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Introduction



Behavior ;= specifies which trajectories are possible

How do we express these mathematically?
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Which representations deal best with robustness?
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Representations code properties such as

» controllability, stabilizability
o observability, detectability

o ...
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Objective of the lecture

Discuss some of the main representations of linear
shift-invariant (LSI/ LTI) systems
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» left-prime representations over various rings



Objective of the lecture

Discuss some of the main representations of linear
shift-invariant (LSI/ LTI) systems

Competing possibilities:
» kernel and image representations
» state, latent variable representations
o I/o, transfer functions
» left-prime representations over various rings

o ...

We use discrete- & continuous-time interchangeably
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Formalization



A system as a behavior

A system:& (T, W, 25)
T ‘set of independentvariables’
W ‘set of dependentvariables’
B C W' the ‘behavior
a family of trajectories mapping T — W

S

: T — W € B: “w Is compatible with the model’
w: T — W & 2B ‘the model forbids w’

Typically, T = R,R,,Z,N,R*, Z*, W = R", etc.
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A system as a behavior

The system (T,R",28) T =R,R*,Z,Z* -~ B
IS

inear :< Wi, W2 € %,a cER
implies acw; + ws € *B

shift-invariant (time-invariant)
= w € B, o any multi-shift, implies cw € B
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Kernel representations
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LSIDS

Equivalent for (Z*, R, 8), B C (R")Y
1. B is linear, shift-invariant, and closed
2. B Is linear, shift-inv., and prefix determined

3. d polynomial matrix R(&1,- -+ , &) such that
B consists of the sol’'ns of

R(o1y...,0,) w =0

‘kernel representation’
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LSIDS

R(o15...,0,)w =0

Continuous analogue

R(a%l" ,8?Bn)w:O
R(4)w=0

Notation: £
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PDEs: example

Maxwell's equations for EM fields in free space

~ 1
V-E = —p,
€0
—> 8—»
VXE = ——B,
ot
V.-B = 0,
’V x B 1_._|_8_.
C = — —
50] Ot

independent variables:(t, x,y, z) time and space
dependent variables:(E, B, 7, p)

electric field, magnetic field, current density, charge dengy
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PDEs: example

Example: Maxwell's eq’ns (R*, R1Y, 93)

4 independent variables(t, x, y, z)
w=10,w = (E, B, j, p)
8 equations,R ~» 8 X 10, sparse, first order
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Relation with modules

n € RY(&1,-++ , &) is an annihilator of B <

nT<3 .. 8)%20

3331 ) ) aa:n

The annihilators form an R(&1, -+ - ,&,) module
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Relation with modules

n € RY(&1,-++ , &) is an annihilator of B <

nT<a .. 8)%20

8331 ) ) aa:n

The annihilators form an R(&1, -+ - ,&,) module

Theorem:

31 < 1 relation between£’ and the

R(&1, ¢ 4 &) submodules ofR¥ (&1, -+ 4 &)
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Theorem:

Elimination theorem

£¥ Is closed under projection
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Elimination theorem

Theorem:

£¥ Is closed under projection

o, o, _ o, 0
R]_ (a_m,...,awn)wl_Rz (a—wl,ooo,awn)wz (*)

B, := {w; | I wy such that (w;, ws) satisfies (x) }

‘elimination theorem'’: B, e L

Application: state systems, interconnected systems
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Controllablility as a system property



Controllability

The time-invariant system (R, R", ) is

controllable : <
Vwi,wy €B,dw € B andT > 0 such that

wl/\
/—\//wz transiti M

—
/

w w,
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Controllability

The time-invariant system (R, R", ) is

stabilizable ;<< Vw € 9B, 3w’ € B such that

%\

Wl
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Controllability

W

space

time
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Controllability

Controllability
.= Patchability

space

time
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Images

Theorem:
B € £71s controllable iff it has a representation
_ 9 8
w_M<8_x1’”' ’c%vn)E
.e.
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Images

Theorem:
B € £71s controllable iff it has a representation
_ 9 8
W—M(a—xl,"° ’Bacn)E
.e.

Is an image a kernel? Always !<= Elimination th'm
Is a kernel an image ?  Iff the kernel is controllable!
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Images

Theorem:
B € £71s controllable iff it has a representation
w:M(a%,... ,8gn)g
.e.
B =i mage (M <a§;1’ ’ain))

Forn > 1, £ observable fromw may be impossible.
Images may require hidden variables .
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Are EM fields controllable ?
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Are EM fields controllable ?

The following eg’'ns in

scalar potential ¢ : R x R® — R

vector potential A : R x R3 — R3
generate exactly the solutions to MEs:

;N =

]

82 Vo
ot ’

V X A,
0% . S L
EO@A — €0C2V2A -+ 8062V (V . A)

8V A V2
—€9p—V - A — :
08t €o

+ avfb
€05, y
° ot
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Are EM fields controllable ?

B - _9% Vo
Ot ’
B = VXA,
— 82 — —_ —
J = cogpA— e VA + eV (V - A)
= OV . A V2
P = Ef()at €0 .

Proves controllability of EM fields.
Not observable, cannot be'!

controllability < 3 potential!
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Rational representations
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I/0 or i/s/o representations

We do not dwell on the ubiquitous representations

P(d)u=a@)s -

%J;:Am—I—Bu,ysz—l—Du w =




Rational representations

Let G € R (£)*™", and consider the ‘differential equation’

G(%)sz

What do we mean by the solutionsi.e. by the behavior?
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Rational representations

Let G € R (£)*™", and consider the ‘differential equation’

G(%)sz

What do we mean by the solutionsi.e. by the behavior?
Let (P, Q) be a left coprime polynomial factorization of G

P,Q € R[£]**®,det(P) # 0,G = P~'Q, [P : Q)] left-prime.
E.g., In scalar case, mean# and (Q have no common roots.

d
G(—Jw=0:& Q(L)w=0
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Rational representations
Let (P, Q) be a left coprime polynomial factorization of G

G(%)w:O:c) Q(%)fw:O

Justification:

1. G proper. G(s) = C(Is — A)~ 1B + D controllable
realization. Consider output nulling inputs:

d
am:Aw—l—Bw, 0=Cx + Dw

This set ofw’s are exactly those that satisiyGG (%) w = 0.
Same for

d = Az + Bw,0 =C —|—D<d> =0, D € R[£°*"°
dtm_ xr w,U=0Cx dt w = U,
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Rational representations

Let (P, Q) be a left coprime polynomial factorization of G

G(%)w:O:c) Q(%)fw:O

Justification:

2. Considery = G(s)u. View G as a transfer f'n.
Take your usual favorite definition of input/output pairs.

The output nulling inputs are exactly those that satisfy
G (%) w = 0.
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Representations

LTIDS
B = kernel (R (%)) for someR € R [£]*”", by def.
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Representations

LTIDS
B = kernel (R (%)) for someR € R [£]*”", by def.

But we may as well take the representatiorG (%) w = 0 for

someG € R (£)*”" as the definition.
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Representations

LTIDS

B = kernel (R (%)) for someR € R [£]*”", by def.

But we may as well take the representatiorG (%) w = 0 for

someG € R (£)*”" as the definition.

R: all poles at oo, we can takeG with no poles atoo, or more
generally with all poles in some non-empty set - symmetric
w.r.t. R. In particular:

Theorem: Every LTIDS has a representation

G(%)’sz

with G € R (£)°**" strictly proper stable rational.
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Subrings of R (£)

R (&): real rational functions.

Consider 3 subrings:
1. R [£]: polynomials with real coefficients
2. R (§)p: proper rational functions
3. R (§)g: stable proper rational functions
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no poles in RHP oroco
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Subrings of R (&)

R (&): real rational functions.

Consider 3 subrings:
1. R [£]: polynomials with real coefficients  all poles atoco
2. R (§)p: proper rational functions no poles atoo

3. R (§)g: stable proper rational functions
no poles in RHP oroco

Each of these rings haR (&) as its field of fractions.

Unimodular elements (invertible in ring)
1. Non-zero constants
2. bi-proper
3. bi-proper and mini-phase
miniphase < poles & zeros in LHP
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Prime representations

Theorem: an LTIDS admits a representation
(@)
G|—|w=0
dt

1. G € R(&€)% " leftprime over R (¢),  always

with

2. G € R[£]**" left prime over R [¢] < itis controllable
3. G € R(&)%" left prime over R (¢) s < itis stabilizable

The proof of case 3 is not easy!
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Image-like representations

—n. 24/



Elimination

61 () w1 =62 ()
Wae )P~ 72 \ae ) 2

G1,G2 € R (£)**°. Behavior 5. Eliminate wy ~»

Consider

B, = {w;i | I wsz such that (w1, ws) € B}

B¢ IS also a LTID behavior.

In particular
H(d>£ HcR(&®
w = — | £, .
dt

w-behavior is LTID. Image-like representation.
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Representations of controllable systems

Theorem: The following are equivalent for LTID systems
1. B is controllable

2. B admits an image-like representation
_ ( d ' wXe
w= M a)ﬁ with H € R [¢]
3. B admits an image-like representation
_ ( d ' wXe
w=H a)ﬁ with H € R (¢)

4. with observabillity (£ can be deduced fromw) added
5. with M € R [£]"”° right prime over R [€]
6. with H € R (&) ° right prime over R (¢) ¢
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SUMMARY

o LSIDS Iin one-to-one relation with modules
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SUMMARY

o LSIDS Iin one-to-one relation with modules

o controllability < Image representation
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SUMMARY

o LSIDS In one-to-one relation with modules
o controllability < Image representation

» Extends readily to rational functions
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SUMMARY

LSIDS In one-to-one relation with modules
controllability < Image representation
Extends readily to rational functions

Irrelevance of Laplace transforms
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Details & copies of the lecture frames are available from/at
Jan. Wl |l ens@sat . kul euven. be
http://ww. esat. kul euven. be/ ~jw | | ens
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Details & copies of the lecture frames are available from/at

Jan. Wl | ens@sat . kul euven. be

http://ww. esat. kul euven. be/ ~jw | | ens

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you

Thank you
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