## mowa sista



REPRESENTATIONS of

## LINEAR TIME-INVARIANT SYSTEMS

Jan C. Willems

K.U. Leuven, Flanders, Belgium

## Introduction



## Behavior := specifies which trajectories are possible

How do we express these mathematically?


Which representations deal best with robustness?

Representations code properties such as

- controllability, stabilizability
- observability, detectability
- ...


## Objective of the lecture

## Discuss some of the main representations of linear shift-invariant (LSI / LTI) systems

Objective of the lecture
Discuss some of the main representations of linear shift-invariant (LSI / LTI) systems

Competing possibilities:

- kernel and image representations
- state, latent variable representations
- i/o, transfer functions
- left-prime representations over various rings
- ...

Objective of the lecture
Discuss some of the main representations of linear shift-invariant (LSI / LTI) systems

Competing possibilities:

- kernel and image representations
- state, latent variable representations
- i/o, transfer functions
- left-prime representations over various rings
- ...

We use discrete- \& continuous-time interchangeably

Formalization

A system as a behavior

A system : $\Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

| $\mathbb{T}$ | $\quad$ 'set of independent variables' |
| :--- | :--- |
| $\mathbb{W}$ | $\quad$ 'set of dependent variables' |
| $\mathfrak{B} \subseteq \mathbb{W} \mathbb{T}$ | the 'behavior' |
|  | a family of trajectories mapping $\mathbb{T} \rightarrow \mathbb{W}$ |

$w: \mathbb{T} \rightarrow \mathbb{W} \in \mathfrak{B}:{ }^{\prime} w$ is compatible with the model' $w: \mathbb{T} \rightarrow \mathbb{W} \notin \mathfrak{B}:{ }^{\prime}$ the model forbids $w '$

Typically, $\mathbb{T}=\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}, \mathbb{N}, \mathbb{R}^{\mathrm{n}}, \mathbb{Z}^{\mathrm{n}}, \quad \mathbb{W}=\mathbb{R}^{\mathrm{w}}$, etc.

## A system as a behavior

The system $\left(\mathbb{T}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right) \quad \mathbb{T}=\mathbb{R}, \mathbb{R}^{\mathrm{n}}, \mathbb{Z}, \mathbb{Z}^{\mathrm{n}} \quad \leadsto \mathfrak{B}$ is
linear $: \Leftrightarrow \boldsymbol{w}_{1}, \boldsymbol{w}_{\mathbf{2}} \in \mathfrak{B}, \boldsymbol{\alpha} \in \mathbb{R}$ implies $\alpha w_{1}+w_{2} \in \mathfrak{B}$
shift-invariant (time-invariant)
$: \Leftrightarrow \boldsymbol{w} \in \mathfrak{B}, \boldsymbol{\sigma}$ any multi-shift, implies $\boldsymbol{\sigma} \boldsymbol{w} \in \mathfrak{B}$

## Kernel representations

## LSIDS

Equivalent for $\left(\mathbb{Z}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right), \quad \mathfrak{B} \subseteq\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{R}^{\mathrm{n}}}$

1. $\mathfrak{B}$ is linear, shift-invariant, and closed
2. $\mathfrak{B}$ is linear, shift-inv., and prefix determined
3. $\exists$ polynomial matrix $R\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$ such that $\mathfrak{B}$ consists of the sol'ns of

$$
\boldsymbol{R}\left(\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right) \boldsymbol{w}=\mathbf{0}
$$

'kernel representation'

## LSIDS

$$
\boldsymbol{R}\left(\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right) w=0
$$

## Continuous analogue

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0
$$

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0
$$

Notation: $\mathfrak{L}_{n}^{W}$

## PDEs: example

## Maxwell's equations for EM fields in free space



$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B} \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E}
\end{aligned}
$$

independent variables: $(t, x, y, z)$ time and space dependent variables: $(\vec{E}, \vec{B}, \vec{j}, \rho)$
electric field, magnetic field, current density, charge density

## PDEs: example

Example: Maxwell's eq'ns $\left(\mathbb{R}^{4}, \mathbb{R}^{10}, \mathfrak{B}\right)$
4 independent variables, $(t, x, y, z)$
$\mathrm{w}=10, w=(\vec{E}, \vec{B}, \vec{j}, \rho)$
8 equations, $R \leadsto 8 \times 10$, sparse, first order

## Relation with modules

$n \in \mathbb{R}^{\mathrm{w}}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right)$ is an annihilator of $\mathfrak{B}: \Leftrightarrow$

$$
\boldsymbol{n}^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) \mathfrak{B}=0
$$

The annihilators form an $\mathbb{R}\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$ module

## Relation with modules

$n \in \mathbb{R}^{\mathrm{w}}\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right)$ is an annihilator of $\mathfrak{B}: \Leftrightarrow$

$$
\boldsymbol{n}^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{B}=0
$$

The annihilators form an $\mathbb{R}\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$ module

Theorem:
$\exists 1 \leftrightarrow 1$ relation between $\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ and the
$\mathbb{R}\left(\xi_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right)$ submodules of $\mathbb{R}^{\mathrm{w}}\left(\xi_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right)$

# Elimination theorem 

## Theorem:

## $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$ is closed under projection

## Elimination theorem

## Theorem:

## $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$ is closed under projection

$$
\begin{equation*}
R_{1}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) w_{1}=R_{2}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) w_{2} \tag{*}
\end{equation*}
$$

$\mathfrak{B}_{1}:=\left\{w_{1} \mid \exists w_{2}\right.$ such that $\left(w_{1}, w_{2}\right)$ satisfies (*) $\}$ 'elimination theorem':

$$
\mathfrak{B}_{1} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{N}_{1}}!
$$

Application: state systems, interconnected systems

## Controllability as a system property

## Controllability

## The time-invariant system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$ is

controllable : $\Leftrightarrow$
$\forall \boldsymbol{w}_{1}, \boldsymbol{w}_{\mathbf{2}} \in \mathfrak{B}, \exists \boldsymbol{w} \in \mathfrak{B}$ and $\boldsymbol{T} \geq \mathbf{0}$ such that


## Controllability

## The time-invariant system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$ is

stabilizable $: \Leftrightarrow \quad \forall \boldsymbol{w} \in \mathfrak{B}, \exists \boldsymbol{w}^{\prime} \in \mathfrak{B}$ such that




## Images

## Theorem:

$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ is controllable iff it has a representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

i.e.

$$
\mathfrak{B}=\operatorname{image}\left(\boldsymbol{M}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

## Images

## Theorem:

$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$ is controllable iff it has a representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

i.e.

$$
\mathfrak{B}=\operatorname{image}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

Is an image a kernel? Always ! $\Leftarrow$ Elimination th'm Is a kernel an image ? Iff the kernel is controllable !

## Images

## Theorem:

$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$ is controllable iff it has a representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

i.e.

$$
\mathfrak{B}=\operatorname{image}\left(\boldsymbol{M}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

For $n>1$, $\ell$ observable from $w$ may be impossible. Images may require hidden variables .

## Are EM fields controllable?

## The following eq'ns in

scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ generate exactly the solutions to MEs:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi, \\
\vec{B} & =\nabla \times \vec{A}, \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi, \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi .
\end{aligned}
$$

## Are EM fields controllable?

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A} \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Proves controllability of EM fields. Not observable, cannot be !

## controllability $\Leftrightarrow \exists$ potential!

## Rational representations

## i/o or i/s/o representations

We do not dwell on the ubiquitous representations

$$
\begin{gathered}
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right] \\
\frac{d}{d t} x=A x+B u, \quad y=C x+D u \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
\end{gathered}
$$

## Rational representations

Let $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the solutions, i.e. by the behavior?

## Rational representations

Let $G \in \mathbb{R}(\xi)^{\bullet \times w}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the solutions, i.e. by the behavior?
Let $(P, Q)$ be a left coprime polynomial factorization of $G$
$P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \operatorname{det}(P) \neq 0, G=P^{-1} Q,[P \vdots Q]$ left-prime.
E.g., in scalar case, means $P$ and $Q$ have no common roots.

$$
G\left(\frac{d}{d t}\right) w=0: \Leftrightarrow Q\left(\frac{d}{d t}\right) w=0
$$

## Rational representations

Let $(P, Q)$ be a left coprime polynomial factorization of $G$

$$
G\left(\frac{d}{d t}\right) w=0: \Leftrightarrow Q\left(\frac{d}{d t}\right) w=0
$$

Justification:

1. $G$ proper. $G(s)=C(I s-A)^{-1} B+D$ controllable realization. Consider output nulling inputs:

$$
\frac{d}{d t} x=A x+B w, \quad 0=C x+D w
$$

This set of $w$ 's are exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.
Same for

$$
\frac{d}{d t} x=A x+B w, 0=C x+D\left(\frac{d}{d t}\right) w=0, D \in \mathbb{R}[\xi]^{\bullet \times \bullet}
$$

## Rational representations

Let $(P, Q)$ be a left coprime polynomial factorization of $G$

$$
G\left(\frac{d}{d t}\right) w=0: \Leftrightarrow Q\left(\frac{d}{d t}\right) w=0
$$

Justification:
2. Consider $\boldsymbol{y}=\boldsymbol{G}(s) \boldsymbol{u}$. View $G$ as a transfer f'n. Take your usual favorite definition of input/output pairs.

The output nulling inputs are exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.

## Representations

## LTIDS

$\mathfrak{B}=\operatorname{kernel}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$ for some $\boldsymbol{R} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \mathrm{w}}$, by def.

## Representations

## LTIDS

$\mathfrak{B}=\operatorname{kernel}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$ for some $\boldsymbol{R} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \mathrm{w}}$, by def.
But we may as well take the representation $G\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$ as the definition.

## Representations

## LTIDS

$\mathfrak{B}=\operatorname{kernel}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$ for some $R \in \mathbb{R}[\xi]^{\bullet \times{ }_{w}}$, by def.
But we may as well take the representation $G\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times w}$ as the definition. $R$ : all poles at $\infty$, we can take $G$ with no poles at $\infty$, or more generally with all poles in some non-empty set - symmetric w.r.t. $\mathbb{R}$. In particular:

Theorem: Every LTIDS has a representation

$$
G\left(\frac{d}{d t}\right) w=0
$$

with $G \in \mathbb{R}(\xi)^{\bullet \times w}$ strictly proper stable rational.

## Subrings of $\mathbb{R}(\xi)$

$\mathbb{R}(\xi)$ : real rational functions.
Consider 3 subrings:

1. $\mathbb{R}[\xi]:$ polynomials with real coefficients
2. $\mathbb{R}(\xi)_{\mathcal{P}}$ : proper rational functions
3. $\mathbb{R}(\xi)_{\mathcal{S}}$ : stable proper rational functions

## Subrings of $\mathbb{R}(\xi)$

$\mathbb{R}(\xi)$ : real rational functions.
Consider 3 subrings:

1. $\mathbb{R}[\xi]:$ polynomials with real coefficients all poles at $\infty$
2. $\mathbb{R}(\xi)_{\mathcal{P}}$ : proper rational functions no poles at $\infty$
3. $\mathbb{R}(\xi)_{\mathcal{S}}$ : stable proper rational functions
no poles in RHP or $\infty$

## Subrings of $\mathbb{R}(\xi)$

$\mathbb{R}(\xi)$ : real rational functions.
Consider 3 subrings:

1. $\mathbb{R}[\xi]:$ polynomials with real coefficients all poles at $\infty$
2. $\mathbb{R}(\xi)_{\mathcal{P}}$ : proper rational functions no poles at $\infty$
3. $\mathbb{R}(\xi)_{\mathcal{S}}$ : stable proper rational functions
no poles in RHP or $\infty$
Each of these rings has $\mathbb{R}(\xi)$ as its field of fractions.
Unimodular elements (invertible in ring)
4. Non-zero constants
5. bi-proper
6. bi-proper and mini-phase

## Prime representations

Theorem: an LTIDS admits a representation

$$
G\left(\frac{d}{d t}\right) w=0
$$

with

1. $G \in \mathbb{R}(\xi)_{\mathcal{P}}^{\bullet \times{ }_{w}}$ left prime over $\mathbb{R}(\xi)_{\mathcal{P}}$ always
2. $G \in \mathbb{R}[\xi]^{\bullet \times W}$ left prime over $\mathbb{R}[\xi] \Leftrightarrow$ it is controllable
3. $G \in \mathbb{R}(\xi)_{\mathcal{S}}^{\bullet \times{ }_{W}}$ left prime over $\mathbb{R}(\xi)_{\mathcal{S}} \Leftrightarrow$ it is stabilizable

The proof of case 3 is not easy!

## Image-like representations

## Elimination

Consider

$$
G_{1}\left(\frac{d}{d t}\right) w_{1}=G_{2}\left(\frac{d}{d t}\right) w_{2}
$$

$G_{1}, G_{2} \in \mathbb{R}(\xi)^{\bullet \times \bullet}$. Behavior $\mathfrak{B}$. Eliminate $w_{2} \sim$

$$
\mathfrak{B}_{1}=\left\{w_{1} \mid \exists w_{2} \text { such that }\left(w_{1}, w_{2}\right) \in \mathfrak{B}\right\}
$$

$\mathfrak{B}_{1}$ is also a LTID behavior.
In particular

$$
w=\boldsymbol{H}\left(\frac{d}{d t}\right) \ell, \quad \boldsymbol{H} \in \mathbb{R}(\xi)^{\mathrm{w} \times}
$$

$w$-behavior is LTID. Image-like representation.

## Representations of controllable systems

Theorem: The following are equivalent for LTID systems 1. $\mathfrak{B}$ is controllable
2. $\mathfrak{B}$ admits an image-like representation

$$
\boldsymbol{w}=M\left(\frac{d}{d t}\right) \ell \text { with } \boldsymbol{H} \in \mathbb{R}[\xi]^{\mathrm{w} \times \bullet}
$$

3. $\mathfrak{B}$ admits an image-like representation

$$
\boldsymbol{w}=\boldsymbol{H}\left(\frac{d}{d t}\right) \ell \text { with } \boldsymbol{H} \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

4. with observability ( $\ell$ can be deduced from $w$ ) added
5. with $M \in \mathbb{R}[\xi]^{W \times \bullet}$ right prime over $\mathbb{R}[\xi]$
6. with $H \in \mathbb{R}(\xi)_{\mathcal{S}}^{W \times \bullet}$ right prime over $\mathbb{R}(\xi)_{\mathcal{S}}$

## SUMMARY

## - LSIDS in one-to-one relation with modules

## SUMMARY

- LSIDS in one-to-one relation with modules
- controllability $\Leftrightarrow$ image representation


## SUMMARY

- LSIDS in one-to-one relation with modules
- controllability $\Leftrightarrow$ image representation
- Extends readily to rational functions


## SUMMARY

- LSIDS in one-to-one relation with modules
- controllability $\Leftrightarrow$ image representation
- Extends readily to rational functions
- Irrelevance of Laplace transforms


## Details \& copies of the lecture frames are available from/at

 Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillemsDetails \& copies of the lecture frames are available from/at Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems

## Thank you

## Thank you

Thank you
Thank you
Thank you
Thank you
Thank you

