimodular (determinant is invertible in the ring)

if and only if

G is left prime over the ring !

Work and problems posed by
Kučera, Youla c.s., Desoer c.s., Sontag \& Khargonekar, Francis, e.m.a.

Unimodular completion lemma

$G: 1$ row, 2 columns

$$
G=\left[\begin{array}{ll}
p & q
\end{array}\right]
$$

Unimodular completion lemma

$G: 1$ row, 2 columns

$$
G=\left[\begin{array}{ll}
p & q
\end{array}\right] \quad G^{\prime}=\left[\begin{array}{ll}
-y & x
\end{array}\right] \quad\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
p & q \\
-y & x
\end{array}\right]
$$

Unimodular completion lemma

$G: 1$ row, 2 columns

$$
G=\left[\begin{array}{ll}
p & q
\end{array}\right] \quad G^{\prime}=\left[\begin{array}{ll}
-y & x
\end{array}\right] \quad\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
p & q \\
-y & x
\end{array}\right]
$$

determinant $=p x+q y$,
unimodularity $\Leftrightarrow p x+q y=1$
solvable for $x, y \Leftrightarrow p \boldsymbol{\&} q$ coprime $\Leftrightarrow G=\left[\begin{array}{ll}p & q\end{array}\right]$ left prime

Unimodular completion lemma

$G: 1$ row, 2 columns

$$
G=\left[\begin{array}{cc}
p & q
\end{array}\right] \quad G^{\prime}=\left[\begin{array}{ll}
-y & x
\end{array}\right] \quad\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
p & q \\
-y & x
\end{array}\right]
$$

determinant $=p x+q y$,
unimodularity $\Leftrightarrow p x+q y=1$
solvable for $x, y \Leftrightarrow p \boldsymbol{\&} q$ coprime $\Leftrightarrow G=\left[\begin{array}{ll}p & q\end{array}\right]$ left prime
Our rings are Hermite rings

G left prime \Leftrightarrow unimodularly completable $\Leftrightarrow \exists H: G H=I \Leftrightarrow \cdots$

Control

Control

Plant \mathscr{P}, controller \mathscr{C}, controlled system $\mathscr{P} \cap \mathscr{C}$

Control

Plant \mathscr{P}, controller \mathscr{C}, controlled system $\mathscr{P} \cap \mathscr{C}$
$\llbracket \mathscr{C}$ is stabilizing $\rrbracket: \Leftrightarrow \llbracket \mathscr{P} \cap \mathscr{C}$ is stable \rrbracket

$$
\Leftrightarrow \llbracket \llbracket w \in \mathscr{P} \cap \mathscr{C} \rrbracket \Rightarrow \llbracket w(t) \rightarrow 0 \text { for } t \rightarrow \infty \rrbracket \rrbracket
$$

$\llbracket \mathscr{C}$ is deadbeat $\rrbracket: \Leftrightarrow \llbracket \mathscr{P} \cap \mathscr{C}=\{0\} \rrbracket$

$$
\Leftrightarrow \llbracket w \in \mathscr{P} \cap \mathscr{C} \rrbracket \Rightarrow \llbracket w=0 \rrbracket
$$

Control

Plant \mathscr{P}, controller \mathscr{C}, controlled system $\mathscr{P} \cap \mathscr{C}$
$\llbracket \mathscr{C}$ is a regular controller $\rrbracket: \Leftrightarrow \llbracket \mathscr{P}+\mathscr{C}=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rrbracket$
$\llbracket \mathscr{C}$ is a superregular controller $\rrbracket: \Leftrightarrow$ in addition,

$$
\llbracket \forall w \in \mathscr{P}, \forall w^{\prime} \in \mathscr{C} \quad \exists v \text { such that } w \wedge_{0} v, w^{\prime} \wedge_{0} v \in \mathscr{P} \cap \mathscr{C} \rrbracket
$$

Control

Plant \mathscr{P}, controller \mathscr{C}, controlled system $\mathscr{P} \cap \mathscr{C}$

$\llbracket \mathscr{C}$ is a regular controller $\rrbracket: \Leftrightarrow \llbracket \mathscr{P}+\mathscr{C}=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rrbracket$
$\llbracket \mathscr{C}$ is a superregular controller $\rrbracket: \Leftrightarrow$ in addition,
$\llbracket \forall w \in \mathscr{P}, \forall w^{\prime} \in \mathscr{C} \quad \exists v$ such that $w \wedge_{0} v, w^{\prime} \wedge_{0} v \in \mathscr{P} \cap \mathscr{C} \rrbracket$

Regular \& superregular

Regular controller

$\forall v \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \exists w \in \mathscr{P}$ and $w^{\prime} \in \mathscr{C}$ such that $v=w+w^{\prime}$

Regular controller

Controlled system

regular \Rightarrow exogenous inputs unchanged after control

Superregular controllers

superregular \Rightarrow controller can be engaged at any time
$\forall w \in \mathscr{P}, \forall w^{\prime} \in \mathscr{C} \exists v$ such that $w \wedge_{0} v, w^{\prime} \wedge_{0} v \in \mathscr{P} \cap \mathscr{C}$

Interc'ions requiring 'state preparation' \Rightarrow not superregular

Superregular controllers

Usual feedback controllers are superregular
PID controllers are regular, but not superregular
Controllers that are regular, but not superregular, relevant: control is interconnection, not just signal processing

Cardinalities

Let \mathscr{B} be a LTIDS. Define
$\mathrm{p}(\mathscr{B}):=$ number of output components
$=$ number of system equations $=\operatorname{rank}(R)=\operatorname{rank}(G)$
$\mathrm{n}(\mathscr{B}):=$ number of state components
$=$ dimension of state space $=$ McMillan degree
$\mathrm{m}(\mathscr{B}):=\quad$ number of (free) input components

$$
=\mathrm{w}(\mathscr{B})-\mathrm{p}(\mathscr{B})
$$

(Super)regular \& cardinalities

Plant \mathscr{P}, controller \mathscr{C}, controlled system $\mathscr{P} \cap \mathscr{C}$
$\llbracket \mathscr{C}$ is a regular controller $\rrbracket: \Leftrightarrow \llbracket \mathscr{P}+\mathscr{C})=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rrbracket$

$$
\Leftrightarrow \llbracket \mathrm{p}(\mathscr{P} \cap \mathscr{C})=\mathrm{p}(\mathscr{P})+\mathrm{p}(\mathscr{C}) \rrbracket
$$

$\llbracket \mathscr{C}$ is a superregular controller】
$: \Leftrightarrow$ in addition, $\llbracket \mathrm{n}(\mathscr{P} \cap \mathscr{C})=\mathrm{n}(\mathscr{P})+\mathrm{n}(\mathscr{C}) \rrbracket$

Existence of stabilizing controllers

Existence

Proposition

\mathscr{P} is stabilizable $\Leftrightarrow \exists$ a regular stabilizing controller
$\Leftrightarrow \exists$ a superregular stabilizing controller

Existence

Proposition
\mathscr{P} is stabilizable $\Leftrightarrow \exists$ a regular stabilizing controller
$\Leftrightarrow \exists$ a superregular stabilizing controller
\mathscr{P} is controllable $\Leftrightarrow \exists$ a regular deadbeat controller $\Leftrightarrow \exists$ pole placement ...
\nexists a controller that is superregular $\&$ deadbeat!

Parametrization of controllers

Parametrization of regular stabilizing controllers

Start with $G\left(\frac{d}{d t}\right) w=0$ a (rational symbol based) representation of the plant

Assume G left prime over ring of stable rational functions. Iff the plant is stabilizable, such a G exists.

Parametrization of regular stabilizing controllers

Start with $G\left(\frac{d}{d t}\right) w=0 \quad$ a (rational symbol based) representation of the plant

Assume G left prime over ring of stable rational functions. Iff the plant is stabilizable, such a G exists.
$\Rightarrow \exists G^{\prime}$ such that $\left[\begin{array}{c}G \\ G^{\prime}\end{array}\right]$ is unimodular over stable rat. f'ns.

Parametrization of regular stabilizing controllers

Start with $G\left(\frac{d}{d t}\right) w=0 \quad$ a (rational symbol based) representation of the plant

Assume G left prime over ring of stable rational functions. Iff the plant is stabilizable, such a G exists.
$\Rightarrow \exists G^{\prime}$ such that $\left[\begin{array}{c}G \\ G^{\prime}\end{array}\right]$ is unimodular over stable rat. f'ns.
Par'ion of regular stabilizing controllers $C\left(\frac{d}{d t}\right) w=0$

$$
C=F_{1} G+F_{2} G^{\prime}
$$

F_{1} free over stable rationals, F_{2} unimodular over stable rat.

Parametrization of superregular stabilizing controllers

Start with $G\left(\frac{d}{d t}\right) w=0 \quad$ a (rational symbol based) representation of the plant

Assume G left prime over proper stable rational functions. Iff the plant is stabilizable, such a G exists.
$\Rightarrow \exists G^{\prime}$ such that $\left[\begin{array}{c}G \\ G^{\prime}\end{array}\right]$ is unimodular over proper stable rat.
Par'ion of superregular stabilizing controllers $C\left(\frac{d}{d t}\right) w=0$

$$
C=F_{1} G+F_{2} G^{\prime}
$$

F_{1} free over proper st. rat., F_{2} unimodular over pr. st. rat.

Parametrization of regular deadbeat controllers

$R\left(\frac{d}{d t}\right) w=0 \quad$ a (polynomial symbol based) repr. of the plant.
Assume R left prime over ring of polynomials.
Iff the plant is controllable, such an R exists.
$\Rightarrow \exists R^{\prime}$ such that $\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ is unimodular as a polynomial matrix.

Parametrization of regular deadbeat controllers $C\left(\frac{d}{d t}\right) w=0$

$$
C=F R+R^{\prime}
$$

F free over polynomial matrices.

Simplification

If we consider controllers 'equivalent' if they have the same controllable part (\cong same transfer function)

Par'ion of stabilizing (super)regular controllers $C\left(\frac{d}{d t}\right) w=0$

$$
C=F G+G^{\prime}
$$

F free over (proper) stable rational.

Parametrization of regular stabilizing controllers

Start with $R\left(\frac{d}{d t}\right) w=0$ a (polynomial symbol based) repr. of the plant, for simplicity assumed controllable.

Assume R left prime over ring of polynomials. Iff the plant is controllable, such an R exists.
$\Rightarrow \exists R^{\prime}$ such that $\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ is unimodular as a polynomial matrix.

Parametrization of regular stabilizing controllers

Start with $R\left(\frac{d}{d t}\right) w=0$ a (polynomial symbol based) repr. of the plant, for simplicity assumed controllable.

Assume R left prime over ring of polynomials. Iff the plant is controllable, such an R exists.
$\Rightarrow \exists R^{\prime}$ such that $\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ is unimodular as a polynomial matrix.
Par'ion of regular stabilizing controllers $C\left(\frac{d}{d t}\right) w=0$

$$
C=F_{1} R+F_{2} R^{\prime}
$$

F_{1} free over pol. matr., F_{2} Hurwitz (i.e. $\operatorname{det}\left(F_{2}\right)$ Hurwitz)

A glimpse of the proof

Polynomial case

Start with the plant $R\left(\frac{d}{d t}\right) w=0$ assumed controllable

means $R(\lambda)$ full row $\operatorname{rank} \forall \lambda \in \mathbb{C}$
i.e. R is left prime as a polynomial matrix

Polynomial case

Start with the plant $R\left(\frac{d}{d t}\right) w=0$ assumed controllable
means $R(\lambda)$ full row rank $\forall \lambda \in \mathbb{C}$
i.e. R is left prime as a polynomial matrix

Therefore $\exists R^{\prime}$ such that $\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ is unimodular

Polynomial case

$\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ unimodular

Consider the controller $C\left(\frac{d}{d t}\right) w=0$

Polynomial case

$\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ unimodular

Consider the controller $\quad C\left(\frac{d}{d t}\right) w=0$
unimodularity $\Rightarrow C=\left[\begin{array}{ll}F_{1} & F_{2}\end{array}\right]\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]=F_{1} R+F_{2} R^{\prime}$
\Rightarrow every controller is of the form

$$
C=F_{1} R+F_{2} R^{\prime}
$$

Polynomial case

$\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ unimodular

Consider the controller $C\left(\frac{d}{d t}\right) w=0$
\Rightarrow every controller is of the form $\quad C=F_{1} R+F_{2} R^{\prime}$
\leadsto controlled system $\left[\begin{array}{cc}I & 0 \\ F_{1} & F_{2}\end{array}\right]\left[\begin{array}{c}R \\ R^{\prime}\end{array}\right]\left(\frac{d}{d t}\right) w=0$
Regularity $\Leftrightarrow F_{2}$ square, determinant $\left(F_{2}\right) \neq 0$

Polynomial case

$\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ unimodular

Consider the controller $C\left(\frac{d}{d t}\right) w=0$
\Rightarrow every controller is of the form $\quad C=F_{1} R+F_{2} R^{\prime}$
\leadsto controlled system $\left[\begin{array}{cc}I & 0 \\ F_{1} & F_{2}\end{array}\right]\left[\begin{array}{c}R \\ R^{\prime}\end{array}\right]\left(\frac{d}{d t}\right) w=0$
Regularity $\Leftrightarrow F_{2}$ square, determinant $\left(F_{2}\right) \neq 0$ deadbeat $\Leftrightarrow F_{2}$ unimodular \leadsto WLOG $F_{2}=I \leadsto C=F R+R^{\prime}$

Polynomial case

$\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ unimodular

Consider the controller $C\left(\frac{d}{d t}\right) w=0$
\Rightarrow every controller is of the form $\quad C=F_{1} R+F_{2} R^{\prime}$
\leadsto controlled system $\left[\begin{array}{cc}I & 0 \\ F_{1} & F_{2}\end{array}\right]\left[\begin{array}{c}R \\ R^{\prime}\end{array}\right]\left(\frac{d}{d t}\right) w=0$
Regularity $\Leftrightarrow F_{2}$ square, determinant $\left(F_{2}\right) \neq 0$ deadbeat $\Leftrightarrow F_{2}$ unimodular \leadsto WLOG $F_{2}=I \leadsto C=F R+R^{\prime}$ stable \Leftrightarrow determinant $\left(F_{2}\right)$ Hurwitz

Polynomial case

Consider the controller $C\left(\frac{d}{d t}\right) w=0$

\Rightarrow every controller is of the form $\quad C=F_{1} R+F_{2} R^{\prime}$
\leadsto controlled system $\left[\begin{array}{cc}I & 0 \\ F_{1} & F_{2}\end{array}\right]\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]\left(\frac{d}{d t}\right) w=0$
Regularity $\Leftrightarrow F_{2}$ square, determinant $\left(F_{2}\right) \neq 0$ deadbeat $\Leftrightarrow F_{2}$ unimodular \leadsto WLOG $F_{2}=I \leadsto C=F R+R^{\prime}$ stable \Leftrightarrow determinant $\left(F_{2}\right)$ Hurwitz
... other proofs similar
... superregular
... advantages of rational representations

Examples

A superregular controller

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=0 \leadsto w_{1}=0, w_{2} \text { free }
$$

A superregular controller

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=0 \leadsto w_{1}=0, w_{2} \text { free }} \\
& G=\left[\begin{array}{ll}
1 & 0
\end{array}\right], G^{\prime}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
\end{aligned}
$$

A superregular controller

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=0 \leadsto w_{1}=0, w_{2} \text { free }} \\
& G=\left[\begin{array}{ll}
1 & 0
\end{array}\right], G^{\prime}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
\end{aligned}
$$

Controller: $w_{2}+\alpha \frac{d}{d t} w_{2}=0, \alpha>0$ superregular $\&$ stabilizing
Captured by first, but not by the simplified parametrization.

A superregular controller

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=0 \leadsto w_{1}=0, w_{2} \text { free }} \\
& G=\left[\begin{array}{ll}
1 & 0
\end{array}\right], G^{\prime}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
\end{aligned}
$$

Controller: $w_{2}+\alpha \frac{d}{d t} w_{2}=0, \alpha>0$ superregular $\&$ stabilizing
Captured by first, but not by the simplified parametrization.
Transfer function thinking has limitations. It does not capture the uncontrollable part of a behavior.

A regular, but not superregular, controller

Plant:

$$
M \frac{d^{2}}{d t^{2}} q+K q=F, \quad w=(F, q)
$$

A regular, but not superregular, controller

Plant:

$$
M \frac{d^{2}}{d t^{2}} q+K q=F, w=(F, q)
$$

Controller:

$F=-D \frac{d}{d t} q$

A regular, but not superregular, controller

Controlled system:

$$
M \frac{d^{2}}{d t^{2}} q+D \frac{d}{d t} q+K q=0, \quad F=-D \frac{d}{d t} q
$$

A regular, but not superregular, controller

Controlled system:

$$
M \frac{d^{2}}{d t^{2}} q+D \frac{d}{d t} q+K q=0, \quad F=-D \frac{d}{d t} q
$$

$w \rightarrow\left[\begin{array}{l}F \\ w\end{array}\right], \quad R \rightarrow\left[1 \mid-1-\xi^{2}\right], \quad \quad R^{\prime} \rightarrow\left[1 \mid \xi^{2}\right]$

Reg. stab. $c \rightarrow\left[f(\xi)+h(\xi) \mid-h(\xi)-\xi^{2}(f(\xi)+h(\xi))\right] h$ H'itz $f \rightarrow-\xi-\xi^{2}, h \rightarrow 1+\xi+\xi^{2}, \quad c \rightarrow[1 \mid \xi]$

Summary

Conclusion

Using rational symbol based representations $G\left(\frac{d}{d t}\right) w=0$ that are left prime over suitable rings, we obtain parametrizations of regular and superregular stabilizing controllers
\cong Kučera-Youla parametrization, with proper attention for the uncontrollable part

Conclusion

Using rational symbol based representations $G\left(\frac{d}{d t}\right) w=0$ that are left prime over suitable rings, we obtain parametrizations of regular and superregular stabilizing controllers
\cong Kučera-Youla parametrization, with proper attention for the uncontrollable part

Other applications where rational symbols are indispensable: \mathscr{L}_{2} unitary representations and behavioral model reduction.

Thank you for your attention

Happy Birthday, Sagar !!!

