Dos SISTA

RATIONAL SYMBOLS

Jan Willems, K.U. Leuven, Flanders, Belgium

Seminar, Kyoto University

Joint research with

Yutaka Yamamoto, Kyoto University, Japan

Outline

I. Behaviors defined by rational symbols

II. Model reduction
(III. Parametrization of the stabilizing controllers)

Introduction

Motivation

In system theory, it is customary to think of dynamical models in terms of inputs and outputs.

\leadsto say,

$$
p_{0} y+p_{1} \frac{d}{d t} y+\cdots+p_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} y=q_{0} u+q_{1} \frac{d}{d t} u+\cdots+q_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} u
$$

i.e., $\quad p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u$,

Motivation

In system theory, it is customary to think of dynamical models in terms of inputs and outputs.

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u, \quad \text { or } \quad y=F(s) u
$$

with p, q polynomials, or F a rational transfer function.

Motivation

In system theory, it is customary to think of dynamical models in terms of inputs and outputs.

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u, \quad \text { or } \quad y=F(s) u
$$

with p, q polynomials, or F a rational transfer function.
In the present talk, we will

- (for good reasons) make no distinction between u and y

$$
\leadsto \text { system variables } \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

- interpret F, not in terms of Laplace transforms, but in terms of differential equations.
Important for, among other things, pedagogical reasons.

Example

unit mass

Isaac Newton by William Blake

Example

unit mass

$$
\left[I_{3 \times 3} \vdots-\left(\frac{d}{d t}\right)^{2} I_{3 \times 3}\right] w=0 \leadsto q=\frac{1}{\left(\frac{d}{d t}\right)^{2}} F \leadsto\left[-\frac{1}{\left(\frac{d}{d t}\right)^{2}} I_{3 \times 3} \vdots I_{3 \times 3}\right] w=0
$$

Example

unit mass

$+\quad F=\frac{d^{2}}{d t^{2}} q, \quad w=\left[\begin{array}{c}F \\ q\end{array}\right], F, q \in \mathbb{R}^{3}, w \in \mathbb{R}^{6}$

$$
\left[I_{3 \times 3} \vdots-\left(\frac{d}{d t}\right)^{2} I_{3 \times 3}\right] w=0 \leadsto q=\frac{1}{\left(\frac{d}{d t}\right)^{2}} F \leadsto\left[-\frac{1}{\left(\frac{d}{d t}\right)^{2}} I_{3 \times 3} \vdots I_{3 \times 3}\right] w=0
$$

In the scalar case with simple polynomials, it is easy to see how to proceed, but with general multivariable rational
functions, less obvious. Today's pbm: What do we mean by

$$
y=\frac{q\left(\frac{d}{d t}\right)}{p\left(\frac{d}{d t}\right)} u, \quad \text { or } \quad G\left(\frac{d}{d t}\right) w=0 \quad \text { with } G \text { rational? }
$$

PART I

Linear time-invariant differential systems

 LTIDSs

 LTIDSs}

defined by rational symbols

LTIDSs

A system $\rightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$
where

- $\mathbb{T}=$ set of independent variables

$$
\mathbb{T}=\text { time } \leadsto \text { dynamical systems }
$$

$\mathbb{T}=$ time $\&$ space \sim distributed systems

- $\mathbb{W}=$ set of dependent variables; ‘signal space’
- \mathscr{B} the behavior $\rightarrow \mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}}$,
set of trajectories $w: \mathbb{T} \rightarrow \mathbb{W}$
$w: \mathbb{T} \rightarrow \mathbb{W}$ belongs to \mathscr{B} means: the model 'accepts' the trajectory w

LTIDSs

A dynamical system \rightarrow
$\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ where

- $\mathbb{T}=$ set of independent variables $\leadsto \mathbb{T}=\mathbb{R}$ 'time'
- $\mathbb{W}=$ set of dependent variables; $\sim \mathbb{W}=\mathbb{R}^{\mathbb{W}}$
- \mathscr{B} the behavior $\rightarrow \mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}}$,
time-trajectories $w: \mathbb{T} \rightarrow \mathbb{W}$
$\mathscr{B}=$ the solutions of a set of
linear constant coefficient ODEs

LTIDSs

A $\begin{aligned} & \text { dynamical } \\ & \text { system }\end{aligned} \rightarrow$
$\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ where

- $\mathbb{T}=$ set of independent variables $\leadsto \mathbb{T}=\mathbb{R}$ 'time'
- $\mathbb{W}=$ set of dependent variables; $\leadsto \mathbb{W}=\mathbb{R}^{\mathbb{W}}$
- \mathscr{B} the behavior $\rightarrow \mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}}$,
$\mathscr{B}=$ the solutions of

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{L}} \frac{d^{\mathrm{L}}}{d t^{\mathrm{L}}} w=0, R_{0}, R_{1}, \ldots \text { matrices }
$$

Polynomial matrix notation $\leadsto R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}$

LTIDSs

A dynamical system \rightarrow
$\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ where

- $\mathbb{T}=$ set of independent variables $\leadsto \mathbb{T}=\mathbb{R}$ 'time'
- $\mathbb{W}=$ set of dependent variables; $\leadsto \mathbb{W}=\mathbb{R}^{\mathbb{W}}$
- \mathscr{B} the behavior $\rightarrow \mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}}$,
$\mathscr{B}=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$-solutions of

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{L}} \frac{d^{\mathrm{L}}}{d t^{\mathrm{L}}} w=0
$$

Polynomial matrix notation $\leadsto R\left(\frac{d}{d t}\right) w=0$

Representations

Behaviors of LTIDSs allow many useful representations

- As the set of solutions of $R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}$

Representations

Behaviors of LTIDSs allow many useful representations

- As the set of solutions of $R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}$
- With input/output partition

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right] \quad \operatorname{det}(P) \neq 0, P^{-1} Q \text { proper }
$$

Representations

Behaviors of LTIDSs allow many useful representations

- As the set of solutions of $R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times W}$
- With input/output partition

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

- Input/state/output representation
\exists matrices A, B, C, D such that \mathscr{B} consists of all $w^{\prime} s$ generated by

$$
\frac{d}{d t} x=A x+B u, y=C x+D u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Rudolf E. Kalman

Rational Symbols

Rational representations

In signal processing, control, etc., we often meet models that involve rational functions, instead of ODEs. Cfr. transfer functions,

$$
y=F\left({ }^{\prime} \mathbf{s}^{\prime}\right) u
$$

etc. \sim

Let $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the 'symbol' }
$$

What do we mean by its solutions, i.e. by the behavior?

Rational representations

Let $G \in \mathbb{R}(\xi)^{\bullet \times \text { w }}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the 'symbol' }
$$

What do we mean by its solutions, i.e. by the behavior?
$\llbracket M$ left prime $\rrbracket: \Leftrightarrow \llbracket \llbracket M=F M^{\prime} \rrbracket \Rightarrow \llbracket F$ unimodular $\rrbracket \rrbracket$
$\Leftrightarrow \quad \exists H$ such that $M H=I$.
In scalar case, $M=\left[\begin{array}{llll}m_{1} & m_{2} & \cdots & m_{\mathrm{n}}\end{array}\right]$, this means: $m_{1}, m_{2}, \cdots, m_{\mathrm{n}}$ have no common root.

Rational representations

Let $G \in \mathbb{R}(\xi)^{\bullet \times W}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the 'symbol' }
$$

What do we mean by its solutions, i.e. by the behavior?
Let (P, Q) be a left coprime polynomial factorization of G
i.e. $P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \operatorname{det}(P) \neq 0, G=P^{-1} Q,[P \vdots Q]$ left-prime.
E.g., in scalar case, means P and Q have no common roots.

Rational representations

Let (P, Q) be a left coprime polynomial factorization of G

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

By definition, therefore, the behavior of $G\left(\frac{d}{d t}\right) w=0$ is equal to the behavior of $Q\left(\frac{d}{d t}\right) w=0$.

Rational representations

Let (P, Q) be a left coprime polynomial factorization of G

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

Justification:

1. G proper. $G(\xi)=C(I \xi-A)^{-1} B+D$ controllable realization. Consider output nulling inputs:

$$
\frac{d}{d t} x=A x+B w, 0=C x+D w
$$

This set of w 's are exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.
Analogous for $\frac{d}{d t} x=A x+B w, 0=C x+D\left(\frac{d}{d t}\right) w, D \in \mathbb{R}[\xi]^{\bullet \bullet}$.

Rational representations

Let (P, Q) be a left coprime polynomial factorization of G

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

Justification:
2. Consider $y=G(s) w$. View $G(s)$ as a transfer f'n. Take your favorite definition of input/output pairs.

Output nulling inputs exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.
3. ...

Rational representations

Let (P, Q) be a left coprime polynomial factorization of G

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

Note! With this def., we can deal with transfer functions,

$$
y=F\left(\frac{d}{d t}\right) u \text {, i.e. }\left[\begin{array}{lll}
F\left(\frac{d}{d t}\right) & \vdots & -I
\end{array}\right]\left[\begin{array}{l}
u \\
y
\end{array}\right]=0
$$

with F a matrix of rational functions, while completely avoiding Laplace transforms, domains of convergence, and such mathematical traps.

Caveats

Consider

$$
y=F\left(\frac{d}{d t}\right) u
$$

We now know what it means that $(u, y) \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$ satisfies this 'ODE'.

Is there a unique y for a given u ?

$F\left(\frac{d}{d t}\right)$ is not a map!

Consider

$$
y=F\left(\frac{d}{d t}\right) u
$$

We now know what it means that $(u, y) \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$ satisfies this 'ODE'.

Is there a unique y for a given u ?

$F=P^{-1} Q$ coprime fact. $\Leftrightarrow P^{-1}\left[\begin{array}{ll}P & -Q\end{array}\right]$ coprime fact.

$$
F=P^{-1} Q \quad \leadsto \quad y=F\left(\frac{d}{d t}\right) u \Leftrightarrow P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u
$$

If $P \neq I$ (better, not unimodular), there are many sol'ns y of this ODE for a given u.

$$
y=y_{\text {particular }}+y_{\text {homogeneous }} \quad P\left(\frac{d}{d t}\right) y_{\text {homogeneous }}=0
$$

$G_{1}\left(\frac{d}{d t}\right)$ and $G_{2}\left(\frac{d}{d t}\right)$ do not commute

$$
\begin{gathered}
G_{1}(s)=\frac{1}{s} \text { and } G_{2}(s)=s \\
y=\frac{1}{\frac{d}{d t}} v, \quad v=\frac{d}{d t} u \Rightarrow y(t)=u(t)+\text { constant } \\
y=\frac{d}{d t} v, \quad v=\frac{1}{\frac{d}{d t}} u \Rightarrow y(t)=u(t)
\end{gathered}
$$

Raison d'être

LTIDSs are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times \mathbb{w}}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions)

Raison d'être

LTIDSs are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions) but can also be represented by rational symbols

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

Raison d'être

LTIDSs are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\times w}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions) but can also be represented by rational symbols

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

Behavior := the set of solutions of

$$
Q\left(\frac{d}{d t}\right) w=0 \quad Q \in \mathbb{R}[\xi]^{\bullet \times \mathbb{W}}
$$

where $G=P^{-1} Q, \quad P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \quad P$ and Q left coprime

Raison d'être

LTIDSs are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions) but can also be represented by rational symbols

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

This added flexibility \leadsto better adapted to certain applications,
e.g. distance between systems
e.g. behavioral model reduction
e.g. parametrization of the set of stabilizing controllers

Controllability c.s.

Controllability and stabilizability

\mathscr{B} is said to be controllable $: \Leftrightarrow$
$\forall w_{1}, w_{2} \in \mathscr{B}, \exists T \geq 0$ and $w \in \mathscr{B}$ such that ...

Controllability and stabilizability

\mathscr{B} is said to be controllable $: \Leftrightarrow$
\mathscr{B} is said to be stabilizable $: \Leftrightarrow$
$\forall w \in \mathscr{B}, \exists w^{\prime} \in \mathscr{B}$ such that...

Representations

What properties on G imply that the system with rational representation

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

has any of these properties?

Representations

What properties on G imply that the system with rational representation

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

has any of these properties?
Under what conditions on G does $G\left(\frac{d}{d t}\right) w=0$ define a controllable or a stabilizable system?

Can a rational representation be used to put one of these properties in evidence?

Tests

Theorem: The LTIDS

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

is controllable if and only if
$G(\lambda)$ has the same $\operatorname{rank} \forall \lambda \in \mathbb{C}$

Interpret carefully in cases like

$$
G(s)=\left[\begin{array}{cc}
s & 0 \\
0 & \frac{1}{s}
\end{array}\right], G(s)=\left[\begin{array}{c}
s \\
\frac{1}{s}
\end{array}\right], G(s)=\left[\begin{array}{ll}
s & \frac{1}{s}
\end{array}\right]
$$

Tests

Theorem: The LTIDS

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

is controllable if and only if

$$
G(\lambda) \text { has the same } \operatorname{rank} \forall \lambda \in \mathbb{C}
$$

Theorem: The LTIDS

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

is stabilizable if and only if
$G(\lambda)$ has the same $\operatorname{rank} \forall \lambda \in \mathbb{C}$ with realpart $(\lambda) \geq 0$

Image representation

For example,
Theorem: A LTIDS is controllable if and only if its behavior allows an image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

Module \& vector spaces

Take a LTIDS \mathscr{B}.
$n \in \mathbb{R}(\xi)^{1 \times \mathrm{w}}$ is an annihilator $: \Leftrightarrow n\left(\frac{d}{d t}\right) \mathscr{B}=0$, i.e.,

$$
n\left(\frac{d}{d t}\right) w=0 \forall w \in \mathscr{B}
$$

What structure does the set of annihilators of a given \mathscr{B} have?

Module \& vector spaces

Take a LTID behavior \mathscr{B}.
$n \in \mathbb{R}[\xi]^{1 \times{ }_{W}}$ is a polynomial annihilator $: \Leftrightarrow n\left(\frac{d}{d t}\right) \mathscr{B}=0$
The polynomial annihilators form a $\mathbb{R}[\xi]$-module: n_{1}, n_{2} polynomial annihilators, $p \in \mathbb{R}[\xi]$
$\Rightarrow n_{1}+p n_{2}$ polynomial annihilator.

Module \& vector spaces

Take a LTID behavior \mathscr{B}.
$n \in \mathbb{R}[\xi]^{1 \times w}$ is a polynomial annihilator $: \Leftrightarrow n\left(\frac{d}{d t}\right) \mathscr{B}=0$
The polynomial annihilators form a $\mathbb{R}[\xi]$-module: n_{1}, n_{2} polynomial annihilators, $p \in \mathbb{R}[\xi]$
$\Rightarrow n_{1}+p n_{2}$ polynomial annihilator.
$n \in \mathbb{R}(\xi)^{1 \times \mathrm{w}}$ is a rational annihilator $: \Leftrightarrow n\left(\frac{d}{d t}\right) \mathscr{B}=0$
The rational annihilators of a controllable \mathscr{B} form a $\mathbb{R}(\xi)$-vector space:
n_{1}, n_{2} rational annihilators, $p \in \mathbb{R}(\xi)$
$\Rightarrow n_{1}+p n_{2}$ rational annihilator.

Module \& vector spaces

By identifying a system with its polynomial annihilators, we obtain the one-to-one relation between LTIDSs with w variables and the

$$
\mathbb{R}[\xi] \text { - submodules of } \mathbb{R}[\xi]^{\mathrm{w}}
$$

By identifying a system with its rational annihilators, we obtain the one-to-one relation between the controllable LTIDSs with w variables and the

$$
\mathbb{R}(\xi) \text { - subspaces of } \mathbb{R}(\xi)^{\mathrm{W}}
$$

LTIDS \cong finite dimensional $\mathbb{R}[\xi]$-modules
Controllable LTIDS \cong finite dimensional $\mathbb{R}(\xi)$-subspaces.

PART II

Model reduction

Reducing the state dimension

What is a good, computable, definition for the distance between two LTIDS?

Basic issue underlying model reduction, robustness, etc.

- Approximate a system by a simpler one.
- If a system has a particular property (e.g., stabilized by a controller), will this also hold for close by systems?

What is meant by 'approximate', by 'close by'?

Reducing the state dimension

There is an elegant theory for reducing the state space dimension of stable LTI input/output systems.
Let \mathscr{B} be described by

$$
\frac{d}{d t} x=A x+B u, y=C x+D u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

with A Hurwitz($: \Leftrightarrow$ eigenvalues in left half plane).
There are effective methods (balancing, AAK) with good error bounds (in terms of the \mathscr{H}_{∞} norm) for approximating \mathscr{B} by a (stable) system with a lower dimensional state space.

Keith Glover

Reducing the state dimension

There is an elegant theory for reducing the state space dimension of stable LTI input/output systems.
Let \mathscr{B} be described by

$$
\frac{d}{d t} x=A x+B u, y=C x+D u
$$

with A Hurwitz. \quad T'f f'n $\quad F(s)=C(I s-A)^{-1} B+D$
proper stable rational. Reduced system

$$
\frac{d}{d t} x_{\text {reduced }}=A_{\text {reduced }} x_{\text {reduced }}+B_{\text {reduced }} u, y=C_{\text {reduced }} x_{\text {reduced }}+D u
$$

T'f f'n $\quad F_{\text {reduced }}(s)=C_{\text {reduced }}\left(I s-A_{\text {reduced }}\right)^{-1} B_{\text {reduced }}+D$ proper stable rational. Balanced model reduction \Rightarrow
$\left\|F(i \omega)-F_{\text {reduced }}(i \omega)\right\| \leq 2\left(\sum_{\text {neglected }}\right.$ Hankel SVs $\left.\sigma_{\mathrm{k}}\right) \quad \forall \omega \in \mathbb{R}$

Reducing the state dimension

There is an elegant theory for reducing the state space dimension of stable LTI input/output systems.
Let \mathscr{B} be described by

$$
\frac{d}{d t} x=A x+B u, y=C x+D u
$$

with A Hurwitz.

$$
F(s) \text { proper stable rational } \Rightarrow \text { reducible ! }
$$

Extend this to situations where we do not make a distinction between inputs and outputs, and to unstable systems!

Distance between systems

Distance between linear subspaces

In the behavioral theory, we identify a dynamical system with its behavior, a subspace $\mathscr{B} \subseteq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{W}\right)$. We are hence led to study the distance between linear subspaces of a vector space.

Linear subspaces of \mathbb{R}^{n}

$\mathscr{L}_{1}, \mathscr{L}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$, linear subspaces

$$
\vec{d}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \cong \max _{x_{1} \in \mathscr{L}_{1},\left\|x_{1}\right\|=1} \min _{x_{2} \in \mathscr{L}_{2}}\left\|x_{1}-x_{2}\right\|
$$

Linear subspaces of \mathbb{R}^{n}

$\mathscr{L}_{1}, \mathscr{L}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$, linear subspaces

$$
d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right):=
$$

$$
\max \left\{\max _{x_{1} \in \mathscr{L}_{1},\left\|x_{1}\right\|=1} \min _{x_{2} \in \mathscr{L}_{2}}\left\|x_{1}-x_{2}\right\|, \max _{x_{2} \in \mathscr{L}_{1},\left\|x_{2}\right\|=1} \min _{x_{1} \in \mathscr{L}_{1}}\left\|x_{1}-x_{2}\right\|\right\}
$$

$$
0 \leq d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \leq 1
$$

$=1$ if dimension $\left(\mathscr{L}_{1}\right) \neq \operatorname{dimension}\left(\mathscr{L}_{2}\right)$

Linear subspaces of \mathbb{R}^{n}

$\mathscr{L}_{1}, \mathscr{L}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$, linear subspaces
$P_{\mathscr{L}} \perp$ projection onto \mathscr{L}
S_{1}, S_{2} matrices, columns orthonormal basis for $\mathscr{L}_{1}, \mathscr{L}_{2}$ $S_{1} S_{1}^{\top}, S_{2} S_{2}^{\top}$ orthogonal projectors

$$
\begin{aligned}
d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) & =\left\|P_{\mathscr{L}_{1}}-P_{\mathscr{L}_{2}}\right\| \quad \text { 'gap', 'aperture' } \\
& =\left\|S_{1} S_{1}^{\top}-S_{2} S_{2}^{\top}\right\| \\
& =\min _{\text {matrices } U}\left\|S_{1}-S_{2} U\right\| \\
& =U \operatorname{such} \text { that } U \mathscr{L}_{1}=\mathscr{L}_{2}
\end{aligned}\|I-U\|
$$

Linear subspaces of \mathbb{R}^{n}

$\mathscr{L}_{1}, \mathscr{L}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$, linear subspaces
$P_{\mathscr{L}} \perp$ projection onto \mathscr{L}
S_{1}, S_{2} matrices, columns orthonormal basis for $\mathscr{L}_{1}, \mathscr{L}_{2}$
$S_{1} S_{1}^{\top}, S_{2} S_{2}^{\top}$ orthogonal projectors

$$
\begin{aligned}
d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) & =\left\|P_{\mathscr{L}_{1}}-P_{\mathscr{L}_{2}}\right\| \quad \text { 'gap', 'aperture' } \\
& =\left\|S_{1} S_{1}^{\top}-S_{2} S_{2}^{\top}\right\| \\
& =\min _{\text {matrices } U}\left\|S_{1}-S_{2} U\right\| \\
& =\min _{U \text { such that } U \mathscr{L}_{1}=\mathscr{L}_{2}}\|I-U\|
\end{aligned}
$$

Note

$$
d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)=\left\|S_{1} S_{1}^{\top}-S_{2} S_{2}^{\top}\right\| \leq\left\|S_{1}-S_{2}\right\|
$$

Distance between controllable behaviors

$\min \rightarrow$ inf, $\max \rightarrow$ sup, etc., readily generalized to closed subspaces of Hilbert space.

For LTIDS, behaviors $\mathscr{B} \mapsto \mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right)$. Keep notation. So, we consider only \mathscr{L}_{2}-behavior for measuring distance.

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)
$$

$\forall w_{1} \in \mathscr{B}_{1}, \exists w_{2} \in \mathscr{B}_{2}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{1}\right\|$ and vice-versa. \quad Small gap \Rightarrow the models are 'close'.

Distance between controllable behaviors

$\min \rightarrow$ inf, $\max \rightarrow$ sup, etc., readily generalized to closed subspaces of Hilbert space.

For LTIDS, behaviors $\mathscr{B} \mapsto \mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right)$. Keep notation. So, we consider only \mathscr{L}_{2}-behavior for measuring distance.

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)
$$

$\forall w_{1} \in \mathscr{B}_{1}, \exists w_{2} \in \mathscr{B}_{2}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{1}\right\|$ and vice-versa. \quad Small gap \Rightarrow the models are 'close'.

- How to compute the gap?
- Model reduce according to the gap!

Norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times} \boldsymbol{\&} M(-\xi)^{\top} M(\xi)=I
$$

i.e., $\|\ell\|_{\mathscr{L}_{2}(\mathbb{R}, \mathbb{R} \bullet}^{2}=\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)} \quad$ 'norm preserving image repr.'

$$
\int_{-\infty}^{+\infty}\|w(t)\|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|\hat{w}(i \omega)\|^{2} d \omega=
$$

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|M(i \omega) \hat{\ell}(i \omega)\|^{2} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|\hat{\ell}(i \omega)\|^{2} d \omega=\int_{-\infty}^{+\infty}\|\ell(t)\|^{2} d t
$$

Note: M cannot be polynomial, it must be rational. Obviously M must be proper. Can also make it stable.

Norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{w \times} \bullet \& M(-\xi)^{\top} M(\xi)=I
$$

i.e., $\|\ell\|_{\mathscr{L}_{2}(\mathbb{R}, \mathbb{R} \cdot)}=\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)} \quad$ 'norm preserving image repr.'

Note: M cannot be polynomial, it must be rational. Obviously M must be proper. Can also make it stable. Proof: Start with an observable polynomial image representation $w=N\left(\frac{d}{d t}\right) \ell, N \in \mathbb{R}[\xi]^{\mathbb{w} \times \mathrm{m}(\mathscr{B})}$. Factor

$$
N(-\xi)^{\top} N(\xi)=F(-\xi)^{\top} F(\xi), F \in \mathbb{R}[\xi]^{\mathrm{m}(\mathscr{B}) \times \mathrm{m}(\mathscr{B})}
$$

Can make determinant (F) Hurwitz. Take $M=N F^{-1}$.

Norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times} \bullet \& M(-\xi)^{\top} M(\xi)=I
$$

i.e., $\|\ell\|_{\mathscr{L}_{2}(\mathbb{R}, \mathbb{R} \cdot)}=\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)} \quad$ 'norm preserving image repr.'

Note: M cannot be polynomial, it must be rational. Obviously M must be proper. Can also make it stable. Note that

$$
f \in \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{W}\right) \mapsto M(i \omega) M(-i \omega)^{\top} \hat{f}(i \omega)
$$

is the orthogonal projection onto $\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$.

Norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet} \boldsymbol{\&} M(-\xi)^{\top} M(\xi)=I
$$

i.e., $\|\ell\|_{\mathscr{L}_{2}(\mathbb{R}, \mathbb{R} \bullet)}^{2}=\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right)}^{2} \quad$ 'norm preserving image repr.'

Note: M cannot be polynomial, it must be rational. Obviously M must be proper. Can also make it stable. $\mathscr{B}_{1} \mapsto M_{1}, \mathscr{B}_{2} \mapsto M_{2}$ norm preserving, then

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right) & =\left\|M_{1}(i \omega) M_{1}(-i \omega)^{\top}-M_{2}(i \omega) M_{2}(-i \omega)^{\top}\right\|_{\mathscr{L}_{\infty}} \\
& \leq\left\|M_{1}(i \omega)-M_{2}(i \omega)\right\|_{\mathscr{H}_{\infty}}
\end{aligned}
$$

Model reduction by balancing

Start with \mathscr{B}. Take representatation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{w \times \bullet} \text { norm preserving, stable }
$$

Now model reduce $w=M\left(\frac{d}{d t}\right) \ell$ (viewed as a stable input/output system) using, for example, balancing

$$
\leadsto \quad w=M_{\text {reduced }}\left(\frac{d}{d t}\right) \ell
$$

and an error bound

$$
\left\|M-M_{\text {reduced }}\right\|_{\mathscr{H}_{\infty}} \leq 2\left(\sum_{\text {neglected } \operatorname{SVs} \text { of } M} \sigma_{\mathrm{k}}\right)
$$

Behavioral error bound

Start with stable norm preserving representation of \mathscr{B}

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{w \times \bullet}
$$

Model reduce using balancing $\leadsto w=M_{\text {reduced }}\left(\frac{d}{d t}\right) \ell$.
Call behavior $\mathscr{B}_{\text {reduced }}$. Error bound

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{B}, \mathscr{B}_{\text {reduced }}\right) & =\left\|M M^{\top}-M_{\text {reduced }} M_{\text {reduced }}^{\top}\right\|_{\mathscr{L}_{\infty}} \\
& \leq\left\|M-M_{\text {reduced }}\right\|_{\mathscr{H}} \\
& \leq 2\left(\sum_{\text {neglected SVs of } M} \sigma_{\mathrm{k}}\right)
\end{aligned}
$$

$\forall w \in \mathscr{B} \exists w^{\prime} \in \mathscr{B}_{\text {red }}$ such that $\left\|w-w^{\prime}\right\| \leq 2\left(\sum_{\text {neglected } \mathbf{S V s}} \sigma_{\mathrm{k}}\right)\|w\|$ and vice-versa.
$\sum_{\text {neglected }} \mathrm{SVs} \sigma_{\mathrm{k}} \mathrm{small} \Rightarrow$ good approximation in the gap.

Example

Example

Example

Example

$F=\frac{d^{2}}{d t^{2}} q$ first order approximation $\frac{1}{2} F=\frac{d}{d t} q-\frac{1}{2} q$

Summary

Conclusions

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.

Conclusions

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.

Conclusions

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.

Conclusions

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Annihilators: finite dimensional $\mathbb{R}[\xi]$-module. In controllable case, finite dimensional $\mathbb{R}(\xi)$-vector space.

Conclusions

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Annihilators: finite dimensional $\mathbb{R}[\xi]$-module. In controllable case, finite dimensional $\mathbb{R}(\xi)$-vector space.
- Norm preserving representation $w=M\left(\frac{d}{d t}\right) \ell$ achievable with rational M.

Conclusions

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Annihilators: finite dimensional $\mathbb{R}[\xi]$-module. In controllable case, finite dimensional $\mathbb{R}(\xi)$-vector space.
- Norm preserving representation $w=M\left(\frac{d}{d t}\right) \ell$ achievable with rational M.
- Stable norm preserving representation $w=M\left(\frac{d}{d t}\right) \ell$ leads to model reduction of unstable systems and systems without input/output partition.

PART III

Parametrization of stabilizing controllers

$\mathbb{R}(\xi)$ and some of its subrings

Relevant rings

Field of (real) rationals

Subrings of interest

polynomials
proper rationals
stable rationals
proper stable rationals

Relevant rings

unimodularity $: \Leftrightarrow$ invertibility in the ring
Field of (real) rationals
nonzero
Subrings of interest

$$
\begin{array}{lc|}
\hline \text { polynomials } & \text { nonzero constant } \\
\text { proper rationals } & \text { biproper } \\
\text { stable rationals } & \text { miniphase } \\
\text { proper stable rationals } \quad \text { biproper \& miniphase }
\end{array}
$$

Relevant rings

unimodularity $: \Leftrightarrow$ invertibility in the ring

Field of (real) rationals
nonzero

Subrings of interest

$$
\begin{array}{lc}
\text { polynomials } & \text { nonzero constant } \\
\text { proper rationals } & \text { biproper } \\
\text { stable rationals } & \text { miniphase }
\end{array}
$$

$$
\text { proper stable rationals } \quad \text { biproper } \& \text { miniphase }
$$

unimodularity of square matrices over rings
\Leftrightarrow determinant unimodular
left primeness of matrices over rings

$$
: \Leftrightarrow \llbracket \llbracket M=F M^{\prime} \rrbracket \Rightarrow \llbracket F \text { unimodular } \rrbracket \rrbracket
$$

Representability

The LTIDS \mathscr{B} admits a representation that is left prime over

- rationals: always
- proper rationals: always
- stable rationals: iff \mathscr{B} is stabilizable
- proper stable rationals: iff \mathscr{B} is stabilizable
- polynomials: iff \mathscr{B} is controllable

Left prime representations over subrings allow to express certain system properties...

Representability

The LTIDS \mathscr{B} admits a representation that is left prime over

- stable rationals: iff \mathscr{B} is stabilizable
- proper stable rationals: iff \mathscr{B} is stabilizable
\mathscr{B} stabilizable $\Leftrightarrow \exists G$, matrix of rational functions, such that
(i) $\mathscr{B}=$ kernel $\left(G\left(\frac{d}{d t}\right)\right)$
(ii) G is proper (no poles at ∞)
(iii) $G^{\infty}:=\operatorname{limit}_{\lambda \rightarrow \infty} G(\lambda)$ has full row rank (no zeros at ∞)
(iv) G has no poles in $\mathbb{C}_{+}:=\{\lambda \in \mathbb{C} \mid \operatorname{real}(\lambda \geq 0\}$
(v) $G(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}_{+}\left(\right.$no zeros in $\left.\mathbb{C}_{+}\right)$

Unimodular completion

Unimodular completion lemma

Let G be a matrix over one of our rings (polynomial, proper rat., stable rat., proper stable rat.).
i Does there exist a unimodular completion G^{\prime}
i.e. a matrix G^{\prime} over that same ring such that

$$
\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]
$$

is unimodular (determinant is invertible in the ring) ?

Unimodular completion lemma

Let G be a matrix over one of our rings (polynomial, proper rat., stable rat., proper stable rat.).
¡ There exists a unimodular completion G^{\prime}
i.e. a matrix G^{\prime} over that same ring such that

$$
\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]
$$

is unimodular
if and only if
G is left prime over the ring !

M. Vidyasagar

Unimodular completion lemma

$G: 1$ row, 2 columns

$$
G=\left[\begin{array}{ll}
p & q
\end{array}\right] \quad G^{\prime}=\left[\begin{array}{ll}
-y & x
\end{array}\right] \quad\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
p & q \\
-y & x
\end{array}\right]
$$

Unimodular completion lemma

$G: 1$ row, 2 columns

$$
G=\left[\begin{array}{ll}
p & q
\end{array}\right] \quad G^{\prime}=\left[\begin{array}{ll}
-y & x
\end{array}\right] \quad\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
p & q \\
-y & x
\end{array}\right]
$$

determinant $=p x+q y$,
unimodularity $\Leftrightarrow p x+q y=1$
solvable for $x, y \Leftrightarrow p \boldsymbol{\&} q$ coprime $\Leftrightarrow G=\left[\begin{array}{ll}p & q\end{array}\right]$ left prime

Unimodular completion lemma

$G: 1$ row, 2 columns

$$
G=\left[\begin{array}{cc}
p & q
\end{array}\right] \quad G^{\prime}=\left[\begin{array}{ll}
-y & x
\end{array}\right] \quad\left[\begin{array}{c}
G \\
G^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
p & q \\
-y & x
\end{array}\right]
$$

determinant $=p x+q y$,
unimodularity $\Leftrightarrow p x+q y=1$
solvable for $x, y \Leftrightarrow p \boldsymbol{\&} q$ coprime $\Leftrightarrow G=\left[\begin{array}{ll}p & q\end{array}\right]$ left prime
Our rings are Hermite rings

G left prime \Leftrightarrow unimodularly completable $\Leftrightarrow \exists H: G H=I \Leftrightarrow \cdots$

Control

Control

Plant \mathscr{P}, controller \mathscr{C}, controlled system $\mathscr{P} \cap \mathscr{C}$

Control

Plant \mathscr{P}, controller \mathscr{C}, controlled system $\mathscr{P} \cap \mathscr{C}$
$\llbracket \mathscr{C}$ is stabilizing $\rrbracket: \Leftrightarrow \llbracket \mathscr{P} \cap \mathscr{C}$ is stable \rrbracket

$$
\Leftrightarrow \llbracket \llbracket w \in \mathscr{P} \cap \mathscr{C} \rrbracket \Rightarrow \llbracket w(t) \rightarrow 0 \text { for } t \rightarrow \infty \rrbracket \rrbracket
$$

Control

$\llbracket \mathscr{C}$ is a regular controller $\rrbracket: \Leftrightarrow \llbracket \mathscr{P}+\mathscr{C}=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rrbracket$
$\forall v \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \exists w \in \mathscr{P}$ and $w^{\prime} \in \mathscr{C}$ such that $v=w+w^{\prime}$

Control

$\llbracket \mathscr{C}$ is a superregular controller $\rrbracket: \Leftrightarrow$ in addition,

$$
\llbracket \forall w \in \mathscr{P}, \forall w^{\prime} \in \mathscr{C} \quad \exists v \text { such that } w \wedge_{0} v, w^{\prime} \wedge_{0} v \in \mathscr{P} \cap \mathscr{C} \rrbracket
$$

A superregular controller can be engaged at any time

superregular \Rightarrow controller can be engaged at any time

(Super)regular controllers

Usual feedback controllers are superregular
PID controllers are regular, but not superregular
Controllers that are not superregular are relevant:
control is interconnection, not just signal processing

Harry Trentelman

A regular, but not superregular, controller

Plant:

$$
M \frac{d^{2}}{d t^{2}} q+K q=F, \quad w=(F, q)
$$

A regular, but not superregular, controller

Plant:

$$
M \frac{d^{2}}{d t^{2}} q+K q=F, w=(F, q)
$$

Controller:

$F=-D \frac{d}{d t} q$

A regular, but not superregular, controller

Controlled system:

$$
M \frac{d^{2}}{d t^{2}} q+D \frac{d}{d t} q+K q=0, \quad F=-D \frac{d}{d t} q
$$

Existence of stabilizing controllers

Existence

Proposition

\mathscr{P} is stabilizable $\Leftrightarrow \exists$ a regular stabilizing controller
$\Leftrightarrow \exists$ a superregular stabilizing controller

Existence

Proposition
\mathscr{P} is stabilizable $\Leftrightarrow \exists$ a regular stabilizing controller

$$
\Leftrightarrow \exists \text { a superregular stabilizing controller }
$$

\mathscr{P} is controllable $\quad \Leftrightarrow \exists$ pole placement for $\mathscr{P} \cap \mathscr{C}$
\nexists a controller that is superregular
\& $\mathscr{P} \cap \mathscr{C}$ has a low order characterisitic polynomial.

Parametrization of stabilizing controllers

Parametrization of superregular stabilizing controllers

Start with $G\left(\frac{d}{d t}\right) w=0 \quad$ a (rational symbol based) representation of the plant

Assume G left prime over proper stable rational functions. Iff the plant is stabilizable, such a G exists.

Parametrization of superregular stabilizing controllers

Start with $G\left(\frac{d}{d t}\right) w=0 \quad$ a (rational symbol based) representation of the plant

Assume G left prime over proper stable rational functions. Iff the plant is stabilizable, such a G exists.
$\Rightarrow \exists G^{\prime}$ such that $\left[\begin{array}{c}G \\ G^{\prime}\end{array}\right]$ is unimodular over proper stable rat.

Parametrization of superregular stabilizing controllers

Start with $G\left(\frac{d}{d t}\right) w=0 \quad$ a (rational symbol based) representation of the plant

Assume G left prime over proper stable rational functions. Iff the plant is stabilizable, such a G exists.
$\Rightarrow \exists G^{\prime}$ such that $\left[\begin{array}{c}G \\ G^{\prime}\end{array}\right]$ is unimodular over proper stable rat.
Par'ion of superregular stabilizing controllers $C\left(\frac{d}{d t}\right) w=0$

$$
C=F_{1} G+F_{2} G^{\prime}
$$

F_{1} free over ring of proper stable rational
F_{2} unimodular over proper stable rational

So

Using rational symbol based representations $G\left(\frac{d}{d t}\right) w=0$ that are left prime over suitable rings, we obtain parametrizations of regular and superregular stabilizing controllers
\cong Kučera-Youla parametrization, with proper attention for the uncontrollable part

Details \& copies of the lecture frames are available from/at

 Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems
Details \& copies of the lecture frames are available from/at

 Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems
Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

