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(I1l. Parametrization of the stabilizing controllers)

—n. 3/



Introduction

—n. 4/



Motivation

In system theory, it is customary to think of dynamical modes
In terms of inputs and outputs.

inputs . /O SYSTEM

s outputs

~  Say,

oSyt g L UGt Gy
Py + PLY Po Y = ol + G G

e, p(&y=a(§u,
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Motivation

In system theory, it is customary to think of dynamical modes
In terms of inputs and outputs.

inputs . /O SYSTEM

s outputs

p(S)y=a(F)u,  or y=F(s)u

with p, g polynomials, or F a rational transfer function.
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Motivation

In system theory, it is customary to think of dynamical modes
In terms of inputs and outputs.

p(S)y=a(d)u, or y=F(su

with p,q polynomials, or F a rational transfer function.

In the present talk, we will
# (for good reasons) make no distinction between andy

u
y

# Interpret F, notin terms of Laplace transforms, but in
terms of differential equations.

~» system variables w =

Important for, among other things, pedagogical reasons.
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unit mass

Example

, F.ge R3weR°

Isaac Newton
by William Blake
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Example

unit mass

, F.ge R3weR°

0 f\»q:d—F > [— dl |33 |3><3]W:O

(dt)°
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Example

unit mass

, F.ge R3weR°

:(%%FM[

In the scalar case with simple polynomials, it is easy to see
how to proceed, but with general multivariable rational

functions, less obvious. Today’s pbm What do we mean by

: 3
<® 33%” 0

d
) . or  G(Z)w=0 with Grational?
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PART |

Linear time-invariant differential systems
LTIDSS

defined by rational symbols



LTIDSS

A system— (T, W, %) where

# T =set of independent variables
T = time ~ dynamical systems
T = time & space~~ distributed systems

# W = set of dependent variables; ‘signal space’

® % thebehavior — 2 C W,
set of trajectoriesw: T — W

w: T — W belongs toZ means:
the model ‘accepts’ the trajectoryw
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LTIDSS

A |dynamical | system— (R,R¥, #) where

# T =setof independent variables~ T =R ‘time’

o W = set of dependent variables;}» W = R"

® % thebehavior — 2 C W,
time-trajectoriesw: T — W

ZA = the solutions of a set of

linear constant coefficient ODES
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LTIDSS

A |dynamical | system— (R,R¥, #) where

# T =setof independent variables~ T =R ‘time’

o W = set of dependent variables;}» W = R"
® % thebehavior — 2 C W,

A = the solutions of

L

d
W+HR—wW+:---+R—w=0 Ri.... matrices
RO -+ 1dt -+ —+ LdtL ; R07 1,

Polynomial matrix notation ~» R(&)w=0 Re R[&]**"
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LTIDSS

A |dynamical | system— (R,R¥, #) where

# T =setof independent variables~ T =R ‘time’

o W = set of dependent variables;}» W = R"
® % thebehavior — 2 C W,

%A =the ¢ (R,R")-solutions of

Row+ R EW—I— + R d—Lw—O
Lt Lotk

Polynomial matrix notation ~» R(&)w=0

—n. 8/



Representations

Behaviors of LTIDSs allow many useful representations

® Asthe setof solutions 0 R(&)w=0 Rec R[]
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Representations

Behaviors of LTIDSs allow many useful representations
® Asthe setof solutions 0 R(&)w=0 Rec R[]

o With input/output partition

(di)y Q(di) we | Y detP) # 0,P~1Q proper
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Representations

Behaviors of LTIDSs allow many useful representations

® Asthe setof solutions 0 R(&)w=0 Rec R[]

o With input/output partition
P(&)y=Q(&u

# |nput/state/output representation
34 matrices A, B,C, D such that

W

9 consists of allw's generated by

dx=Ax+Bu, y=Cx+Du w=

~

Rudolf E. Kalman
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Rational Symbols



Rational representations

In signal processing, control, etc., we often meet modelsdin
Involve rational functions, instead of ODEs. Cfr. transfer
functions,

y=F('s")u

etc. ~
Let Ge R(&)*"", and consider the ‘differential equation’

G(&)w=0 Gis called the ‘symbol

What do we mean by its solutionsi.e. by the behavior?
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Rational representations

Let Ge R (&)*™", and consider the ‘differential equation’
G(&)w=0 Gis called the ‘symbol

What do we mean by its solutionsi.e. by the behavior?

[M left prime | i< [ [M =FM’] = [F unimodular | |
< dH suchthatMH = 1.
In scalar caseM = [ml m --- my,|, this means:

My, My, - -, M, have no common root.
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Rational representations

Let Ge R (&)*™", and consider the ‘differential equation’

G(&)w=0 Gis called the ‘symbol

What do we mean by its solutionsi.e. by the behavior?

Let (P,Q) be a left coprime polynomial factorization of G

i.e. PQc R[&]***,delP) #0,G =P 1Q,[P: Q] left-prime.

E.g., in scalar case, meanB and Q have no common roots.

—n. 11/



Rational representations

Let (P,Q) be a left coprime polynomial factorization of G
d 1+, . d
[G()w=0] & [P'Q()w=0]:& [Q(§) w=0]

By definition , therefore, the behavior of G(& )w = 0 is equal
to the behavior of Q(&)w = 0.

—n. 11/



Rational representations

Let (P,Q) be a left coprime polynomial factorization of G

(S w=0] & [PQ(3w=0]:¢ [Q($)w=0]

Justification:

1. G proper. G(&) =C(1& — A)~1B+ D controllable
realization. Consider output nulling inputs:

%X:AX—I— Bw, 0=Cx+Dw

This set ofw's are exactly those that satisfyG (&) w = 0.

Analogous for $x = Ax-+Bw,0=Cx+D ($)w, DeR[E]**".
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Rational representations

Let (P,Q) be a left coprime polynomial factorization of G

(S w=0] & [PQ(3w=0]:¢ [Q($)w=0]

Justification:

2. Considery = G(s)w. View G(s) as a transfer f'n.
Take your favorite definition of input/output pairs.

Output nulling inputs exactly those that satisfyG (&) w = 0.

3. ...
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Rational representations

Let (P,Q) be a left coprime polynomial factorization of G

(S w=0] & [PQ(3w=0]:¢ [Q($)w=0]

Note! With this def., we can deal with transfer functions,

y=F(gu ie [F&) 1] | |=0_

with F a matrix of rational functions, while
completely avoiding Laplace transforms, domains:
of convergence, and such mathematical traps.




Caveats
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F (&) is not a map!
Consider
y=F(&)u

We now know what it means that(u,y) € ” (R,R*®) satisfies
this ‘ODE".

Is there a uniquey for a given u?
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F (&) is not a map!
Consider
y=F(&)u

We now know what it means that(u,y) € ” (R,R*®) satisfies
this ‘ODE".

Is there a uniquey for a given u?
F = P~1Q coprime fact. < P~1 [P —Q} coprime fact.

u & P(S)y=Q(u

=}

F=P'Q ~ y=F(

Q.

If P=~1 (better, not unimodular), there are many sol’'nsy of
this ODE for a given u. ;

Y = Yparticular T Yhomogeneous P(a)ymmogeneous: 0
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G1 (&) and Gz (&) do not commute

¢_> s

1/S

G1(S) :é and Gy(s) =s
1 d
V% V=—u = y(t)=u(t)+ constant
" dt
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Raison d’étre

LTIDSs are definedin terms of polynomial symbols
R(&)w=0 Re R[E]*

(behavior #:.=the € (R,R") solutions)
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Raison d’étre

LTIDSs are definedin terms of polynomial symbols
R(&)w=0 Re R[E]*

(behavior .= the €* (R,R") solutions) but can also be
represented by rational | symbols

G(&)w=0 G e R(&)™™™
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Raison d’étre

LTIDSs are definedin terms of polynomial symbols

R(&)w=0 Re R[E]**"

(behavior .= the €* (R,R") solutions) but can also be
represented by rational | symbols

G(&)w=0 G e R(&)**"
Behavior := the set of solutions of
Q(L)w=0 QeR[E]*

whereG=P1Q, PQecRI[&]***, PandQ left coprime



Raison d’étre

LTIDSs are definedin terms of polynomial symbols
R(&)w=0 Re R[E]*

(behavior .= the €* (R,R") solutions) but can also be
represented by rational | symbols

G(&)w=0 Ge R(&)*

This added flexibility ~» better adapted to certain
applications,

e.g. distance between systems

e.g. behavioral model reduction

e.g. parametrization of the set of stabilizing controllers
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Controllabllity c.s.
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Controllability and stabilizability

A 1S said to be controllable &

Vwi,Wo e A, 4T >0andw e £ such that ...

w
1

7~
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Controllability and stabilizability

A 1S said to be controllable &

A 1S sald to be stabilizable &

VYwe A, 3w € £ such that ...

%\ Bfffffffilva@“me

Stability in the sense of Lyapunov
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Representations

What properties on G imply that the system with rational
representation

G(&)w=0 GeR(E)™™™

has any of these properties?
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Representations

What properties on G imply that the system with rational
representation

G(&)w=0 GeR(E)™™™

has any of these properties?

Under what conditions on G doesG (%) w = 0 define a
controllable or a stabilizable system?

Can a rational representation be used to put one of these
properties in evidence?
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Tests
Theorem: The LTIDS
G(&)w=0 GcR(&)*
Is controllable if and only if

G(A) has the same rankvA € C

Interpret carefully in cases like

G(s) = ,G(s) =

nwlik o

'S
0

nwik v
G
VR
NC2S
|

1



Tests

Theorem: The LTIDS
G(&)w=0 GeR(E)™™

Is controllable if and only if

G(A) has the same rankvA € C

Theorem: The LTIDS
G(&)w=0 Ge R(&)*

IS stabilizable if and only if

G(A) has the same rankvA € C with realpart (A) >0
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Image representation

For example,

Theorem: ALTIDS is controllable if and only if its behavior
allows an image representation

w=M(&)¢ MeR(E)"
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Module & vector spaces

Take a LTIDS 4.

ne R (&)Y is an annihilator < n($)#=0,ie.,

d
n(&)w:o vwe %

What structure does the set of annihilators of a givenz have?
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Module & vector spaces

Take a LTID behavior £.
neR[E]7"is a polynomial annihilator < n(%)%’ =0

The polynomial annihilators form a R [£|-module:
N1, N2 polynomial annihilators, p e R [£]
= N1 + pny polynomial annihilator.
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Module & vector spaces

Take a LTID behavior £.

neR[E]7"is a polynomial annihilator < n(%)%’ =0

The polynomial annihilators form a R [£|-module:
N1, N2 polynomial annihilators, p e R [£]
= N1 + pny polynomial annihilator.

ne R (&)Y is a rational annihilator :< n(%)%’ =0

The rational annihilators of a controllable % form a
R (& )-vector space:
ny, Nz rational annihilators, pe R(¢)
= N1 + pny rational annihilator.
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Module & vector spaces

By identifying a system with its polynomial annihilators, we
obtain the one-to-one relation between LTIDSs withy
variables and the

R [€]- submodules ofR [£]"

By identifying a system with its rational annihilators, we
obtain the one-to-one relation between theontrollable
LTIDSs with w variables and the

R (&)- subspaces oR (&)

LTIDS = finite dimensional R [¢]-modules

Controllable LTIDS = finite dimensional R (¢ )-subspaces.
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PART I

Model reduction



Reducing the state dimension

What is a good, computable, definition for the distance
between two LTIDS?

Basic issue underlying model reduction, robustness, etc.

# Approximate a system by a simpler one.

# |f a system has a particular property (e.g., stabilized by a
controller), will this also hold for close by systems?

What is meant by ‘approximate’, by ‘close by’?
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Reducing the state dimension

There is an elegant theory for reducing the state space
dimension of stable LTI input/output systems.
Let % be described by

u
y

with A Hurwitz( ;< eigenvalues in left half plane).

dx=Ax+Bu, y=Cx+Du w=

There are effective methods (balancing, AAK) with good
error bounds (in terms of the %, norm) for approximating %4
by a (stable) system with a lower dimensional state space.

Keith Glover
—n. 23/



Reducing the state dimension

There is an elegant theory for reducing the state space
dimension of stable LTI input/output systems.
Let % be described by

dx = Ax+Bu, y=Cx+Du
with AHurwitz. Tffn  F(s)=C(Is—A)"'B+D
proper stable rational. Reduced system

d
ot Xreduced= Areducedireducedt Breducedls Y = Creducedreducedt DU

T'ff'n FreducedS) = Creduced!S— Areduce()_lBreduced‘F D
proper stable rational. Balanced model reduction=-

[|F (iw) — Freducediw) || < 2 (Zneglected Hankel SvsOk) VweER
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Reducing the state dimension

There is an elegant theory for reducing the state space
dimension of stable LTI input/output systems.
Let % be described by

dx = Ax+Bu, y=Cx+Du

with A Hurwitz.

F(s) proper stable rational = reducible !

Extend this to situations where we do not make a distinction
between inputs and outputs, and to unstable systems!
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Distance between systems
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Distance between linear subspaces

In the behavioral theory, we identify a dynamical system wih
its behavior, a subspacez C € (R,R"). We are hence led to
study the distance between linear subspaces of a vector sgac
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2,22 C

Linear subspaces ofR™

R*, linear subspaces

E(gl,zz) >~ max min ||xy — Xo||
X €L |[xq||=1 X2€22
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Linear subspaces ofR™

A, C R linear subspaces

d(ogl,gz) .=
max{  max min ||Xxy—X2||,  mMax
X1€L,|[x[[=1 Xe&€2> Xp€21,|[x2[|=1

0< d(fl,fz) <1

= 1if dimension(.%1) # dimension(.%?)

min ||xy —X2|| }

X1€E24
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Linear subspaces ofR™

A, C R linear subspaces
P, L projection onto .2
S, S matrices, columns orthonormal basis for#, %

S1S!,SS, orthogonal projectors

d(-A1, %) = ||Pg —Pg ‘ gap ’, ‘aperture’
= |98 - SS ]
= min || —-SU|
matricesU
= min I =U]|

U suchthat UZA4=%

—n. 26/



Linear subspaces ofR™

A, C R linear subspaces
P, L projection onto .2
S, S matrices, columns orthonormal basis for#, %

S1S!,SS, orthogonal projectors

d(-A1, %) = ||Pg —Pg ‘ gap ’, ‘aperture’
= |98 - SS ]
= min || —-SU|
matricesU
= min I =U]|

U suchthat UZA4=%

Note
d(A,22) =188 -SS || <SS

—n. 26/



Distance between controllable behaviors

min — inf, max— sup etc., readily generalized to closed
subspaces of Hilbert space.

For LTIDS, behaviors #+— N % (R,R") . Keep notation.
So, we consider only¥,-behavior for measuring distance.

d(ggl, 932) = gap(%l, 932)

YWy € %1, IWs € B, such that||wy —Ws|| < gap(%1, Bo)||wh|

and vice-versa. Small gap=- the models are ‘close’.
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Distance between controllable behaviors

min — inf, max— sup etc., readily generalized to closed
subspaces of Hilbert space.

For LTIDS, behaviors #+— N % (R,R") . Keep notation.
So, we consider only¥,-behavior for measuring distance.

d(ggl, 932) = gap(%l, 932)

YWy € %1, IWs € B, such that||wy —Ws|| < gap(%1, Bo)||wh|

and vice-versa. Small gap=- the models are ‘close’.

# How to compute the gap?
# Model reduce according to the gap!
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Norm-preserving representations

Let # be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

WMD) with MeR(E) & M(—&)TM(E) = |

dt
i.e., |€|@2(R,R.) = HWHiﬂZ(R,RW) ‘norm preserving image repr.
+00 1 [t
t 2dt:—/ A(iw)||*dw =
[ IwPdi= o [ i) 2de

1 e . 1 [+ . e
o | Mo Pdo=" [ [liiw)]Fdo= [ i)

Note: M cannot be polynomial, it must be rational.
Obviously M must be proper. Can also make it stable.
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Norm-preserving representations

Let # be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

W:M(%)E with M € R(E)™° & M(—&)TM(&) =

l.e.,

|€|\iﬂ2(R Re) = HwHiﬂz(R ey NOrM preserving image repr.

Note: M cannot be polynomial, it must be rational.
Obviously M must be proper. Can also make it stable.
Proof. Start with an observable polynomial image

representationw = N($)¢,N € R £19#) Factor

N(=&)TN(&) =F(=&) TF(§),F e R[g]" "

Can makedeterminant(F) Hurwitz. Take M = NF 1,
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Norm-preserving representations

Let # be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

W:M(%)E with M € R(E)™° & M(—&)TM(&) =

l.e.,

|€|\iﬂ2<R Re) = HwHiﬂz(R ey NOrM preserving image repr.

Note: M cannot be polynomial, it must be rational.
Obviously M must be proper. Can also make it stable.
Note that

fe A(R,RY) — Miw)M(—iw) ' f(iw)
IS the orthogonal projection onto ZN _%(R,R¥).
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Norm-preserving representations

Let # be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

W:M(%)E with M € R(E)™° & M(—&)TM(&) =

l.e.,

|€|\iﬂ2<R Re) = HwHiﬂz(R ey NOrM preserving image repr.

Note: M cannot be polynomial, it must be rational.
Obviously M must be proper. Can also make it stable.
P11 — M1, B> — Mo norm preserving, then

gap(Z1,%2) = |[Miiw)Mi(~iw)' —Mz(iw)Ma(~iw) ' ||,

< [[M1(iw) — M2(iw)]| .
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Model reduction by balancing

Start with . Take representatation

W= M(%)E with M eR(&)"* norm preserving, stable

Now model reducew =M (%)é (viewed as a stable
Input/output system) using, for example, balancing

d
~ W= Mreduced(a)é

and an error bound

HI\/I — Mreduced‘ |jfoo <2 (Zneglected SVs o Uk)
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Behavioral error bound

Start with stable norm preserving representation of %

W:M(%)é with M € R(&)"*®

Model reduce using balancing~ W = Myequcea (5 )¢
Call behavior Z,equceq Error bound

IMM " — MieguceaM, s qucea |2

reduced

gap(‘%a (%reducea

VAN

||hA'_'hAreduced|Lﬁﬁ£

VAN

2 (Zneglected SVs oM Uk)

VW E BIW € Hregsuch that [jw—w|| < 2(Y neglected sveTi) | |W||

and vice-versa.
> neglected svédx Small =- good approximation in the gap.
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position (

force F

Example

_ d?
F_Wq’ W =
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Example

Norm preserving, stable

12
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Example

| F

Norm preserving, stable 0
e

reduced model 0

12

12
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Example

d2 F
force F F Wq’ W q
_ B _EZ-
: F 2
Norm preserving, stable ] ~ | ¢ **ff“
- | E24/28+1
o [E3T
F 4+
reduced model o f ¢
9 2_
RS
F = gTzzq first order approximation 3F = &q-—
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Summary
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Conclusions

o G(%)w = 0 defined in terms left-coprime factorization of
rational G.
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Conclusions

o G(%)w = 0 defined in terms left-coprime factorization of
rational G.

o y= G(%)u does not require Laplace transform.
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Conclusions

G(%)W = 0 defined in terms left-coprime factorization of

rational G.

o y= G(%)u does not require Laplace transform.

» Controllability, stabilizability, etc. of G(&)w=0

decidable from G.

—pn. 33/



Conclusions

G(%)W = 0 defined in terms left-coprime factorization of

rational G.

o y= G(%)u does not require Laplace transform.

» Controllability, stabilizability, etc. of G(&)w=0

decidable from G.

Annihilators: finite dimensional R [£]-module.
In controllable case, finite dimensionalR (¢ )-vector
space.
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Conclusions

G(%)W = 0 defined in terms left-coprime factorization of

rational G.

o y= G(%)u does not require Laplace transform.

Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.

Annihilators: finite dimensional R [£]-module.
In controllable case, finite dimensionalR (¢ )-vector
space.

Norm preserving representationw = M(%)é achievable
with rational M.
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Conclusions

G(%)W = 0 defined in terms left-coprime factorization of

rational G.

o y= G(%)u does not require Laplace transform.

Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.

Annihilators: finite dimensional R [£]-module.
In controllable case, finite dimensionalR (¢ )-vector
space.

Norm preserving representationw = M(%)é achievable
with rational M.

Stable norm preserving representationw = M(%)é leads

to model reduction of unstable systems and systems
without input/output partition.

—pn. 33/



PART Il

Parametrization of stabilizing controllers
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R (&) and some of its subrings



Relevant rings

Field of (real) rationals

Subrings of interest

polynomials
proper rationals

stable rationals

proper stable rationals
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Relevant rings

unimodularity :< invertibility in the ring
Field of (real) rationals nonzero

Subrings of interest

polynomials nonzero constant
proper rationals biproper
stable rationals miniphase

proper stable rationals biproper & miniphase
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Relevant rings

unimodularity :< invertibility in the ring
Field of (real) rationals nonzero

Subrings of interest

polynomials nonzero constant

proper rationals biproper

stable rationals miniphase

proper stable rationals biproper & miniphase

unimodularity of square matrices over rings
& det er m nant unimodular

left primeness of matrices over rings
= |[[[M =FM'] = [F unimodular]]]]

—n. 36/



Representability

The LTIDS & admits a representation that is left prime over

°

rationals: always

°

proper rationals: always

stable rationals: Iff £ Is stabilizable
#® proper stable rationals: iff £ Is stabilizable

°

# polynomials: iff # is controllable

Left prime representations over subrings allow to express
certain system properties...
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Representability

The LTIDS & admits a representation that is left prime over

# stable rationals: iff & is stabilizable
#® proper stable rationals: iff £ Is stabilizable

A stabilizable & 4G, matrix of rational functions, such that

() % =kernel (G (%))

(i) Gis proper (no poles atw)
(i) G :=1limit)_,G(A) has full row rank (no zeros at )
(iv) Ghasno polesinC, :={A € C|real(A >0}

(V) G(A) has fullrow rank ¥V A € C, (no zeros inC,)

—n. 37/



Unimodular completion
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Unimodular completion lemma

Let G be a matrix over one of our rings
(polynomial, proper rat., stable rat., proper stable rat.).

¢, Does there exist ¢ unimodular completion G’
i.e. a matrix G’ over that same ring such that

G
G/

IS unimodular (det er m nant is invertible in the ring) ?
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Unimodular completion lemma

Let G be a matrix over one of our rings
(polynomial, proper rat., stable rat., proper stable rat.).

i There exists aunimodular completion G’
i.e. a matrix G’ over that same ring such that

G
G/

IS unimodular

If and only If

G is left prime overthering!

—pn. 39/



Unimodular completion lemma

G: 1 row, 2 columns

s<lpd s-[vi [
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Unimodular completion lemma

G: 1 row, 2 columns

_ r_ G| [P (
=lpa  G=|vy o |gl=]]
determinant = pPX+ Qy, unimodularity < px+qy=1

solvable forx,y < p & qcoprime < G = {p q} left prime
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Unimodular completion lemma

G: 1 row, 2 columns

_ r_ G| [P (
=lpa  G=|vy o |gl=]]
determinant = pPX+ Qy, unimodularity < px+qy=1

solvable forx,y < p & qcoprime < G = [p CI} left prime

Our rings are Hermite rings

G left prime < unimodularly completable < JH:GH =1 < - ..

—n. 40/



Control
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Control

Controller

Controlled system

Plant &2, controller ¢, controlled system £ZN%
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Control

Controller

Controlled system

Plant &2, controller ¢, controlled system £ZN%

|¢ is stabilizing | . [ZN% is stable]
& [[ we ZNE] = [w(t) — 0for t — oo ]]
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Control

[¢ is a regular controller] i< [+ % =€ (R,RY)]

Vve £¢” (R,RY) dwe & andw € € such thatv=w+w
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Control

|% is a superregular controller] ;< in addition,

[Vwe £ VYW € € 3vsuchthatwAgv,W Agv € ZZNE]

W
Y

\:04\ :
/-__\/ ime
/

w

A superregular controller can be engaged at any time

Controller

Controlled system

superregular = controller can be engaged at any time
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(Super)regular controllers

Usual feedback controllers are superregular

PID controllers are regular, but not superregular

Controllers that are not superregular are relevant:

control Is interconnection , not just signal processing

Harry Trentelman

St
Madhu Belur
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A regular, but not superregular, controller

Plant:

AR
M&a+Ka=F, w=(F.q
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A regular, but not superregular, controller

Plant: Controller:

w=(F, q)
|
w = (F, q) ‘

2 _ d
Mza+Kg=F, w= (F,q) F=-Dd

)
K <3
=
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A regular, but not superregular, controller

Controlled system:

AT T
2
MEq+DEq+Kg=0, F=-Dgq

—n. 44/



Existence of stabilizing controllers
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Existence

Proposition

2 is stabilizable«< d a reqular stabilizing controller

< d a superregular stabilizing controller
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Existence

Proposition

2 is stabilizable«< d a reqular stabilizing controller

< d a superregular stabilizing controller

2 Is controllable <« dpole placement for&?N%

3 a controller that is superregular
& ¥ N%E has alow order characterisitic polynomial.
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Parametrization of stabilizing controllers
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Parametrization of superregular stabilizing controllers

Start with G($)w=0 a (rational symbol based)
representation of the plant

Assume G left prime over proper stable rational functions.
Iff the plant is stabilizable, such aG exists.
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Parametrization of superregular stabilizing controllers

Start with G($)w=0 a (rational symbol based)
representation of the plant

Assume G left prime over proper stable rational functions.
Iff the plant is stabilizable, such aG exists.

G| . .
= 3 G’ such that o IS unimodular over proper stable rat.
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Parametrization of superregular stabilizing controllers

Start with G($)w=0 a (rational symbol based)
representation of the plant

Assume G left prime over proper stable rational functions.
Iff the plant is stabilizable, such aG exists.

G| . .
= 3 G’ such that o IS unimodular over proper stable rat.

Par’ion of superregular stabilizing controllers C(&)w=0

C=FG+RG

F, free over ring of proper stable rational
F> unimodular over proper stable rational

—n. 48/



So

Using rational symbol based representationss () w =0

that are left prime over suitable rings, we obtain
parametrizations of regular and superregular stabilizing
controllers

=~ Ku Cera-Youla parametrization, with proper attention for
the uncontrollable part

8\

Vladimir Ku Cera Dante Youla Margreta Kuijper
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Details & copies of the lecture frames are available from/at
Jan. Wl |l ens@sat . kul euven. be

http://ww. esat. kul euven. be/ ~jw | | ens
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Details & copies of the lecture frames are available from/at
Jan. Wl |l ens@sat . kul euven. be

http://ww. esat. kul euven. be/ ~jw | | ens

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

—n. 50/



	small yb {Joint research with}
	small yb {Outline}
	small yb {�lue Motivation}
	small yb {�lue Motivation}
	small yb {�lue Motivation}

	small yb {�lue Example}
	small yb {�lue Example}
	small yb {�lue Example}

	PART I
	small yb {�lue LTIDSs}
	small yb {�lue LTIDSs}
	small yb {�lue LTIDSs}
	small yb {�lue LTIDSs}

	small yb {�lue Representations}
	small yb {�lue Representations}
	small yb {�lue Representations}

	small yb {�lue Rational representations}
	small yb {�lue Rational representations}
	small yb {�lue Rational representations}
	small yb {�lue Rational representations}
	small yb {�lue Rational representations}
	small yb {�lue Rational representations}
	small yb {�lue Rational representations}

	small yb {�lue $Fleft (der 
ight )$ is not a map!}
	small yb {�lue $Fleft (der 
ight )$
is not a map!}

	small yb {�lue $G_1left (der 
ight )$ and $G_2left (der 
ight )$
do not commute}
	small yb {�lue Raison d'^etre}
	small yb {�lue Raison d'^etre}
	small yb {�lue Raison d'^etre}
	small yb {�lue Raison d'^etre}

	small yb {�lue Controllability and stabilizability}
	small yb {�lue Controllability and stabilizability}

	small yb {�lue Representations}
	small yb {�lue Representations}

	small yb {�lue Tests}
	small yb {�lue Tests}

	small yb {�lue Image representation}
	small yb {Module & vector spaces}
	small yb {Module & vector spaces}
	small yb {Module & vector spaces}
	small yb {Module & vector spaces}

	PART II
	small yb {�lue Reducing the state dimension}
	small yb {�lue Reducing the state dimension}
	small yb {�lue Reducing the state dimension}
	small yb {�lue Reducing the state dimension}

	small yb {�lue Distance between linear subspaces}
	small yb {�lue Linear subspaces of $Rn $}
	small yb {�lue Linear subspaces of $Rn $}
	small yb {�lue Linear subspaces of $Rn $}
	small yb {�lue Linear subspaces of $Rn $}

	small yb {�lue Distance between controllable behaviors}
	small yb {�lue Distance between controllable behaviors}

	small yb {�lue Norm-preserving representations}
	small yb {�lue Norm-preserving representations}
	small yb {�lue Norm-preserving representations}
	small yb {�lue Norm-preserving representations}

	small yb {�lue Model reduction by balancing}
	small yb {�lue Behavioral error bound}
	small yb {�lue Example}
	small yb {�lue Example}
	small yb {�lue Example}
	small yb {�lue Example}

	small yb {�lue Conclusions}
	small yb {�lue Conclusions}
	small yb {�lue Conclusions}
	small yb {�lue Conclusions}
	small yb {�lue Conclusions}
	small yb {�lue Conclusions}

	PART III
	small yb {�lue Relevant rings}
	small yb {�lue Relevant rings}
	small yb {�lue Relevant rings}

	small yb {�lue Representability}
	small yb {�lue Representability}

	small yb {�lue Unimodular completion lemma}
	small yb {�lue Unimodular completion lemma}

	small yb {�lue Unimodular completion lemma}
	small yb {�lue Unimodular completion lemma}
	small yb {�lue Unimodular completion lemma}

	small yb {�lue Control}
	small yb {�lue Control}
	small yb {�lue Control}
	small yb {�lue Control}

	small yb {�lue (Super)regular controllers}
	small yb {�lue A regular, but not superregular, controller}
	small yb {�lue A regular, but not superregular, controller}
	small yb {�lue A regular, but not superregular, controller}

	small yb {�lue Existence}
	small yb {�lue Existence}

	small yb {�lue Parametrization of superregular stabilizing controllers}
	small yb {�lue Parametrization of superregular stabilizing controllers}
	small yb {�lue Parametrization of superregular stabilizing controllers}

	small yb {�lue So}
	 
	 


