

REPRESENTATIONS of LINEAR TIME-INVARIANT SYSTEMS

Jan C. Willems K.U. Leuven, Flanders, Belgium

ISCCSP, Malta

March 12, 2008

Introduction

Behavior := specifies which trajectories are possible

How do we express these mathematically?

Which representations deal best with robustness?

Representations code properties such as

- controllability, stabilizability
- observability, detectability

Objective of the lecture

Discuss some of the main representations of linear shift-invariant (LSI / LTI) systems

Objective of the lecture

Discuss some of the main representations of linear shift-invariant (LSI / LTI) systems

Competing possibilities:

- kernel and image representations
- state, latent variable representations
- i/o, transfer functions
- Ieft-prime representations over various rings
- **...**

Objective of the lecture

Discuss some of the main representations of linear shift-invariant (LSI / LTI) systems

Competing possibilities:

- kernel and image representations
- state, latent variable representations
- i/o, transfer functions
- Ieft-prime representations over various rings

...

We use discrete- & continuous-time interchangeably

Formalization

A system as a behavior

 $w: \mathbb{T} \to \mathbb{W} \in \mathfrak{B}$: '*w* is compatible with the model' $w: \mathbb{T} \to \mathbb{W} \notin \mathfrak{B}$: 'the model forbids *w*'

Typically, $\mathbb{T} = \mathbb{R}, \mathbb{R}_+, \mathbb{Z}, \mathbb{N}, \mathbb{R}^n, \mathbb{Z}^n$, $\mathbb{W} = \mathbb{R}^w$, etc.

A system as a behavior

The system $(\mathbb{T}, \mathbb{R}^w, \mathfrak{B})$ $\mathbb{T} = \mathbb{R}, \mathbb{R}^n, \mathbb{Z}, \mathbb{Z}^n \longrightarrow \mathfrak{B}$ is

shift-invariant (time-invariant)

 $:\Leftrightarrow w\in \mathfrak{B}, \sigma$ any multi-shift, implies $\sigma w\in \mathfrak{B}$

Kernel representations

Equivalent for $(\mathbb{Z}^n, \mathbb{R}^w, \mathfrak{B}), \quad \mathfrak{B} \subseteq (\mathbb{R}^w)^{\mathbb{R}^n}$

- 1. B is linear, shift-invariant, and closed
- 2. **B** is linear, shift-inv., and prefix determined
- **3.** \exists polynomial matrix $R(\xi_1, \dots, \xi_n)$ such that \mathfrak{B} consists of the sol'ns of

$$R\left(\sigma_{1},\ldots,\sigma_{ ext{n}}
ight) w=0$$

'kernel representation'

$$R\left(\sigma_{1},\ldots,\sigma_{ ext{n}}
ight)w=0$$

Continuous analogue

$$R\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)w=0$$

$$R\left(rac{d}{dt}
ight)w=0$$

Notation: $\mathfrak{L}_n^{\mathsf{w}}$

PDEs: example

Maxwell's equations for EM fields in free space

$$egin{aligned}
abla \cdot ec{B} &=& rac{1}{arepsilon_0}
ho \,, \
abla imes ec{B} &=& -rac{\partial}{\partial t} ec{B} \,, \
abla imes ec{B} &=& 0 \,, \ c^2
abla imes ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E} \,. \end{aligned}$$

independent variables: (t, x, y, z) time and space dependent variables: $(\vec{E}, \vec{B}, \vec{j}, \rho)$

electric field, magnetic field, current density, charge density

PDEs: example

Example: Maxwell's eq'ns $(\mathbb{R}^4, \mathbb{R}^{10}, \mathfrak{B})$

- 4 independent variables, (t, x, y, z)w = 10, $w = (\vec{E}, \vec{B}, \vec{j}, \rho)$
- 8 equations, $R \rightsquigarrow 8 \times 10$, sparse, first order

Relation with modules

 $n\in \mathbb{R}^{\scriptscriptstyle{W}}(\xi_1,\cdots,\xi_{\scriptscriptstyle{n}})$ is an annihilator of $\mathfrak{B}:\Leftrightarrow$

$$n^{ op}\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)\mathfrak{B}=0$$

The annihilators form an $\mathbb{R}(m{\xi}_1,\cdots,m{\xi}_n)$ module

Relation with modules

 $n\in \mathbb{R}^{ imes}(\xi_1,\cdots,\xi_{ imes})$ is an annihilator of $\mathfrak{B}:\Leftrightarrow$

$$n^{ op}\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)\mathfrak{B}=0$$

The annihilators form an $\mathbb{R}(\xi_1,\cdots,\xi_n)$ module

Theorem:

 $\exists 1 \leftrightarrow 1$ relation between \mathfrak{L}_n^{W} and the

 $\mathbb{R}(\boldsymbol{\xi}_1,\cdots,\boldsymbol{\xi}_n)$ submodules of $\mathbb{R}^{\mathtt{w}}(\boldsymbol{\xi}_1,\cdots,\boldsymbol{\xi}_n)$

Elimination theorem

Theorem:

Elimination theorem

Theorem:

\mathfrak{L}_n^w is closed under projection

$$R_1\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)w_1=R_2\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)w_2 \qquad (*)$$

 $\mathfrak{B}_1 := \{w_1 \mid \exists w_2 \text{ such that } (w_1, w_2) \text{ satisfies } (*) \}$ 'elimination theorem': $\mathfrak{B}_1 \in \mathfrak{L}_n^{w_1}$!

Application: state systems, interconnected systems

Controllability as a system property

Controllability

The time-invariant system $(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$ is

controllable :⇔

 $\forall w_1, w_2 \in \mathfrak{B}, \exists w \in \mathfrak{B} ext{ and } T \geq 0 ext{ such that }$

Controllability

The time-invariant system $(\mathbb{R}, \mathbb{R}^{\vee}, \mathfrak{B})$ is

stabilizable : $\Leftrightarrow \forall w \in \mathfrak{B}, \exists w' \in \mathfrak{B}$ such that

Images

Theorem:

 $\mathfrak{B}\in\mathfrak{L}_n^{\scriptscriptstyle W}$ is controllable iff it has a representation

$$oldsymbol{w} = M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)oldsymbol{\ell}$$

$$\mathfrak{B} = ext{image}\left(M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)
ight)$$

Images

Theorem:

 $\mathfrak{B}\in\mathfrak{L}_n^{\scriptscriptstyle W}$ is controllable iff it has a representation

$$oldsymbol{w} = M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)oldsymbol{\ell}$$

i.e.
$$\mathfrak{B} = ext{image}\left(M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n}
ight)
ight)$$

Is an image a kernel ? Always ! ⇐ Elimination th'm
Is a kernel an image ? Iff the kernel is controllable !

Images

Theorem:

 $\mathfrak{B}\in\mathfrak{L}_n^{\scriptscriptstyle W}$ is controllable iff it has a representation

$$oldsymbol{w} = M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)oldsymbol{\ell}$$

i.e.
$$\mathfrak{B} = ext{image}\left(M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n}
ight)
ight)$$

For n > 1, ℓ observable from w may be impossible. Images may require hidden variables. Are EM fields controllable ?

Are EM fields controllable ?

The following eq'ns in

scalar potential $\phi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ vector potential $\vec{A} : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$

generate exactly the solutions to MEs:

$$egin{aligned} ec{E} &=& -rac{\partial}{\partial t}ec{A} -
abla \phi, \ ec{B} &=&
abla imes ec{A}, \ ec{j} &=& arepsilon_0 rac{\partial^2}{\partial t^2}ec{A} - arepsilon_0 c^2
abla^2 ec{A} + arepsilon_0 c^2
abla \left(
abla \cdot ec{A}
ight) + arepsilon_0 rac{\partial}{\partial t}
abla \phi, \ ec{
ho} &=& -arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{A} - arepsilon_0
abla^2 \phi. \end{aligned}$$

Are EM fields controllable ?

$$egin{aligned} ec{m{B}} &=& -rac{\partial}{\partial t}ec{A} -
abla \phi, \ ec{m{B}} &=&
abla imes ec{A}, \ ec{m{J}} &=&
abla imes ec{A}, \ ec{m{J}} &=& arepsilon_0 rac{\partial^2}{\partial t^2}ec{A} - arepsilon_0 c^2
abla^2 ec{A} + arepsilon_0 c^2
abla \left(
abla imes ec{A}
ight) + arepsilon_0 rac{\partial}{\partial t}
abla \phi, \ ec{
ho} &=& -arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{A} - arepsilon_0
abla^2 \phi. \end{aligned}$$

Proves controllability of EM fields.

Not observable, cannot be !

controllability $\Leftrightarrow \exists$ **potential**!

Rational representations

i/o or i/s/o representations

We do not dwell on the ubiquitous representations

$$egin{aligned} oldsymbol{P}\left(rac{d}{dt}
ight)oldsymbol{y} & oldsymbol{Q} & oldsymbol{w} & oldsymbol{w} & oldsymbol{w} & oldsymbol{w} & oldsymbol{w} & oldsymbol{w} & oldsymbol{y} & oldsymbol{y} & oldsymbol{y} & oldsymbol{v} & oldsymbol{v}$$

Rational representations

Let $G \in \mathbb{R}(\xi)^{\bullet \times w}$, and consider the 'differential equation'

$$G\left(rac{d}{dt}
ight)w=0$$

What do we mean by the solutions, i.e. by the behavior?

Let $G \in \mathbb{R}(\xi)^{\bullet \times w}$, and consider the 'differential equation'

$$G\left(rac{d}{dt}
ight)w=0$$

What do we mean by the solutions, i.e. by the behavior? Let (P, Q) be a left coprime polynomial factorization of G $P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \det(P) \neq 0, G = P^{-1}Q, [P \vdots Q]$ left-prime. E.g., in scalar case, means P and Q have no common roots.

$$G(rac{d}{dt})w = 0 :\Leftrightarrow oldsymbol{Q}\left(rac{d}{dt}
ight)w = 0$$

Let (P, Q) be a left coprime polynomial factorization of G

$$G(rac{d}{dt})w=0:\Leftrightarrow oldsymbol{Q}\left(rac{d}{dt}
ight)w=0$$

Justification:

1. *G* proper. $G(s) = C(Is - A)^{-1}B + D$ controllable realization. Consider output nulling inputs:

$$rac{d}{dt}x = Ax + Bw, \ 0 = Cx + Dw$$

This set of w's are exactly those that satisfy $G\left(rac{d}{dt}
ight)w = 0.$
Same for

$$rac{d}{dt}x=Ax+Bw, 0=Cx+D\left(rac{d}{dt}
ight)w=0, \ D\in \mathbb{R}\left[\xi
ight]^{ullet imesullet}$$

Let (P, Q) be a left coprime polynomial factorization of G

$$G(rac{d}{dt})w=0:\Leftrightarrow oldsymbol{Q}\left(rac{d}{dt}
ight)w=0$$

Justification:

2. Consider y = G(s)u. View G as a transfer f'n. Take your usual favorite definition of input/output pairs.

The output nulling inputs are exactly those that satisfy $G\left(\frac{d}{dt}\right)w = 0.$

LTIDS

$\mathfrak{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$ for some $R \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$, by def.

LTIDS

$$\mathfrak{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$$
 for some $R \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$, by def.
But we may as well take the representation $G\left(\frac{d}{dt}\right)w = 0$ for some $G \in \mathbb{R}\left(\xi\right)^{\bullet \times w}$ as the definition.

LTIDS

$$\mathfrak{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$$
 for some $R \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$, by def.

But we may as well take the representation $G\left(\frac{d}{dt}\right)w = 0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times w}$ as the definition. *R*: all poles at ∞ , we can take *G* with no poles at ∞ , or more generally with all poles in some non-empty set - symmetric w.r.t. \mathbb{R} . In particular:

Theorem: Every LTIDS has a representation

$$G\left(rac{d}{dt}
ight)w=0$$

with $G \in \mathbb{R}(\xi)^{\bullet \times w}$ strictly proper stable rational.

Subrings of $\mathbb{R}\left(\xi\right)$

- $\mathbb{R}(\xi)$: real rational functions.
- **Consider 3 subrings:**
 - **1.** $\mathbb{R}[\xi]$: polynomials with real coefficients
 - 2. $\mathbb{R}(\xi)_{\mathcal{P}}$: proper rational functions
 - 3. $\mathbb{R}(\xi)_{\mathcal{S}}$: stable proper rational functions

Subrings of $\mathbb{R}\left(\xi\right)$

- $\mathbb{R}(\xi)$: real rational functions.
- **Consider 3 subrings:**
 - **1.** $\mathbb{R}[\xi]$: polynomials with real coefficients all poles at ∞
 - 2. $\mathbb{R}(\xi)_{\mathcal{P}}$: proper rational functions no poles at ∞
 - 3. $\mathbb{R}(\xi)_{\mathcal{S}}$: stable proper rational functions

no poles in RHP or ∞

 $\mathbb{R}(\xi)$: real rational functions.

Consider 3 subrings:

- **1.** $\mathbb{R}[\xi]$: polynomials with real coefficients **all poles at** ∞
- 2. $\mathbb{R}(\xi)_{\mathcal{P}}$: proper rational functions no poles at ∞
- 3. $\mathbb{R}(\xi)_{\mathcal{S}}$: stable proper rational functions

no poles in RHP or ∞

Each of these rings has $\mathbb{R}\left(\xi
ight)$ as its field of fractions.

Unimodular elements (invertible in ring)

- 1. Non-zero constants
- 2. bi-proper
- 3. bi-proper and mini-phase

miniphase:⇔ poles & zeros in LHP

Theorem: an LTIDS admits a representation

$$G\left(rac{d}{dt}
ight)w=0$$

with

- 1. $G \in \mathbb{R} (\xi)_{\mathcal{P}}^{\bullet \times w}$ left prime over $\mathbb{R} (\xi)_{\mathcal{P}}$ always
- 2. $G \in \mathbb{R}[\xi]^{\bullet \times w}$ left prime over $\mathbb{R}[\xi] \Leftrightarrow$ it is **controllable**
- **3.** $G \in \mathbb{R}(\xi)^{\bullet \times w}_{\mathcal{S}}$ left prime over $\mathbb{R}(\xi)_{\mathcal{S}} \Leftrightarrow$ it is stabilizable

The proof of case 3 is not easy!

Image-like representations

Elimination

Consider

$$G_1\left(rac{d}{dt}
ight)w_1=G_2\left(rac{d}{dt}
ight)w_2$$

 $G_1, G_2 \in \mathbb{R}(\xi)^{\bullet \times \bullet}$. Behavior \mathfrak{B} . Eliminate $w_2 \rightsquigarrow$

 $\mathfrak{B}_1 = \{w_1 \mid \exists w_2 \text{ such that } (w_1, w_2) \in \mathfrak{B}\}$

 \mathfrak{B}_1 is also a LTID behavior.

In particular

$$w=H\left(rac{d}{dt}
ight)\ell, \ \ H\in \mathbb{R}\left(oldsymbol{\xi}
ight)^{ extsf{w} imesullet}$$

٠

w-behavior is LTID. Image-like representation.

Representations of controllable systems

Theorem: The following are equivalent for LTID systems

- 1. 𝔅 is controllable
- 2. B admits an image-like representation

$$w=M\left(rac{d}{dt}
ight)\ell ext{ with } H\in \mathbb{R}\left[m{\xi}
ight]^{ imes imes m{\bullet}}$$

3. 39 admits an image-like representation

$$w=H\left(rac{d}{dt}
ight)oldsymbol{\ell}$$
 with $H\in\mathbb{R}\left(oldsymbol{\xi}
ight)^{ imesullet}$

- 4. with observability (ℓ can be deduced from w) added
- 5. with $M \in \mathbb{R} [\xi]^{\mathbb{W} \times \bullet}$ right prime over $\mathbb{R} [\xi]$
- 6. with $H \in \mathbb{R} \ (\xi)_{\mathcal{S}}^{w \times \bullet}$ right prime over $\mathbb{R} \ (\xi)_{\mathcal{S}}$

J LSIDS in one-to-one relation with modules

• LSIDS in one-to-one relation with modules

■ controllability ⇔ image representation

- **•** LSIDS in one-to-one relation with modules
- controllability <> image representation
- Extends readily to rational functions

- **LSIDS in one-to-one relation with modules**
- controllability <> image representation
- Extends readily to rational functions
- Irrelevance of Laplace transforms

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems

