

DISTANCE BETWEEN LINEAR SYSTEMS

and

ORDER REDUCTION

Jan C. Willems ESAT, K.U. Leuven, Flanders, Belgium

Rolling Waves in Leuven

December 16, 2008

In honor of Adhemar Bultheel on the occasion of his 60th birthday

Open systems

Systems interact with their environment

How are open systems formalized?

Classical approach: input/output systems

SYSTEM

response

stimulus

Classical approach: input/output systems

Oliver Heaviside (1850-1925)

Norbert Wiener (1894-1964) and many electrical circuit theorists

Input/state/output systems

Around 1960: a paradigm shift to

$$\frac{d}{dt}x = f(x, u), \ y = g(x, u)$$

Rudolf Kalman (1930-)

This framework turned out to be very effective and useful, for example in model order reduction (MOR).

Model order reduction

MOR for linear systems (\cong rational approximation)

$$\frac{d}{dt}x = Ax + Bu, y = Cx, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{p}$$

Assume stable (A Hurwitz: roots in open left half of \mathbb{C}).

Model order reduction

MOR for linear systems (\cong rational approximation)

 $u \mapsto y$

$$\frac{d}{dt}x = Ax + Bu, y = Cx, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{p}$$

Assume stable (A Hurwitz: roots in open left half of \mathbb{C}). Leads to a bounded i/o map

$$y(t) = \int_{-\infty}^{t} C e^{A(t-t')} B u(t') dt'$$

MOR for linear systems (\cong rational approximation)

$$\frac{d}{dt}x = Ax + Bu, y = Cx, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{p}$$

Assume stable (A Hurwitz: roots in open left half of \mathbb{C}). Leads to a bounded i/o map

$$y \mapsto y$$
 $y(t) = \int_{-\infty}^{t} Ce^{A(t-t')} Bu(t') dt'$

;; Approximate this system, this map, by another one

$$u \mapsto y \qquad \qquad \mathbf{y}(t) = \int_{-\infty}^{t} C_{\mathbf{red}} e^{A_{\mathbf{red}}(t-t')} B_{\mathbf{red}} u(t') dt'$$

'simpler': lower state dim. !! $x_{red} \in \mathbb{R}^{n_{red}}, \boxed{n_{red} \ll n}$ → balancing, AAK, Krylov, POD, etc.

MOR for linear systems (\cong rational approximation)

$$\frac{d}{dt}x = Ax + Bu, y = Cx, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{p}$$

Assume stable (A Hurwitz: roots in open left half of \mathbb{C}). Leads to a bounded i/o map

$$u \mapsto y$$
 $y(t) = \int_{-\infty}^{t} Ce^{A(t-t')} Bu(t') dt'$

;; Approximate this system, this map, by another one

 $u \mapsto y$ $y(t) = \int_{-\infty}^{t} C_{\text{red}} e^{A_{\text{red}}(t-t')} B_{\text{red}} u(t') dt'$

'simpler': lower state dim. !! $x_{red} \in \mathbb{R}^{n_{red}}, \underline{n_{red} \ll n}$ \sim balancing, AAK, Krylov, POD, etc.

∃ effective methods for MOR for stable LTI i/o systems

Drawbacks of input/output thinking

Physical systems with terminals

Associated with each terminal there are two variables. Which should be considered input? output?

- mechanical systems (terminal var's: force & position)
- > et cetera

System interconnection as output-to-input assignment

The classical view of system interconnection:

There are **many** examples where output-to-input connection is eminently natural.

There are **many** examples where output-to-input connection is eminently natural.

But for other interconnections, i/o is more problematic.

Interconnection = variable sharing, not output-to-input assignment

The input/output approach as the primary and universal view of open systems is a misconception.

Physical systems are not signal processors !

The input/output approach as the primary and universal view of open systems is a misconception.

Physical systems are not signal processors !

How should we formalize open systems, if not as input/output systems?

How does MOR function then?

Linear time-invariant differential systems

We consider systems described by linear, constant-coefficient, differential equations

$$R\left(\frac{d}{dt}\right)w = 0$$

with *R* a polynomial matrix, $R \in \mathbb{R}[\xi]^{\bullet \times w}$

We consider systems described by linear, constant-coefficient, differential equations

All system variables are treated on the same footing.

A model = a relation (rather than a map)

We consider systems described by linear, constant-coefficient, differential equations

$$R\left(\frac{d}{dt}\right)w = 0$$

Behavior \mathcal{B} := the set of solutions

If you so like, assume the solutions in $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$.

LTIDSs - Rational symbol representation

$$R\left(\frac{d}{dt}\right)w=0$$

readily generalized to the case where *R* **is a matrix of rational functions** $R \in \mathbb{R}(\xi)^{\bullet \times w}$

$$R = P^{-1}Q, \quad P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \text{ left coprime}$$
$$R\left(\frac{d}{dt}\right)w = 0 \quad :\Leftrightarrow \quad Q\left(\frac{d}{dt}\right)w = 0$$

LTIDSs - Rational symbol representation

$$R\left(\frac{d}{dt}\right)w=0$$

readily generalized to the case where *R* **is a matrix of rational functions** $R \in \mathbb{R}(\xi)^{\bullet \times w}$

$$R = P^{-1}Q, \quad P, Q \in \mathbb{R} \left[\xi\right]^{\bullet \times \bullet}, \text{ left coprime}$$
$$R\left(\frac{d}{dt}\right)w = 0 \quad :\Leftrightarrow \quad Q\left(\frac{d}{dt}\right)w = 0$$

 \rightsquigarrow A LTID behavior has many representations.

A very special representation

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows an observable 'image representation'

$$w = M(\frac{d}{dt})\ell$$
 with $M \in \mathbb{R}(\xi)^{w \times \bullet}$

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows an observable 'image representation'

$$w = M(\frac{d}{dt})\ell$$
 with $M \in \mathbb{R}(\xi)^{w \times \bullet}$ such that $M(-\xi)^{\top}M(\xi) = I$
norm-preserving image representation

i.e.
$$\int_{-\infty}^{+\infty} ||w(t)||^2 dt = \int_{-\infty}^{+\infty} ||\ell(t)||^2 dt$$

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows an observable 'image representation'

$$M(\frac{d}{dt})\ell$$
 with $M \in \mathbb{R}(\xi)^{w \times \bullet}$ such that $M(-\xi)^{\top}M(\xi) = I$

norm-preserving image representation

i.e.
$$\int_{-\infty}^{+\infty} ||w(t)||^2 dt = \int_{-\infty}^{+\infty} ||\ell(t)||^2 dt$$

M cannot be polynomial, it must be rational. Obviously *M* must also be proper.

w =

Can also make *M* **stable** (meaning: its poles are in the left half of the complex plane).

A model is a behavior, a set (of trajectories).

Hence the distance between LTIDSs translates into the distance between linear subspaces.

Hence the distance between LTIDSs translates into the distance between linear subspaces.

 $\mathscr{L}_1, \mathscr{L}_2$ linear subspaces of a Hilbert space.

$$\overrightarrow{d}\left(\mathscr{L}_{1},\mathscr{L}_{2}
ight):= \mathtt{sup}_{x_{1}\in\mathscr{L}_{1},||x_{1}||=1} \ \mathtt{inf}_{x_{2}\in\mathscr{L}_{2}}||x_{1}-x_{2}||$$

 $\begin{array}{c} \textbf{closest point}\\ \textbf{on unit sphere of } \mathscr{L}_1\\ \textbf{from } \mathscr{L}_2 \end{array}$

Distance between subspaces

 $\mathtt{gap}(\mathscr{L}_1,\mathscr{L}_2):=\mathtt{max}\left\{\overrightarrow{d}(\mathscr{L}_1,\mathscr{L}_2),\overrightarrow{d}(\mathscr{L}_2,\mathscr{L}_1)\right\}$

 $0 \leq \operatorname{gap}(\mathscr{L}_1, \mathscr{L}_2) \leq 1$

The behavior \mathscr{B} of a LTIDS is not a subspace of a Hilbert space.

Which subspace of which Hilbert space should we associate with a LTID behavior \mathscr{B} ?

The behavior \mathscr{B} of a LTIDS is not a subspace of a Hilbert space.

Which subspace of which Hilbert space should we associate with a LTID behavior \mathscr{B} ?

$$\mathscr{B} \mapsto \mathscr{B}^{\mathscr{L}_2} := \mathscr{B} \cap \mathscr{L}_2(\mathbb{R}, \mathbb{R}^{\mathsf{w}})$$

Define the distance between two LTID behaviors as

$$d(\mathscr{B}_1,\mathscr{B}_2) := \texttt{gap}(\mathscr{B}_1^{\mathscr{L}_2},\mathscr{B}_2^{\mathscr{L}_2})$$

So, we consider the \mathscr{L}_2 -trajectories for measuring distance.

Define the distance between two LTID behaviors as

$$d(\mathscr{B}_1,\mathscr{B}_2) := \texttt{gap}(\mathscr{B}_1^{\mathscr{L}_2},\mathscr{B}_2^{\mathscr{L}_2})$$

So, we consider the \mathcal{L}_2 -trajectories for measuring distance. Keep notation \mathscr{B} for $\mathscr{B}^{\mathcal{L}_2} = \mathscr{B} \cap \mathscr{L}_2(\mathbb{R}, \mathbb{R}^{w})$.

 $\forall w_1 \in \mathscr{B}_1, \exists w_2 \in \mathscr{B}_2 \text{ such that } ||w_1 - w_2|| \leq \operatorname{gap}(\mathscr{B}_1, \mathscr{B}_2) ||w_1||$

 $\forall w_2 \in \mathscr{B}_2, \exists w_1 \in \mathscr{B}_1 \text{ such that } ||w_1 - w_2|| \leq \operatorname{gap}(\mathscr{B}_1, \mathscr{B}_2) ||w_2||$

Define the distance between two LTID behaviors as

$$d(\mathscr{B}_1,\mathscr{B}_2) := \texttt{gap}(\mathscr{B}_1^{\mathscr{L}_2},\mathscr{B}_2^{\mathscr{L}_2})$$

So, we consider the \mathscr{L}_2 -trajectories for measuring distance. Keep notation \mathscr{B} for $\mathscr{B}^{\mathscr{L}_2} = \mathscr{B} \cap \mathscr{L}_2(\mathbb{R}, \mathbb{R}^{w})$.

 $\forall w_1 \in \mathscr{B}_1, \exists w_2 \in \mathscr{B}_2 \text{ such that } ||w_1 - w_2|| \leq \operatorname{gap}(\mathscr{B}_1, \mathscr{B}_2) ||w_1||$

 $\forall w_2 \in \mathscr{B}_2, \exists w_1 \in \mathscr{B}_1 \text{ such that } ||w_1 - w_2|| \leq \operatorname{gap}(\mathscr{B}_1, \mathscr{B}_2) ||w_2||$

Small gap \Rightarrow the LTIDSs are 'close'.

'Phenomena' in \mathscr{B}_1 are well approximated by 'phenomena' in \mathscr{B}_2 , and vice-versa.

Computation of the gap

- How to compute the gap?
- Model reduce according to the gap!

$\mathscr{B}_1, \mathscr{B}_2$ **LTID behaviors.**

Take norm-preserving image representations

$$w = M_1(\frac{d}{dt})\ell_1, \qquad w = M_2(\frac{d}{dt})\ell_2$$

Then

$$\begin{array}{ll} \textbf{gap}(\mathscr{B}_1,\mathscr{B}_2) &= & \left| \left| M_1(i\omega) M_1(-i\omega)^\top - M_2(i\omega) M_2(-i\omega)^\top \right| \right|_{\mathscr{L}_{\infty}} \\ &\leq & \left| \left| M_1(i\omega) - M_2(i\omega) \right| \right|_{\mathscr{L}_{\infty}} \end{array}$$

MOR in the gap

Let *M* be the transfer function of a stable input/output system (strictly proper rational function, n poles, all in open left half plane).

Associated with *M* **there are nonnegative real numbers (the Hankel singular values**)

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{n_{red}} \geq \cdots \geq \sigma_n > 0$$

Let *M* be the transfer function of a stable input/output system (strictly proper rational function, n poles, all in open left half plane).

Associated with *M* there are nonnegative real numbers (the Hankel singular values)

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{n_{red}} \geq \cdots \geq \sigma_n > 0$$

leading to M_{red} stable input/output reduced system with n_{red} poles, in LHP.

Balanced model reduction \Rightarrow

$$||M(i\omega) - M_{\text{red}}(i\omega)||_{\mathscr{H}_{\infty}} \leq 2 \sum_{\text{neglected Hankel SVs of } G} \sigma_{k}$$

Start with a LTID behavior \mathscr{B} . Represent \mathscr{B} by a **norm-preserving, stable** image representation

$$w = M(\frac{d}{dt})\ell$$
 with $M \in \mathbb{R}(\xi)^{w \times \bullet}$

Start with a LTID behavior *B*. Represent *B* by a **norm-preserving, stable** image representation

$$w = M(\frac{d}{dt})\ell$$
 with $M \in \mathbb{R}(\xi)^{w \times \bullet}$

Now MOR (in the sense of the state dimension \cong the order of the underlying ODE), in the classical way, viewed as a stable input/output system (input ℓ , output w) using balancing

$$\rightsquigarrow \qquad w = M_{\texttt{red}}(\frac{d}{dt})\ell$$

Error bound (classical - 'twice the sum of the tail'):

$$||M(i\omega) - M_{\texttt{red}}(i\omega)||_{\mathscr{H}_{\infty}} \leq 2 \sum_{\substack{\texttt{neglected Hankel SVs of } M}} \sigma_{\texttt{k}}$$

Behavior approximation and gap error bound

Start with stable norm-preserving representation of ${\mathscr B}$

$$w = M(\frac{d}{dt})\ell$$
 with $M \in \mathbb{R}(\xi)^{w \times \bullet}$

MOR using balancing $\rightarrow w = M_{red}(\frac{d}{dt})\ell$.

Call the behavior of the reduced system \mathscr{B}_{red} .

Behavior approximation and gap error bound

Start with stable norm-preserving representation of ${\mathscr B}$

$$w = M(\frac{d}{dt})\ell$$
 with $M \in \mathbb{R}(\xi)^{w \times \bullet}$

MOR using balancing $\rightsquigarrow w = M_{red}(\frac{d}{dt})\ell$.

Call the behavior of the reduced system \mathcal{B}_{red} .

Error bound

$$\begin{array}{lll} \texttt{gap}(\mathscr{B},\mathscr{B}_{\texttt{red}}) &= & ||M(i\omega)M(-i\omega)^{\top} - M_{\texttt{red}}(i\omega)M_{\texttt{red}}(-i\omega)^{\top}||_{\mathscr{L}_{\infty}} \\ &\leq & ||M(i\omega) - M_{\texttt{red}}(i\omega)||_{\mathscr{H}_{\infty}} \\ &\leq & 2 \sum_{\substack{\mathsf{neglected Hankel SVs of } M} \sigma_{\mathsf{k}} \end{array}$$

Gap error bound

 $\forall w \in \mathscr{B} \exists w' \in \mathscr{B}_{red}$ such that

$$||w - w'|| \le \left(2\sum_{\text{neglected Hankel SVs of }M} \sigma_{k}\right)||w||$$

and vice-versa.

 $\sum_{\text{neglected Hankel SVs of } M} \sigma_k \quad \text{small}$

$\Rightarrow \qquad \text{as linear subspaces,} \\ \mathscr{B}_{red} \text{ is a good approximation of } \mathscr{B} \\ \text{ in the gap metric.} \\ \end{cases}$

Example

stable norm-preserving image

$$\begin{bmatrix} I \\ V \end{bmatrix} = \frac{1}{1 + 3\frac{d}{dt} + 5\frac{d^2}{dt^2} + 6\frac{d^3}{dt^3} + 4\frac{d^4}{dt^4}} \begin{bmatrix} 1 + 5\frac{d^2}{dt^2} + 4\frac{d^4}{dt^4} \\ 3\frac{d}{dt} + 6\frac{d^3}{dt^3} \end{bmatrix} \ell$$

Apply balancing algorithm \rightsquigarrow

stable norm-preserving image

$$\begin{bmatrix} I \\ V \end{bmatrix} = \frac{1}{1+3\frac{d}{dt}+5\frac{d^2}{dt^2}+6\frac{d^3}{dt^3}+4\frac{d^4}{dt^4}} \begin{bmatrix} 1+5\frac{d^2}{dt^2}+4\frac{d^4}{dt^4} \\ 3\frac{d}{dt}+6\frac{d^3}{dt^3} \end{bmatrix} \ell$$

red. order = 2
$$\begin{bmatrix} I \\ V \end{bmatrix} = \frac{1}{\frac{d^2}{dt^2}+0.1861\frac{d}{dt}+0.3298} \begin{bmatrix} \frac{d^2}{dt^2}+0.3298 \\ 0.1861\frac{d}{dt} \end{bmatrix} \ell$$

- p. 31/3

Recapitulation

- The gap is a measure of the distance between closed linear subspaces of a Hilbert space.
- Through the \mathscr{L}_2 behavior, the gap gives a measure of the distance between controllable LTIDSs.

Recapitulation

- The gap is a measure of the distance between closed linear subspaces of a Hilbert space.
- Through the \mathcal{L}_2 behavior, the gap gives a measure of the distance between controllable LTIDSs.

- Observable norm-preserving image representations of LTIDSs allow to compute the gap,
- and lead to a model reduction algorithm with an error bound in the gap.

The lecture frames are available from/at

http://www.esat.kuleuven.be/~jwillems

The lecture frames are available from/at

http://www.esat.kuleuven.be/~jwillems

