

INTERCONNECTED SYSTEMS

Jan C. Willems

Open, connected, and modular
Classical dynamical systems
Input/output systems
Modeling by tearing, zooming, and linking
Signal flow graphs
Bond graphs
Circuit diagrams

Systems

open

interconnected
modular
dynamic

Features

- open
interconnected
modular
dynamic

Aim:
develop a suitable mathematical language
aimed at computer-assisted modeling.

Modeling \Leftrightarrow Describing reality accurately

Open, connected, modular

Systems interact with their environment

Connected

Systems consist of an architecture of interconnected subsystems

Modular

Systems are modular: composed of 'building blocks'

The development of the notion

of a dynamical system

Closed dynamical systems

Closed dynamical systems

K.1, K.2, \& K. 3

$$
\begin{aligned}
\leadsto & \frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{\left|\frac{d}{d t} w(t)\right|^{2}}=0 \\
& \leadsto \text { with } x=\left(w, \frac{d}{d t} w\right) \leadsto \quad \frac{d}{d t} x=f(x)
\end{aligned}
$$

Closed dynamical systems

K.1, K.2, \& K. 3

$$
\begin{aligned}
\leadsto \quad & \frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{\left|\frac{d}{d t} w(t)\right|^{2}}=0 \\
& \leadsto \text { with } x=\left(w, \frac{d}{d t} w\right) \quad \leadsto \quad \frac{d}{d t} x=f(x)
\end{aligned}
$$

$\frac{d}{d t} x=f(x) \quad \sim$ 'dynamical systems', flows
\leadsto flows as paradigm of dynamics \leadsto closed systems

Closed dynamical systems

K.1, K.2, \& K. 3

$$
\begin{aligned}
& \leadsto \quad \frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{\left|\frac{d}{d t} w(t)\right|^{2}}=0 \\
& \quad \leadsto \boldsymbol{w i t h} x=\left(w, \frac{d}{d t} w\right) \leadsto \quad \frac{d}{d t} x=f(x)
\end{aligned}
$$

$\frac{d}{d t} x=f(x) \quad \sim$ 'dynamical systems', flows
\leadsto flows as paradigm of dynamics \leadsto closed systems
Motion determined by initial conditions: a popular (but inadequate) paradigm for modeling dynamics.
Very frequently in mathematics and physics (chaos theory, synchronization, classical mechanics, QM, ...)

Inputs and outputs

Input/output systems

Transfer functions, impedances, convolutions, Volterra series, ...

Input/output systems

Oliver Heaviside (1850-1925)

Norbert Wiener (1894-1964)
and the many electrical circuit theorists

Mathematical description

$$
y(t)=\int_{0 \text { or }-\infty}^{t} H\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}
$$

$$
\begin{aligned}
& y(t)=H_{0}(t)+\int_{-\infty}^{t} H_{1}\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}+ \\
& \int_{-\infty}^{t} \int_{-\infty}^{t^{\prime}} H_{2}\left(t-t^{\prime}, t^{\prime}-t^{\prime \prime}\right) u\left(t^{\prime}\right) u\left(t^{\prime \prime}\right) d t^{\prime} d t^{\prime \prime}+\cdots
\end{aligned}
$$

Far from the physics. Fails to deal with 'initial conditions'. Awkward for nonlinear models, ...

Input/state/output systems

Around 1960: a paradigm shift to

$$
\frac{d}{d t} x=f(x, u), y=g(x, u)
$$

- open
ready to be interconnected

Rudolf Kalman (1930-) outputs of one system \mapsto inputs of another deals with initial conditions incorporates nonlinearities, time-variation models many physical phenomena

This framework turned out to be very effective and useful!

Theme

Theme of this lecture

We are accustomed to view an open dynamical system as an input/output structure (with or without the state)

Theme of this lecture

We are accustomed to view an open dynamical system as an input/output structure (with or without the state)

> Is this an appropriate abstraction of models of physical systems?

And we are also accustomed to view interconnection as output-to-input assignment

Theme of this lecture

And we are also accustomed to view interconnection as output-to-input assignment

Series
Feedback

Theme of this lecture

And we are also accustomed to view interconnection as output-to-input assignment

Series
Feedback

Is this an appropriate abstraction of interconnection of physical systems?

An example

(pressure, flow)
(pressure, flow)
(pressure, flow)
(pressure, flow)

(pressure, flow)
(pressure, flow)

Subsystems 1 and 3 (tanks):

Subsystems 1 and 3 (tanks):

Subsystems 1 and 3 (tanks):

Zooming

Subsystems 1 and 3 (tanks):

Subsystem 2 (pipe):

$$
p, f \square p^{\prime}, f^{\prime}
$$

Subsystem 2 (pipe):

$$
p, f \square p^{\prime}, f^{\prime}
$$

$$
f=-f^{\prime}, \quad p-p^{\prime}=\alpha f
$$

Interconnection laws:

Interconnection laws:

$$
p=p^{\prime}, \quad f+f^{\prime}=0
$$

Linking

Interconnection laws:

$$
p=p^{\prime}, \quad f+f^{\prime}=0
$$

Leads to the complete model:

$$
\begin{align*}
A_{1} \frac{d}{d t} h_{1} & =f_{1}+f_{1}^{\prime} \\
B_{1} f_{1} & =\left\{\begin{aligned}
\sqrt{\left|p_{1}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}-p_{0} \geq \rho h_{1} \\
-\sqrt{\left|p_{1}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}-p_{0} \leq \rho h_{1}
\end{aligned}\right. \tag{blackbox1}\\
C_{1} f_{1}^{\prime} & =\left\{\begin{aligned}
\sqrt{\left|p_{1}^{\prime}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}^{\prime}-p_{0} \geq \rho h_{1} \\
-\sqrt{\left|p_{1}^{\prime}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}^{\prime}-p_{0} \leq \rho h_{1}
\end{aligned}\right. \\
f_{2} & =-f_{2}^{\prime}, \quad p_{2}-p_{2}^{\prime}=\alpha f_{2} \tag{blackbox2}
\end{align*}
$$

$A_{3} \frac{d}{d t} h_{3}=f_{3}+f_{3}^{\prime}$,

$$
\begin{gathered}
C f_{3}=\left\{\begin{aligned}
\sqrt{\left|p_{3}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}-p_{0} \geq \rho h_{3}, \\
-\sqrt{\left|p_{3}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}-p_{0} \leq \rho h_{3}
\end{aligned}\right. \\
C_{3} f_{3}^{\prime}=\left\{\begin{aligned}
\sqrt{\left|p_{3}^{\prime}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}^{\prime}-p_{0} \geq \rho h_{3} \\
-\sqrt{\left|p_{3}^{\prime}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}^{\prime}-p_{0} \leq \rho h_{3}
\end{aligned}\right.
\end{gathered}
$$

$$
p_{1}^{\prime}=p_{2}, f_{1}^{\prime}+f_{2}=0, p_{2}^{\prime}=p_{3}, f_{2}^{\prime}+f_{3}=0
$$

$$
p_{\text {left }}=p_{1}, \quad f_{\text {left }}=f_{1}, \quad p_{\text {right }}=p_{3}^{\prime}, \quad f_{\text {right }}=f_{3}^{\prime}
$$

This tableau of equations is the endpoint of a straightforward first-principles-modeling procedure.

- Unclear (and, in fact, irrelevant) input/output structure for the terminal variables,
both in the overall system and in the subsystems
Many variables, indivisibly, at the same terminal
Interconnection $=$ variable sharing
No signal flows, no output-to-input assignment

Behavioral systems

Behavioral approach

A dynamical system
$: \Leftrightarrow$ a family of time trajectories, 'the behavior'

Interconnection \Leftrightarrow 'variable sharing'

Control \Leftrightarrow interconnection

Modeling of interconnected physical systems is the strongest case for 'behaviors'. We deal mainly with this aspect today.

We consider systems that interact with their environment through terminals

We consider systems that interact with their environment through terminals

There are many electrical, mechanical, hydraulic, thermal, civil engineering, pneumatic, ... connections that can be viewed this way, exactly, literally .

Terminals

We consider systems that interact with their environment through terminals

There are many electrical, mechanical, hydraulic, thermal, civil engineering, pneumatic, ... connections that can be viewed this way, exactly, literally .

The clearest example is an electrical connection. A terminal = a single wire, and interconnection = soldering of wires.

Interconnection architecture

Objective

Formalize mathematically interconnection of systems.

Graph with leaves

Architecture: graph with leaves

vertices \leadsto systems with terminals edges \leadsto connected terminals
leaves \leadsto interaction with environment
terminals \leadsto system variables

Behavioral equations

1. Module equations for each vertex. Relation among the variables on the terminals.
2. Interconnection equations for each edge. Equating the variables on the terminals associated with the same edge.
3. Manifest variable assignment Specifies the variables of interest.

Behavioral equations

1. Module equations for each vertex.

Relation among the variables on the terminals.
Behavioral equations stored as (parametrized) modules in a data-base.
2. Interconnection equations for each edge.

Equating the variables on the terminals associated with the same edge.
Interconnection laws stored in a data-base.
Laws depend on terminal type:
electrical / mechanical / hydraulic / etc.
3. Manifest variable assignment

Specifies the variables of interest.

An example

RLC circuit

Model the port behavior of

by tearing, zooming, and linking.

RLC circuit

Model the port behavior of

by tearing, zooming, and linking.
In each vertex there is a module \leadsto module equations each terminal involves 2 variables (potential, current) in each edge there is an electrical interconnection \sim interconnection equations

connector 1

capacitor

resistor1

resistor2

inductor

connector2

connector $1 \quad n=3$
resistor $1 R_{C}$

capacitor C

resistor2 R_{L}
connector2 $\mathrm{n}=3$

Vertices \Rightarrow module equations

vertex 1: $\quad V_{\text {connector } 1,1}=V_{\text {connector } 1,2}=V_{\text {connector } 1,3}$
$I_{\text {connector1,1 }}+I_{\text {connector 1, } 2}+I_{\text {connector } 1,3}=0$
vertex 2 : $\quad V_{R_{C}, 1}-V_{R_{C}, 2}=R_{C} I_{R_{C}, 1}, I_{R_{C}, 1}+I_{R_{C}, 2}=0$
vertex 3 : $\quad L \frac{d}{d t} I_{L, 1}=V_{L, 1}-V_{L, 2}, I_{L, 1}+I_{L, 2}=0$
vertex 4 : $C \frac{d}{d t}\left(V_{C, 1}-V_{C, 2}\right)=I_{C, 1}, I_{C, 1}+I_{C, 2}=0$
vertex 5 : $\quad V_{R_{L}, 1}-V_{R_{L}, 2}=R_{L} I_{R_{L}, 1}$

$$
I_{R_{L}, 1}+I_{R_{L}, 2}=0
$$

vertex 6 : $\quad V_{\text {connector2,1 }}=V_{\text {connector2,2 }}=V_{\text {connector2,3 }}$
$I_{\text {connector2,1 }}+I_{\text {connector } 2,2}+I_{\text {connector } 2,3}=0$

Vertices \Rightarrow module equations

$V_{\text {connector1,1 }}=V_{\text {connector1,2 }}=V_{\text {connector } 1,3}$
$I_{\text {connector 1, } 1}+I_{\text {connector1, } 2}+I_{\text {connector1, }}=0$

$V_{R_{C}, 1}-V_{R_{C}, 2}=R_{C} I_{R_{C}, 1}, I_{R_{C}, 1}+I_{R_{C}, 2}=0$ $L \frac{d}{d t} I_{L, 1}=V_{L, 1}-V_{L, 2}, I_{L, 1}+I_{L, 2}=0$
$C \frac{d}{d t}\left(V_{C, 1}-V_{C, 2}\right)=I_{C, 1}, I_{C, 1}+I_{C, 2}=0$
$\left.I_{C, 2}\right|_{V_{C, 2}}$

$$
\begin{aligned}
& V_{R_{L}, 1}-V_{R_{L}, 2}=R_{L} I_{R_{L}, 1} \\
& I_{R_{L}, 1}+I_{R_{L}, 2}=0 \\
& V_{\text {connector2,1 }}=V_{\text {connector2,2 }}=V_{\text {connector } 2,3} \\
& I_{\text {connector2,1 }}+I_{\text {connector2,2 }}+I_{\text {connector } 2,3}=0
\end{aligned}
$$

Interconnection

All interconnections are of electrical type

Interconnection equations:

Edges \Rightarrow interconnection equations

edge c: $\quad V_{R_{C, 1}}=V_{\text {connector1,2 }} \quad I_{R_{C, 1}}+I_{\text {connector } 1,2}=0$
edge d: $\quad V_{L, 1}=V_{\text {connector } 1,3} \quad I_{L, 1}+I_{\text {connector } 1,3}=0$
edge e: $\quad V_{R_{C, 2}}=V_{C, 1} \quad I_{R_{C, 2}}+I_{C, 1}=0$
edge f: $\quad V_{L, 2}=V_{R_{C, 1}} \quad I_{L, 2}+I_{R_{L, 1}}=0$
edge g: $\quad V_{C, 2}=V_{\text {connector2,1 }} \quad I_{C, 2}+I_{\text {connector2,1 }}=0$
edge h: $\quad V_{R_{L, 2}}=V_{\text {connector2,2 }} \quad I_{R_{L, 2}}+I_{\text {connector2,2 }}=0$

Interconnection equations

$$
V_{R_{C, 1}}=V_{\text {connector } 1,2} \quad I_{R_{C, 1}}+I_{\text {connector } 1,2}=0
$$

connector1

$I_{\text {connector } 1,3}$

$$
\begin{array}{rlll}
V_{R_{C, 2}} & =V_{C, 1} & I_{R_{C, 2}}+I_{C, 1} & =0 \\
V_{L, 2} & =V_{R_{C, 1}} & I_{L, 2}+I_{R_{L, 1}} & =0 \\
V_{C, 2} & =V_{\text {connector2,1 }} & I_{C, 2}+I_{\text {connector2,1 }} & =0 \\
V_{R_{L, 2}} & =V_{\text {connector2,2 }} & & I_{R_{L, 2}}+I_{\text {connector2,2 }}
\end{array}=0
$$

Manifest variable assignment

$$
\begin{aligned}
V_{\text {externalport }} & =V_{\text {connector } 1,1}-V_{\text {connector2,3 }} \\
I_{\text {externalport }} & =I_{\text {connector } 1,1}
\end{aligned}
$$

$V_{\text {externalport }}$

Complete model

vertex 1: $\quad V_{\text {connector1,1 }}=V_{\text {connector } 1,2}=V_{\text {connector } 1,3}$

$$
I_{\text {connectorl }, 1}+I_{\text {connector } 1,2}+I_{\text {connector } 1,3}=0
$$

vertex 2: $\quad V_{R_{C}, 1}-V_{R_{C}, 2}=R_{C} I_{R_{C}, 1}, I_{R_{C}, 1}+I_{R_{C}, 2}=0$
vertex 3 : $\quad L \frac{d}{d t} I_{L, 1}=V_{L, 1}-V_{L, 2}, I_{L, 1}+I_{L, 2}=0$
vertex $4: \quad C \frac{d}{d t}\left(V_{C, 1}-V_{C, 2}\right)=I_{C, 1}, I_{C, 1}+I_{C, 2}=0$
vertex $5: \quad V_{R_{L}, 1}-V_{R_{L}, 2}=R_{L} I_{R_{L}, 1}$
$I_{R_{L}, 1}+I_{R_{L}, 2}=0$
vertex 6 : $\quad V_{\text {connector2,1 }}=V_{\text {connector2,2 }}=V_{\text {connector }_{2}, 3}$
$I_{\text {connector2,1 }}+I_{\text {connector } 2,2}+I_{\text {connector } 2,3}=0$
edge c: $\quad V_{R_{C, 1}}=V_{\text {connector } 1,2}$

$$
I_{R_{C, 1}}+I_{\text {connector1,2 }}=0
$$

edge d: $\quad V_{L_{1}}=V_{\text {connector } 1,3}$
$I_{L_{1}}+I_{\text {connector } 1,3}=0$
edge e : $\quad V_{R_{C, 2}}=V_{C_{1}}$
$I_{R_{C, 2}}+I_{C_{1}}=0$
edge f: $\quad V_{L_{2}}=V_{R_{C, 1}}$
$I_{L_{2}}+I_{R_{L, 1}}=0$
edge $\mathbf{g}: \quad V_{C_{2}} \quad=\quad V_{\text {connector2,1 }}$
$I_{C_{2}}+I_{\text {connector2,1 }}=0$
edge $\mathbf{h}: \quad V_{R_{L, 2}}=V_{\text {connector } 2,2}$
$I_{R_{L, 2}}+I_{\text {connector2,2 }}=0$

$$
V_{\text {externalport }}=V_{\text {connector }, 1,1}-V_{\text {connector2,3 }}
$$

$$
I_{\text {externalport }}=I_{\text {connector } 1,1}
$$

Port behavior

$$
\mathscr{B}=\left\{\left(V_{\text {externalport }}, I_{\text {externalport }}\right): \mathbb{R} \rightarrow \mathbb{R}^{2} \mid\right.
$$

\exists latent variables trajectories

$\left(V_{\text {connector }_{1}, 1}, I_{\text {connector }_{1}, 1}, \ldots, \ldots\right): \mathbb{R} \rightarrow \mathbb{R}^{28}$

such that

$V_{\text {connector }_{1}, 1}=V_{\text {connector }_{1}, 2}=V_{\text {connector }_{1}, 3}$,

$$
\begin{gathered}
\vdots \\
I_{\text {externalport }}=I_{\text {connector1,1 }}
\end{gathered}
$$

i.e., all 24 equations are satisfied $\}$

Port behavior

$$
\mathscr{B}=\left\{\left(V_{\text {externalport }}, I_{\text {externalport }}\right): \mathbb{R} \rightarrow \mathbb{R}^{2} \mid\right.
$$

\exists latent variables trajectories

$$
\left(V_{\text {connector }_{1}, 1}, I_{\text {connector }_{1}, 1}, \ldots, \ldots\right): \mathbb{R} \rightarrow \mathbb{R}^{28}
$$

such that

$$
V_{\text {connector }_{1}, 1}=V_{\text {connector }_{1}, 2}=V_{\text {connector }_{1}, 3}
$$

$$
I_{\text {externalport }}=I_{\text {connector } 1,1}
$$

i.e., all 24 equations are satisfied $\}$

Can we simplify this expression for \mathscr{B} ?

Port behavior

\leadsto the dynamical system with behavior \mathscr{B} specified by:
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V=\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right)\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

$\leadsto \mathscr{B}=$ all solutions $(V, I): \mathbb{R} \rightarrow \mathbb{R}^{2}$

Port behavior

\leadsto the dynamical system with behavior \mathscr{B} specified by:
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V=\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right)\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

$\leadsto \mathscr{B}=$ all solutions $(V, I): \mathbb{R} \rightarrow \mathbb{R}^{2}$

Port behavior

Thm: In LTIDSs latent variables can be eliminated!

\leadsto the dynamical system with behavior \mathscr{B} specified by:
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$
$\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V=\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right)\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I$
Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

$\leadsto \mathscr{B}=$ all solutions $(V, I): \mathbb{R} \rightarrow \mathbb{R}^{2}$

The elimination theorem

Elimination

Consider

$$
\begin{gathered}
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \quad R, M \in \mathbb{R}[\xi]^{\bullet} \times \bullet \\
\mathscr{B}=\left\{w \mid \exists \ell \text { such that } R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell\right\} .
\end{gathered}
$$

Ex.:

$$
\begin{gathered}
\frac{d}{d t} x=A x+B u, \quad y=C x+D u, \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right] \\
\frac{d}{d t} E x=A x+B u, \quad y=C x+D u, \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
\end{gathered}
$$

etc.

Elimination

Consider

$$
\begin{gathered}
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \quad R, M \in \mathbb{R}[\xi]^{\bullet \times \bullet} \\
\mathscr{B}=\left\{w \mid \exists \ell \text { such that } R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell\right\} .
\end{gathered}
$$

Theorem (Elimination theorem)

There is a polynomial matrix $R^{\prime} \in \mathbb{R}[\xi]^{\bullet \times \mathrm{W}}$ such that \mathscr{B} is the solution set of

$$
R^{\prime}\left(\frac{d}{d t}\right) w=0
$$

Elimination

The projection of the set of solutions of a linear constant coefficient ODE is again the set of solutions of a linear constant coefficient ODE.

Other methodologies

Signal flow graphs

There are many many examples where output-to-input
connection is eminently natural:

input/output thinking

There are many many examples where output-to-input connection is eminently natural:

input/output partition

terminal with 2 physical variables

Assume that one of these variables acts as input, the other as output.

input/output partition

Assume that one of these variables acts as input, the other as output.

Block diagrams

shows terminal variables separate suggests that inputs and outputs occur at different physical points

Pedagogically awkward, confusing, unreal.

Block diagrams

allows impossible input-output connections
Does not respect the physics.

Signal flows and interconnections
$\sum>$
$\sum \ggg \ggg>\underset{\begin{array}{c}\text { shared } \\ \text { variables }\end{array}}{ }$

Signal flows and interconnections

Forbidden? Unlikely?

Signal flows and interconnections

Forbidden?
Unlikely?
For physical systems
input-to-input \& output-to-output assignment very prevalent:
force to force; pressure to pressure; heat flow to heat flow; temperature to temperature; mass flow to mass flow; ...

Physical systems are not signal processors

The input/output approach as the primary and universal view of open systems is a historical misconception.

The sooner it is abandoned as a starting point, the better.

The input/output approach as the primary and universal view of open systems is a historical misconception.

- It fails in the most elementary examples.

It does not deal adequately with interconnections.
It breaks symmetries.
It does not respect the physics.
It is pedagogically ineffective.

The sooner it is abandoned as a starting point, the better.
"Block diagrams unsuitable for serious physical modeling

- the control/physics barrier"
"Behavior based (declarative) modeling is a good alternative"

Karl Åström (1934 -)

IFAC 50-th Anniversary Celebration Heidelberg, September 12, 2006.

Notes \& arrows

My dear young man, don't take it too hard. Your work is ingenious. It's quality work. But there are simply too many notes that's all ...

Notes \& arrows

Ingenious. Quality work.

But there are simply too many arrows, that's all ...

Bond graphs

Bond graphs

Interconnection variables consist of

$$
\text { an effort and a flow } \quad \text { effort } \times \text { flow }=\text { power }
$$

Interconnection \Leftrightarrow
[efforts equal] \& [flows sum to 0]
\Rightarrow power equal
'Power is the universal currency of physical systems'

Bond graphs

Interconnection variables:

voltage \& current
force $\&$ velocity
pressure \& mass flow
temperature \& heat flow
temperature $\& \frac{\text { heat flow }}{\text { temperature }}$

Bond graphs

Interconnection variables:
voltage \& current
force $\&$ velocity
pressure \& mass flow
temperature \& heat flow
temperature $\& \frac{\text { heat flow }}{\text { temperature }}$
effort \times flow $=$ power?

Mechanical interconnections equate positions, not velocities.

Not all interconnections involve equating energy transfer.
Terminals are for interconnection, ports for energy transfer.

Terminals for interconnection, ports for energy transfer

This last point is illustrated for electrical interconnections.

Terminals versus ports

Terminal variables and behavior:

$$
\left(V_{1}, I_{1}, V_{2}, I_{2}, \ldots, V_{\mathrm{n}}, I_{\mathrm{n}}\right) \leadsto \text { behavior } \mathscr{B} \subseteq\left(\mathbb{R}^{2 \mathrm{n}}\right)^{\mathbb{R}}
$$

Terminals versus ports

Port : \Leftrightarrow

sum currents $=0$

potentials + constant

\Rightarrow potentials

Terminals versus ports

Port : \Leftrightarrow
sum currents $=0$

potentials + constant

\Rightarrow potentials
Port 2

$$
\begin{gathered}
\left(\begin{array}{|}
V_{1}, I_{1} \ldots, V_{\mathrm{p}}, I_{\mathrm{p}}
\end{array}, V_{\mathrm{p}+1}, \ldots, I_{\mathrm{n}}\right) \in \mathscr{B}, \alpha: \mathbb{R} \rightarrow \mathbb{R} \\
\Downarrow
\end{gathered}
$$

$$
\left(\boxed{V_{1}+\alpha, I_{1}, \ldots, V_{\mathrm{p}}+\alpha, I_{\mathrm{p}}}, V_{\mathrm{p}+1}, \ldots, I_{\mathrm{n}}\right) \in \mathscr{B}
$$

$$
I_{1}+\cdots+I_{\mathrm{p}}=0
$$

Terminals versus ports

Port : \Leftrightarrow

sum currents $=0$
potentials + constant
\Rightarrow potentials

The behavioral equations contain the variables $V_{1}, V_{2} \ldots, V_{\mathrm{p}}$ only as the differences

$$
V_{\mathrm{i}}-V_{\mathrm{j}} \quad \text { for } \mathrm{i}, \mathrm{j}=1, \ldots \mathrm{p}
$$

and contain the equation

$$
I_{1}+I_{2}+\cdots+I_{\mathrm{p}}=0
$$

$$
0
$$

Terminals versus ports

Interconnection through terminals, energy transfer through ports. One cannot speak about
"the energy transferred from circuit 1 to circuit 2"
unless their interconnected terminals form a port.

Hierarchy

New modules from old ones

Tearing, zooming, linking is hierarchical :

New modules from old ones

Tearing, zooming, linking is hierarchical :

Embed modules in vertices, obtain behavioral equations for the interconnected system, eliminate the latent variables,

New modules from old ones

Tearing, zooming, linking is hierarchical :

Embed modules in vertices, obtain behavioral equations for the interconnected system, eliminate the latent variables,

New modules from old ones

Tearing, zooming, linking is hierarchical :

Embed modules in vertices, obtain behavioral equations for the interconnected system, eliminate the latent variables, and view the interconnected system as a module with terminals in a new interconnection architecture.

Example

Model the behavior of the external terminal voltages and currents of the following circuit:

Example

Model the behavior of the external terminal voltages and currents of the following circuit:

One section:

Example

Model the behavior of the external terminal voltages and currents of the following circuit:

One section:

Hierarchical combination:

Circuit diagrams

Circuits and graphs

Classical circuit theory evolves around a digraph with 2-terminal elements or external ports in the edges and connections in the vertices.

Circuits and graphs

Classical circuit theory evolves around a digraph with 2-terminal elements or external ports in the edges and connections in the vertices. For example,

Circuits and graphs

Classical circuit theory evolves around a digraph with 2-terminal elements or external ports in the edges and connections in the vertices.

Associate a voltage drop and a current with each edge, and embed an element (say, R, L, or C) in each 'internal' edge.

This methodology is limited:
It can only deal with 2-terminal elements and 2-terminal external ports.
It is purely port oriented. It does not articulate that terminals, not ports make the interconnections.

It is not hierarchical
An already-modeled-circuit cannot be reused as a subsystem in a larger circuit diagram.

Embedding a circuit in a graph

Perfect for 2-terminal one-ports

Embedding a circuit in a graph

There is no way to embed a 3-terminal circuit in a circuit graph,

Embedding a circuit in a graph

There is no way to embed a 3-terminal circuit in a circuit graph, unless we tear the blackbox into its components

Embedding a circuit in a graph

If we imbed a 4-terminal circuit into a circuit graph, it has to be a 2 -port.

Embedding a circuit in a graph

If we imbed a 4-terminal circuit into a circuit graph, it has to be a 2 -port.

embeddable

not embeddable

Vertices and edges

In circuit graphs, subsystems are in the edges, connections are in the vertices

Vertices and edges

In circuit graphs, subsystems are in the edges, connections are in the vertices

Contrast with tearing, zooming, linking: subsystems are in the vertices, connections are in the edges

Summary

Interconnection = variable (terminal) sharing

Interconnection = variable (terminal) sharing
Modeling by physical systems proceeds by
tearing, zooming, and linking

Main points

Interconnection = variable (terminal) sharing Modeling by physical systems proceeds by tearing, zooming, and linking
 Hierarchical procedure

Main points

Interconnection = variable (terminal) sharing
Modeling by physical systems proceeds by
tearing, zooming, and linking
Hierarchical procedure
Importance of latent variables and the elimination theorem

Main points

Interconnection = variable (terminal) sharing
Modeling by physical systems proceeds by
tearing, zooming, and linking
Hierarchical procedure
Importance of latent variables and the elimination theorem

Limitations of input/output thinking, it is time to move away from it as the universal starting point

Main points

Interconnection = variable (terminal) sharing
Modeling by physical systems proceeds by
tearing, zooming, and linking
Hierarchical procedure
Importance of latent variables and the elimination theorem

Limitations of input/output thinking, it is time to move away from it as the universal starting point
Control is interconnection, sensor output to actuator input feedback important special case

Main points

Interconnection = variable (terminal) sharing
Modeling by physical systems proceeds by
tearing, zooming, and linking
Hierarchical procedure
Importance of latent variables and the elimination theorem

Limitations of input/output thinking, it is time to move away from it as the universal starting point
Control is interconnection, sensor output to actuator input feedback important special case
Need generalization to distributed terminals, etc.

Thoughts to take home

1. A dynamical system = a family of trajectories.
2. Interconnection = variable sharing
3. Control $=$ interconnection

Want to read about it? See

The behavioral approach to open and interconnected systems, Control Systems Magazine, Volume 27, pages 46-99, 2007.

The lecture frames are available from/at
http://www.esat.kuleuven.be/~jwillems

Want to read about it? See

The behavioral approach to open and interconnected systems, Control Systems Magazine, Volume 27, pages 46-99, 2007.

The lecture frames are available from/at
http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you

Thank you

Thank you
Thank you

