
REPRESENTATIONS
of

LINEAR TIME-INVARIANT
SYSTEMS

Jan C. Willems
K.U. Leuven, Flanders, Belgium

ISCCSP, Malta March 12, 2008
– p. 1/28



Introduction
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Behavior := specifies which trajectories are possible

How do we express these mathematically?

– p. 3/28



BB1 2

Which representations deal best with robustness?
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Representations code properties such as

controllability, stabilizability

observability, detectability

...
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Objective of the lecture

Discuss some of the main representations of linear

shift-invariant (LSI / LTI) systems
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Objective of the lecture

Discuss some of the main representations of linear

shift-invariant (LSI / LTI) systems

Competing possibilities:

kernel and image representations

state, latent variable representations

i/o, transfer functions

left-prime representations over various rings

...

We use discrete- & continuous-time interchangeably
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Formalization
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A system as a behavior

A system:⇔ (T, W, B)

T ‘set of independentvariables’

W ‘set of dependentvariables’

B ⊆ W
T the ‘behavior’

a family of trajectories mapping T → W

w : T → W ∈ B: ‘w is compatible with the model’

w : T → W /∈ B: ‘the model forbids w’

Typically, T = R, R+, Z, N, R
n, Z

n, W = R
w, etc.
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A system as a behavior

The system(T, R
w, B) T = R, R

n, Z, Z
n

; B

is

linear :⇔ w1, w2 ∈ B, α ∈ R

implies αw1 + w2 ∈ B

shift-invariant (time-invariant)

:⇔ w ∈ B, σ any multi-shift, implies σw ∈ B
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Kernel representations
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LSIDS

Equivalent for (Zn, R
w, B) , B ⊆ (Rw)R

n

1. B is linear, shift-invariant, and closed

2. B is linear, shift-inv., and prefix determined

3. ∃ polynomial matrix R(ξ1, · · · , ξn) such that

B consists of the sol’ns of

R (σ1, . . . , σn) w = 0

‘kernel representation’
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LSIDS

R (σ1, . . . , σn) w = 0

Continuous analogue

R
(

∂
∂x1

, · · · , ∂
∂xn

)

w = 0

R
(

d
dt

)

w = 0

Notation: L
w

n
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PDEs: example

Maxwell’s equations for EM fields in free space

∇ · ~E =
1

ε0

ρ ,

∇ × ~E = −
∂

∂t
~B,

∇ · ~B = 0 ,

c2∇ × ~B =
1

ε0

~j +
∂

∂t
~E.

independent variables:(t, x, y, z) time and space

dependent variables:(~E, ~B,~j, ρ)

electric field, magnetic field, current density, charge density

– p. 11/28



PDEs: example

Example: Maxwell’s eq’ns (R4, R
10, B)

4 independent variables,(t, x, y, z)

w = 10, w = (~E, ~B,~j, ρ)

8 equations,R ; 8 × 10, sparse, first order
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Relation with modules

n ∈ R
w(ξ1, · · · , ξn) is an annihilator of B :⇔

n⊤
(

∂
∂x1

, · · · , ∂
∂xn

)

B = 0

The annihilators form an R(ξ1, · · · , ξn) module
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Relation with modules

n ∈ R
w(ξ1, · · · , ξn) is an annihilator of B :⇔

n⊤
(

∂
∂x1

, · · · , ∂
∂xn

)

B = 0

The annihilators form an R(ξ1, · · · , ξn) module

Theorem:

∃ 1 ↔ 1 relation betweenL
w

n
and the

R(ξ1, · · · , ξn) submodules ofRw(ξ1, · · · , ξn)
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Elimination theorem

Theorem:

L
w

n
is closed under projection
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Elimination theorem

Theorem:

L
w

n
is closed under projection

R1

(

∂

∂x1

, · · · , ∂

∂xn

)

w1 = R2

(

∂

∂x1

, · · · , ∂

∂xn

)

w2 (∗)

B1 := {w1 | ∃ w2 such that (w1, w2) satisfies (∗) }

‘elimination theorem’: B1 ∈ L
w1

n
!

Application: state systems, interconnected systems
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Controllability as a system property
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Controllability

The time-invariant system(R, R
w, B) is

controllable :⇔

∀ w1, w2 ∈ B, ∃ w ∈ B and T ≥ 0 such that

w1

w2

W

time

w1

transition W

w

W

2w
0 t’

time
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Controllability

The time-invariant system(R, R
w, B) is

stabilizable :⇔ ∀ w ∈ B, ∃ w′ ∈ B such that

w’

w

0

W

time
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Controllability

O

w2w1

1

W

space time2O

w

1w 2w

O1 2space O

W

time
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Controllability

O

w2w1

1

W

space time2O

w

1w 2w

O1 2space O

W

time

Controllability

:= Patchability
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Images

Theorem:

B ∈ L
w

n
is controllable iff it has a representation

w = M
(

∂
∂x1

, · · · , ∂
∂xn

)

ℓ

i.e.

B = image
(

M
(

∂
∂x1

, · · · , ∂
∂xn

))
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Images

Theorem:

B ∈ L
w

n
is controllable iff it has a representation

w = M
(

∂
∂x1

, · · · , ∂
∂xn

)

ℓ

i.e.

B = image
(

M
(

∂
∂x1

, · · · , ∂
∂xn

))

Is an image a kernel ? Always !⇐ Elimination th’m

Is a kernel an image ? Iff the kernel is controllable !
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Images

Theorem:

B ∈ L
w

n
is controllable iff it has a representation

w = M
(

∂
∂x1

, · · · , ∂
∂xn

)

ℓ

i.e.

B = image
(

M
(

∂
∂x1

, · · · , ∂
∂xn

))

For n > 1, ℓ observable fromw may be impossible.

Images may require hidden variables .
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Are EM fields controllable ?
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Are EM fields controllable ?

The following eq’ns in

scalar potential φ : R × R
3 → R

vector potential ~A : R × R
3 → R

3

generate exactly the solutions to MEs:

~E = −
∂

∂t
~A − ∇φ,

~B = ∇ × ~A,

~j = ε0

∂2

∂t2
~A − ε0c

2∇2 ~A + ε0c
2∇

(

∇ · ~A
)

+ ε0

∂

∂t
∇φ,

ρ = −ε0

∂

∂t
∇ · ~A − ε0∇

2φ.
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Are EM fields controllable ?

~E = −
∂

∂t
~A − ∇φ,

~B = ∇ × ~A,

~j = ε0

∂2

∂t2
~A − ε0c

2∇2 ~A + ε0c
2∇

(

∇ · ~A
)

+ ε0

∂

∂t
∇φ,

ρ = −ε0

∂

∂t
∇ · ~A − ε0∇

2φ.

Proves controllability of EM fields.

Not observable, cannot be !

controllability ⇔ ∃ potential!
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Rational representations
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i/o or i/s/o representations

We do not dwell on the ubiquitous representations

P
(

d
dt

)

y = Q
(

d
dt

)

u w =

[

u

y

]

d
dt

x = Ax + Bu, y = Cx + Du w =

[

u

y

]
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Rational representations

Let G ∈ R (ξ)•×w, and consider the ‘differential equation’

G
(

d
dt

)

w = 0

What do we mean by the solutions, i.e. by the behavior?
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Rational representations

Let G ∈ R (ξ)•×w, and consider the ‘differential equation’

G
(

d
dt

)

w = 0

What do we mean by the solutions, i.e. by the behavior?

Let (P, Q) be a left coprime polynomial factorization of G

P, Q ∈ R[ξ]•×•, det(P ) 6= 0, G = P −1Q, [P
... Q] left-prime.

E.g., in scalar case, meansP and Q have no common roots.

G(
d

dt
)w = 0 :⇔ Q

(

d

dt

)

w = 0
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Rational representations

Let (P, Q) be a left coprime polynomial factorization of G

G(
d

dt
)w = 0 :⇔ Q

(

d
dt

)

w = 0

Justification:
1. G proper. G(s) = C(Is − A)−1B + D controllable
realization. Consider output nulling inputs:

d

dt
x = Ax + Bw, 0 = Cx + Dw

This set ofw’s are exactly those that satisfyG
(

d
dt

)

w = 0.

Same for
d

dt
x = Ax + Bw, 0 = Cx + D

(

d

dt

)

w = 0, D ∈ R [ξ]•×•
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Rational representations

Let (P, Q) be a left coprime polynomial factorization of G

G(
d

dt
)w = 0 :⇔ Q

(

d
dt

)

w = 0

Justification:
2. Considery = G(s)u. View G as a transfer f’n.
Take your usual favorite definition of input/output pairs.

The output nulling inputs are exactly those that satisfy

G
(

d
dt

)

w = 0.
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Representations

LTIDS

B = kernel
(

R
(

d
dt

))

for someR ∈ R [ξ]•×w, by def.
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Representations

LTIDS

B = kernel
(

R
(

d
dt

))

for someR ∈ R [ξ]•×w, by def.

But we may as well take the representationG
(

d
dt

)

w = 0 for

someG ∈ R (ξ)•×w as the definition.
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Representations

LTIDS

B = kernel
(

R
(

d
dt

))

for someR ∈ R [ξ]•×w, by def.

But we may as well take the representationG
(

d
dt

)

w = 0 for

someG ∈ R (ξ)•×w as the definition.
R: all poles at∞, we can takeG with no poles at∞, or more
generally with all poles in some non-empty set - symmetric
w.r.t. R. In particular:

Theorem: Every LTIDS has a representation

G
(

d
dt

)

w = 0

with G ∈ R (ξ)•×w strictly proper stable rational.
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Subrings ofR (ξ)

R (ξ): real rational functions.

Consider 3 subrings:

1. R [ξ]: polynomials with real coefficients

2. R (ξ)P : proper rational functions

3. R (ξ)S : stable proper rational functions
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Subrings ofR (ξ)

R (ξ): real rational functions.

Consider 3 subrings:

1. R [ξ]: polynomials with real coefficients all poles at∞

2. R (ξ)P : proper rational functions no poles at∞

3. R (ξ)S : stable proper rational functions
no poles in RHP or∞

Each of these rings hasR (ξ) as its field of fractions.

Unimodular elements (invertible in ring)

1. Non-zero constants

2. bi-proper

3. bi-proper and mini-phase

miniphase:⇔ poles & zeros in LHP
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Prime representations

Theorem: an LTIDS admits a representation

G

(

d

dt

)

w = 0

with

1. G ∈ R (ξ)•×w

P left prime over R (ξ)P always

2. G ∈ R [ξ]•×w left prime over R [ξ] ⇔ it is controllable

3. G ∈ R (ξ)•×w

S left prime over R (ξ)S ⇔ it is stabilizable

The proof of case 3 is not easy!
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Image-like representations
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Elimination

Consider

G1

(

d

dt

)

w1 = G2

(

d

dt

)

w2

G1, G2 ∈ R (ξ)•×•. Behavior B. Eliminate w2 ;

B1 = {w1 | ∃ w2 such that (w1, w2) ∈ B}

B1 is also a LTID behavior.

In particular

w = H

(

d

dt

)

ℓ, H ∈ R (ξ)w×• .

w-behavior is LTID. Image-like representation.
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Representations of controllable systems

Theorem: The following are equivalent for LTID systems

1. B is controllable

2. B admits an image-like representation

w = M
(

d
dt

)

ℓ with H ∈ R [ξ]w×•

3. B admits an image-like representation

w = H
(

d
dt

)

ℓ with H ∈ R (ξ)w×•

4. with observability (ℓ can be deduced fromw) added

5. with M ∈ R [ξ]w×• right prime over R [ξ]

6. with H ∈ R (ξ)w×•
S right prime over R (ξ)S
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SUMMARY

LSIDS in one-to-one relation with modules
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SUMMARY
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SUMMARY

LSIDS in one-to-one relation with modules

controllability ⇔ image representation

Extends readily to rational functions

Irrelevance of Laplace transforms
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Details & copies of the lecture frames are available from/at
Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/∼jwillems
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Details & copies of the lecture frames are available from/at
Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/∼jwillems

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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