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Systems
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Features

® open
o Interconnected
o modular

o dynamic
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Features

® open
o Interconnected
o modular

o dynamic

Theme of this seminar:

develop a suitable mathematical framework
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Open and Connected



SYSTEM

Open

ENVIRONMENT
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Connected

.-
i

Architecture with subsystems
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Historical introduction
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How it all began ...



P77

Planet‘W

How, for heaven’s sake, does it move?
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Kepler's laws

(2 N :
PLAN ET
Johannes Kepler (1571-1630) et
SUN

Kepler's laws:
Ellipse, sun in focus; = areas in = times;
(period)? = (diameter)3
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The equation of the planet

Consequence:
acceleration = function of position and velocity

2

d
w(t) = Aw(t), Sw (b))

~» Via calculusand calculation

| Specimen

Isaac Newton (1643-1727)
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The equation of the planet

Consequence:
acceleration = function of position and velocity

2

d
—mw(t) = Aw(®), Zw(®)

~» Via calculusand calculation

Isaac Newton (1643-1727)
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Newton’s laws

tearing, zooming, linking

2-nd law  F'(t) = m-3;w(t)

. ]-w ¢
gravity  F’(t) = mW

3-rdlaw  F'(t) + F"(t) = 0
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The paradigm of closedsystems



‘Axiomatization’

K.1, K.2, & K.3

Lo
~ dt2w(t) |dtw(t)|2_0

~ 4= f(x)

~» ‘dynamical systems’, flows

~» flows as paradigm of dynamics closed systems

Motion determined by internal initial conditions.
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‘Axiomatization’

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930- )
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‘Axiomatization’

A dynamical systenms defined by
a state spaceX and

¢(t, x) = state at timet starting from state x

This framework of closed systems
IS universally used for dynamics
In mathematics and physics

. X
a state transition function kf\
¢: ---suchthat --..
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‘Axiomatization’

A dynamical systenms defined by
a state spaceX and

. X
a state transition function Lf\
¢: ---suchthat --..

¢(t, x) = state at timet starting from state x

How could they forget Newton’s2”¢ law,
about Maxwell's eg’'ns,
about thermodynamics,
about interconnection,
about tearing & zooming & linking, ...?
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‘Axiomatization’

Reply: assumefixed boundary conditions’

ENVIRONMENT

SYSTEM

Boundary

~» t0 model a system,
we have to model also the environment!
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‘Axiomatization’

ENVIRONMENT

SYSTEM

Boundary

Chaos theory, cellular automata, sync, etc.,
function in this framework ...
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Meanwhile, in engineering, ...
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Input/output systems

stimulus response
cause effect
input output

inputs E /O SYSTEM

s outputs
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The originators

L
. i

Lord Rayleigh (1842-1919)

Oliver Heaviside (1850-1925)

and the many electrical circuit theorists ...

Norbert Wiener (1894-1964)
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Mathematical description

input LI SYSTEM Y output
i d _ d
Classical control p(H)y=q(x) u

w. Input, y: output, p and g polynomials

G(s) = Z2 transfer functions, impedances, admittances.

PID rules. Bode, Nyquist, Nichols. Lead-lag. Root-locus.
Mathematical framework:

Laplace t'fms, instead of symbolic calculus
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Mathematical description

input — SYSTEM Output

y(t) = [0 oo H(t — t)u(t') dt’

y(t) = Ho(t) + /_t Hy(t — t')u(t") dt’+

t 4
/ Hy(t —t',t" — t")u(t")u(t”) dt'dt” + - - -

— OO0 — OO0
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Mathematical description

input — SYSTEM Output

y(t) = [0 oo H(t — t)u(t') dt’

y(t) = Ho(t) + /_t Hy(t — t')u(t") dt’+

t 4
/ Hy(t —t',t" — t")u(t")u(t”) dt'dt” + - - -

— OO0 — OO0

Far from the physics
Fail to deal with ‘initial conditions’.
A system isseldoman i/o map
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Input/state/output systems

Around 1960: aparadigm shift to

%:E — f(wvu)v Yy — g(wvu)
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Input/state/output systems

Around 1960: aparadigm shift to

%CE — f(wvu)v Yy — g(wvu)

1. open, flows special case

N

ready to be interconnected
outputs of one system— inputs of another

deals with initial conditions
Incorporates nonlinearities, time-variation

models many physical phenomena

o 0 kW

—n. 21/



Input/state/output systems
The input/state/output view turned out to be
very effective and fruitful

# for modeling

o for control (stabilization, robustness, ...)
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Input/state/output systems

The input/state/output view turned out to be

© o o o

°

°

very effective and fruitful

for modeling

for control (stabilization, robustness, ...)

prediction of one signal from another, filtering

understanding system representations

(transfer f'n, input/state/output, etc.)

model simplification, reduction

system ID: models from data
etc., etc., etc.
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Open and Connected

[ ]
ENVIRONMENT e SYSTEM
[ ]

In system theory, we are accustomed to view an open
dynamical system as ar input/output structure

inputs . /O SYSTEM

outputs
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Open and Connected

In system theory, we are accustomed to view an open
dynamical system as ar input/output structure

& Interconnection as output-to-input assignment .

SYSTEM .
— SYSTEM
L
= E SYSTEM IE
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Open and Connected

In system theory, we are accustomed to view an open
dynamical system as ar input/output structure

& Interconnection as output-to-input assignment .

SYSTEM .
— SYSTEM
L
= E SYSTEM IE

Is this appropriate for modeling physical systems?
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Interconnection in physical systems
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Example

(pressure, flow) (pressure, flow)

—— ~
pleft ’|£ft pright 'Iight
(pressure, flow) (pressure, flow)
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Example

Subsystems 1 and 3:

(pressure, flow) (pressure, flow)

(pressure, flow)

(pressure, flow)
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Example

Subsystems 1 and 3:

(pressure, flow) (pressure, flow)

(pressure, flow)

Subsystem 2: =

(pressure, flow)
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Interconnection laws:

Example
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d
dt

Bi1 fi1

cf

f2

As %’m

Cfs

Cs f}

fl + f{v

)
V|P1 — po — phi|
\_\/lpl — po — phi|

(
VP — po — phi]
| —VIPL — po — pha|

_.féa D2 _p,2 = af2,

f3 + fév

r
v/ |P3 — po — phs)|
| —V/Ips — po — phs]

f
V |P5 — po — phs]
K—\/lpé — po — phs]|

if p1 — po
if p1 — pPo
If p;_ — Po
If p;_ — Po
if p3 — po
if p3 — po

> phl,

S ph17

2 ph17
S ph17

Z ph3,
S ph3,

Z ph3,
S ph3’

p,1=P2, f{-l-fz = O,p'z = P3, fé—|—f3 =

0.

(1)

(2)

(3)

(4)

(5)
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Unclear input/output structure for terminal variables
Many variables, indivisibly, at the same terminal
Interconnection = variable sharing

No signal flows, no output-to-input assignment
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Unclear input/output structure for terminal variables
Many variables, indivisibly, at the same terminal
Interconnection = variable sharing

No signal flows, no output-to-input assignment

© o o o o

“Block diagrams unsuitable for serious physical modeling
- the control/physics barrier”

“Behavior based (declarative) modeling is a good alternai

from K.J. Astrom, Present Developments in Control Applications

IFA,C IFAC 50-th Anniversary Celebration
= ==

Heidelberg, September 12, 2006.
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Behavioral systems



A dynamical system
:<> a family of time functions, ‘the behavior’

Interconnection :< ‘variable sharing’.

Control :< Interconnection

Modeling of interconnected physical systems is the
strongest case for ‘behaviors’.
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Models

A dynamical system:< (T, W, 23)
TCR ‘time set’
W ‘signal space’
B C W' the ‘behavior’
a family of trajectories T — W

mostly, today, T = R, W = R", hence!B is a
family of vector-valued continuous-time trajectories

w : R — RY € B:
w : R — RY & B: ‘the model forbids w’
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Models

The dynamical system (R, R, 23) ~ B
linear :< wi,ws € B, € R
= oqwi + wo € B

time-invariant :&< w € 98, o any shift,
= ow €°B

differential :< ‘described’ by an ODE.
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For example,

dt

ia:zAm—I—Bu,y:Ca:—l—Du, w= |[y| Ofw =

Models

DAE's Fiz+4 Gz + Hw =0

P(£)u=2(%)u -

y=G’<%)u,w:

u

Yy

9

u :
, P, Q) polynomial matrices

Yy

G matrix of rational f'ns

etc., and their nonlinear analogues



Controllablility as a system property



Controllability

The time-invariant system (R, R", ) is

controllable : <
Vwi,wy €B,dw € B andT > 0 such that

wl/\
/—\//wz transitionﬂ

— N
/

w w,
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Controllability

The time-invariant system (R, R", ) is

stabilizable ;<< Vw € 9B, 3w’ € B such that

%\

W,
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Controllability

Makes controllability into a bona fide, genuine, true
system property, instead of of merely a (state space)
representation.
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State Controllability

Ex = f (w,u).
controllability: variables = state or (input,
This is aspecial casef our controllability:
/
x/x/f

state)

time
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State Controllability

il
.
:

Special caseclassical Kalman definitions for

o

%m:f(w,u).

controllability: variables = state or (input, state)

Why should we be so concerned with the state?

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?
Or not properly editing the equations?

Kalman’s definition addresses a rather special situation.
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The basics of LTIDS



LTIDS

The dynamical system(RR, RY, 2B) is

linear, time-invariant, and differential (LTIDS)
< ‘described’ by an ODE

d d"
R()’UJ —|— Rlaw —|— © o —|— Rndtnw = 0.

Ry, Ry, --- , R, real matrices.
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LTIDS

dl‘l
dt?

w = 0.

d
ROw+R1£w+°"+Rn

Ry, R,,--- , R, real matrices.

~ R(Hw=0

R=Ry+ R&E+---+ RE*  polynomial matrix.

R typically ‘wide’
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LTIDS

dl‘l
dt?

w = 0.

d
ROw+R1£w+°"+Rn

Ry, R,,--- , R, real matrices.

~ R(Hw=0

R=Ry+ R&E+---+ RE*  polynomial matrix.

Defines®B = kernel (R (%)) ‘kernel representatioh

Notation: £, £°.

—pn. 35/



£7 as a module

Let B = kernel (R (£))

R determinessy, but 2B does not determineR. !

What is the mathematical structure of £v?
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£7 as a module

Consider®s € £". Calln € R [£]" an annihilator
<=
n(%)fw:() forall w € B
Examples:
Transposes of rows ofR

for 8 = kernel (R (2))
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£7 as a module

Consider®s € £". Calln € R [£]" an annihilator
<=

n(%)w:()forallwe%

Note

® ni,no annihilators = n; + n, annihilator

o n annihilator, p polynomial = pn annihilator

= Annihilators of 28 form a submodule ofR [£]".
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£7 as a module

Consider®s € £". Calln € R [£]" an annihilator

<=

n(i)w:()forallwe%

dt
Note

® ni,no annihilators = n; + n, annihilator

» n annihilator, p polynomia

= pn annihi

= Annihilators of 23 form a submodule of R

ator

&1

Thm. 1. 3 1 < 1 relation between£* and submodules ofR [£]"
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Elimination

Motivating example: model port behavior of

(@)

by tearing, zooming, and linking
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Elimination

Module equations

vertex 1:

vertex 2 :
vertex 3:
vertex 4 :

vertex 5:

vertex 6 :

‘/connectorl,l — ‘/connectorl,2 — ‘/connectorl,3
Iconnector1,1 _I_ Iconnector1,2 _l_ Iconnector1,3 — O
Veea — Vee2 = Relg. i, Iro1 +1Ir.2 =0
L%IL,l = Vi1 — Vi, Ipg +12=0

C% (Veq — Vez) = Ica, Ici + Ic2 =0
Ve,a — Ve, 2= Rilg, 1

I, 1 +1Ir,2=0

‘/;onnectorz,l — ‘/;onnectorz,Z — ‘/;onnectorz,S

Iconnectorz,l _I_ Iconnector2,2 _l_ Iconnectorz,3 =0

—n. 37/



Elimination

Interconnection equations

edge c:
edge d:

el

edge f:

ge g:
edge h:

ed

ge e:

VRC,l — VYconnectorlz IRc,l + Iconnector1,2 =0
VLl — Vconnectorls IL1 + Iconnector13 =0
VRC,z — VCl IRc,z + Icl =0

Vi, = VRC,l I, + IRL,l =0

VC’2 — Vconnector2; ICg _l_ Iconnector21 =0

VRL,Z — Vconnector2; IRL,z + Iconnector22 =0
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Elimination

Manifest variable assignment

‘/externalport — ‘/connectorl,l

I externalport — 1 connectorl;

— ‘/::onnectorz 3
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Elimination

Manifest variable assignment

‘/externalport — ‘/connectorl,l — ‘/connectorz,?)

I externalport — 1 connectorl;

What equation(s) governs the behavior of

( ‘/externalport ’ 1 externalport )

Constant-coefficient linear differential equation?
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Elimination

> = (R, R?, 9B) behavior 2B specified by:

L
Casel CRgs # —

(7,

L

—I-R )CR d + CR L dz)V
RL Cd CRL di2 externalport

—(1—|—C’R d)( 4= d)R I
— Cdt RL d C'lexternalport

L
Case?2 CRqo = —

ine

d d
— + CRC ‘/externalport — (]- + CRC) RCIexternalport

Ry,

L

dt
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Elimination Theorem

Thm. 2: £° Is closed under projection
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Elimination Theorem

Thm. 2: £° Is closed under projection

Consider

d d .
R4 d_ wi + R E wo = 0 ~» Dbehavior B

Define

B, := {w; | I wssuchthat(w;,ws) € B}
Elimination thm = 3 R such that®3; = kernel (R (E))!

E.Q. %:}3 = Ax + Bu,y = Cx+ Du = P(%)y = Q(%)u
linear DAE’s allow elimination of nuisance variables
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Elimination Theorem

Thm. 2: £° Is closed under projection

£° Is closed under intersection, addition, projection
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Elimination Theorem

Thm. 2: £° Is closed under projection

SYSTEM 11-

ODE

SYSTEM 5

ODE

SYSTEM 1 E : SYSTEM

2

ODE ODE
ODE?

In LTIDS systems 1 and 2 ODEs=- interconnection ODE.

In nonlinear case, very unlikely described by ODE, even if
systems 1 and 2 are!

Why are ODE models so common?
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Image representation
w=M (%) ¢ ~» w-behavior B = image (M (%))

Elimination thm = 93 = kernel (R (%)) for someR.

So, all images are kernels, but what kernels are images?

< B IS controllable
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Image representation
w=M (%) ¢ ~» w-behavior B = image (M (%))

Elimination thm = 93 = kernel (R (%)) for someR.

So, all images are kernels, but what kernels are images?

< B IS controllable

Thm. 3: 2B € £° controllable < admits image representation

Leads to controllability tests.
There are various other tests for controllabllity, e.g.

rank (R(\)) the samevV A € C
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Partial differential equations
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PDEs: Examples

Diffusion
q(x,t)

)
7. |

0] __ b?
ET — 8sz‘|‘q

independent variables:(t, ) time and space
dependent variables: (T, q) temperature and heat
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PDEs: Examples

Wave phenomena

9% ,, — 0° 07
gz W = 2z W T 8y2w

independent variables:(t, x,y) time and space
dependent variables: w deflection
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PDEs: Examples

Maxwell's equations for EM fields in free space

~ 1
V-E = —p,
€0
—> 8—»
VXE = ——B,
ot
V.-B = 0,
’V x B 1_._|_8_.
C = — —
50] Ot

independent variables:(t, x,y, z) time and space
dependent variables:(E, B, 7, p)

electric field, magnetic field, current density, charge dengy
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RS

[SERRRPYY

[SERRRFYY

PDEs: Notation

. polynomials, n indet., real coeff.
VR[4, .. .,&]°"° matrices of ...
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PDEs: Notation

ReR[gl,“.’én]’XW,\» R(a?cla"' 932n>w:()

linear constant coefficient PDEs with
n Independent variablesxz4, ..., x,
w dependent variablesw,, . . . , w,
rowdim (R) = number of equations
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PDEs: Notation

R RG] o R (s ) w =0

Ex.: Diffusion eg’n S =2 T+gq
2 indep. variables,(t,z),w = 2, w = (T, q), 1 eq'n.

R(&,6:) = [&— &, — 1]
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PDEs: Notation

B e R 6 6l s B (e ) w0

Example: Maxwell’'s eq’ns

4 independent variables(t, x, y, z)
w=10,w = (E, B, j, p)
8 equations,R 8 X 10, sparse, first order
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PDEs: Notation

RER[fl,...,gn]oxwm» R<3?cl’”' ,8zn)w:()

Behavior:

B = {w € €°(R*,RY) | R(a . 3)w:0}

0z’ ’ Oz,

Notation:
B c £ B = kernel (R( o .., 0 ))

0z’ ’ Oz,
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PDEs: Notation

RER[E,.. &)™ ~ R (50 g0 ) w=0

Linear constant coefficient PDEs

¢>°-solutions

infinite domain, no boundary conditions
‘everything’ valid for convex, open domain2 C R*®
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£¥: the basics



Thm. 1:

£¥ « the submodules ofR [&4, ..., &)]"

Thm. 2: Elimination thm

£¥ Is closed under projection

Thm. 3:

B € L£7is controllable < B is an image
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Describe(p, E, 7) in Maxwell's equations

Eliminate B from Maxwell's equations ~»

V-E = — P>

8 =1 s
€O—V°E + V']

ot
Y e UXxVXE 4 27
En—— EnC S —_
0 5¢2 0 at’

|
=
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Controllability on nD systems

time
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Controllability on nD systems

Controllability
.= Patchability

space

time
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Controllability on nD systems

B € £Y controllable if and only If it has a repr.

? Oxy

B = i mage (M(a%l,--- ,8‘;))

Is an image a kernel? Always !<= Elimination th'm
Is a kernel an image ?  Iff the kernel is controllable!
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Controllability on nD systems

B € £Y controllable if and only If it has a repr.

? Oxy

B = i mage (M(a%l,--- ,8‘;))

But, for n > 1, this image may not be observable .

Images may require hidden variables .
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Are EM fields controllable ?
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Are EM fields controllable ?

The following eg’'ns in

scalar potential : R x R® — R

vector potential A : R x R3 — R3
generate exactly the solutions to MEs:

;N =

]

82 Vo
ot ’

V X A,
0% . S L
EO@A — €0C2V2A -+ 8062V (V . A)

8V A V2
—€9p—V - A — :
08t €o

+ avfb
€05, y
° ot
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Are EM fields controllable ?

B - _9% Vo
Ot ’
B = VXA,
— 82 — —_ —
J = cogpA— e VA + eV (V - A)
= OV . A V2
P = Ef()at €0 .

Proves controllability of EM fields.
Not observable, cannot be'!

controllability < 3 potential!
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Control
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Path planning

%QZ = f(z,u)

Choose time-function u(-) : [0,T] — U so as to achieve
(optimal) state transfer. ‘open loop control’
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Decision making

CLOSED-LOOP
SYSTEM

exogenous inputs to—be-controlled outputs

E E E
:k@:; P LA N T Sensors \:;_—
control measured
M inputs outputs M
FEEDBACK
3 CONTROLLER

Choose map from sensor outputs to actuator inputs so as to
achieve good (optimal) performance.

‘feedback control’
‘closed loop control’
‘Intelligent control’
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Embedded systems

con_trol
terminals

Controller

to—be—controlled
terminals

Controlled system

Choose controller so as to achieve good (optimal)
performance of the interconnected system

‘control as interconnection’
‘Integrated system design’
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Look back



Behavioral systems

#® Gets the physics right
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Behavioral systems

#® Gets the physics right
# Deals faithfully with interconnections: variable sharing
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Behavioral systems

#® Gets the physics right
# Deals faithfully with interconnections: variable sharing
# Starts with first principles models
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Behavioral systems

Gets the physics right

Deals faithfully with interconnections: variable sharing
Starts with first principles models

Latent variables with state as special case
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Behavioral systems

Gets the physics right

Deals faithfully with interconnections: variable sharing
Starts with first principles models

Latent variables with state as special case

Avoids universal use of signal flow graphs
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Behavioral systems

Gets the physics right

Deals faithfully with interconnections: variable sharing
Starts with first principles models

Latent variables with state as special case

Avoids universal use of signal flow graphs
Controllability becomes genuine system property
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Behavioral systems

Gets the physics right

Deals faithfully with interconnections: variable sharing
Starts with first principles models

Latent variables with state as special case

Avoids universal use of signal flow graphs
Controllability becomes genuine system property

I/0 and i/s/o are special cases
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Behavioral systems

Gets the physics right

Deals faithfully with interconnections: variable sharing
Starts with first principles models

Latent variables with state as special case

Avoids universal use of signal flow graphs
Controllability becomes genuine system property

I/0 and i/s/o are special cases

Extends seamlessly to PDEs
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Behavioral systems

Gets the physics right

Deals faithfully with interconnections: variable sharing
Starts with first principles models

Latent variables with state as special case

Avoids universal use of signal flow graphs
Controllability becomes genuine system property

I/0 and i/s/o are special cases

Extends seamlessly to PDEs

Views control as interconnection
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Behavioral systems

Gets the physics right

Deals faithfully with interconnections: variable sharing
Starts with first principles models

Latent variables with state as special case

Avoids universal use of signal flow graphs
Controllability becomes genuine system property

I/0 and i/s/o are special cases

Extends seamlessly to PDEs

Views control as interconnection

Advantages in SYSID, etc.
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Behavioral systems

Gets the physics right

Deals faithfully with interconnections: variable sharing
Starts with first principles models

Latent variables with state as special case
Avoids universal use of signal flow graphs
Controllability becomes genuine system property
I/0 and i/s/o are special cases

Extends seamlessly to PDEs

Views control as interconnection

Advantages in SYSID, etc.

Far easier pedagogically

—pn. 53/



Detalls & copies of frames are available from/at
Jan. W1l | ens@sat . kul euven. be
http://ww. esat. kul euven. be/ ~jw | | ens

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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