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In honor of Adhemar Bultheel on the occasion of his 60th birtiday
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Open systems
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ENVIRONMENT

SYSTEM

Boundary

Systems interact with their environment
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ENVIRONMENT

SYSTEM

Boundary

How are open systems formalized ?
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Classical approach: input/output system:s

stimulus response
cause effect
input output

Convolutions, transfer functions, impedances, ...
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stimulus

cause
Input

Oliver Heaviside
(1850-1925)

response

SYSTEM

effect
output

No ert Wiener (189-164)
and many electrical circuit theorists
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Around 1960: aparadigm shift to

%X: f(Xa U), y= g(X, U)

This framework turned out to be very effective and useful,
for example in model order reduction (MOR).
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MOR for linear systems (= rational approximation)

d
(= AX+BUy=Cx, XeR,UECR"yER?

Assume stable A Hurwitz: roots in open left half of C).
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MOR for linear systems (= rational approximation)

d
(= AX+BUy=Cx, XeR,UECR"yER?

Assume stable A Hurwitz: roots in open left half of C). Leads
to a bounded i/o map

Uy y(t) = [ Cert-1)By(t)) dt’

ii Approximate this system, this map, by another one

Uy y(t) = [, Creq€ed B qu(t!) dt’

‘'simpler’;. lower state dim. !! Xred € R™ed |nog < n
~ balancing, AAK, Krylov, POD, etc.
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MOR for linear systems (= rational approximation)

d
(= AX+BUy=Cx, XeR,UECR"yER?

Assume stable A Hurwitz: roots in open left half of C). Leads
to a bounded i/o map

Uy y(t) = [ Cert-1)By(t)) dt’

ii Approximate this system, this map, by another one

Uy y(t) = [, Creq€ed B qu(t!) dt’

‘'simpler’;. lower state dim. !! Xred € R™ed |nog < n
~ balancing, AAK, Krylov, POD, etc.

1 effective methods for MOR for| stable| LTI i/o systems
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Drawbacks of input/output thinking



(potential, current)

Electrical
circuit

Associated with each terminal

there are two variables.

Which should be considered
Input? output?
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(force, position)

Mechanica
device

Associated with each terminal

there are two variables.

Which should be considered
Input? output?

» mechanical systemsterminal var’s: force & position)
» etcetera
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The classical view of system interconnection:
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There are many examples where output-to-input connection
IS eminently natural.

out

In
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There are many examples where output-to-input connection
IS eminently natural.

But for other interconnections, i/0 is more problematic.

Interconnection = variable sharing, not output-to-input assignment

—n. 10/



The input/output approach as the primary and universal
view of open systems Is a misconception.

Physical systems are not signal processors!
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The input/output approach as the primary and universal
view of open systems IS a misconception.

Physical systems are not signal processors!

How should we formalize open systems, if not as input/output
systems?

How does MOR function then?
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Linear time-invariant differential systems

LTIDSS



We consider systems described by linear, constant-coeffaait,
differential equations

R(§)w=0

with Ra polynomial matrix, Re R[&]*"¥
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We consider systems described by linear, constant-coeffaait,
differential equations

d _
R(&)w=0
) 'V ]
(potential, current) | 1
] 1
W1
Vo
W»
Electrical W= T = 5
circuit |
W :
L W_ VN
LIN

All system variables are treated on the same footing.

A model = a relation (rather than a map)
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We consider systems described by linear, constant-coeffaait,
differential equations

R(§)w=0

Behavior Z%:= the set of solutions

If you so like, assume the solutions ir5’™ (R, R¥).
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R(§)w=0

readily generalized to the case wher& is a matrix of
rational functions ReR(&)*""

R=P1Q, PQeR[E]***, left coprime

d _ d B
R(E>W:O <= Q(a>w_0
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R(§)w=0

readily generalized to the case wher& is a matrix of
rational functions ReR(&)*""

R=P1Q, PQeR[E]***, left coprime

d _ d B
R(E>W:O <= Q(a>w_0

~» A LTID behavior has many representations.
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A very special representation
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Let £ be the behavior of a controllable LTIDS.

Then it allows an observable ‘image representation’

w=M(&)¢ with MeR(&)™*
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Let & be the behavior of a controllable LTIDS.
Then it allows an observable ‘image representation’

w=M(&)¢ with M eR (&)™ suchthat M(—&)TM(&) =1

norm-preserving image representation

e [ IwlRat= [ e

— 00 — 00
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Let & be the behavior of a controllable LTIDS.
Then it allows an observable ‘image representation’

w=M(&)¢ with M eR (&)™ suchthat M(—&)TM(&) =1

norm-preserving image representation

e [ IwlRat= [ e

— 00 —00

M cannot be polynomial, it must be rational .
Obviously M must also be proper.

Can also makeM stable (meaning: its poles are in the left
half of the complex plane).
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Distance between behaviors
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A model is a behavior, a set (of trajectories).

Hence the distance between LTIDSs translates into the
distance betweerinear subspaces
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Distance between subspace

Hence the distance between LTIDSs translates into the
distance betweerlinear subspaces

2,2 linear subspaces of a Hilbert space.

H .
d (£1,22) == SUPx,c.2 |Ixg||=1 | N ez |[X1 — X2|]

A

AN

closest point
on unit sphere of &1
from %
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Distance between subspace

gap(A,.%) ;= max {E(gl,zz), E(zz,gl)}

0<gap(A,2£) <1
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Association of a subspace of a Hilbert space to a LTID behavic

The behavior # of a LTIDS is not a subspace of a Hilbert
space.

Which subspace of which Hilbert space should we associate
with a LTID behavior %7
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The behavior #Z of a LTIDS is not a subspace of a Hilbert
space.

Which subspace of which Hilbert space should we associate
with a LTID behavior %?

B — B2 = BN (R,RY)
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Define the distance between two LTID behaviors as
d(%1, %) = gap(B, 2, %5 2)

So, we consider the¥,-trajectories for measuring distance.
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Define the distance between two LTID behaviors as
d(%1, %) = gap(B, 2, %5 2)

So, we consider the¥,-trajectories for measuring distance.
Keep notation % for %2 = 2N .% (R,RY).

Ywy € H1,3Iw, € Ao such that ||wy —we|| < gap(H1, %o)|lwa]|

YWy € Ao, AWy € F1 such that ||wy —ws|| < gap (A1, %Bo)||Wo|
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Define the distance between two LTID behaviors as
d(%1, %) = gap(B, 2, %5 2)

So, we consider the¥,-trajectories for measuring distance.
Keep notation % for %2 = 2N .% (R,RY).

Ywy € H1,3Iw, € Ao such that ||wy —we|| < gap(H1, %o)|lwa]|
YWy € Ao, AWy € F1 such that ||wy —ws|| < gap (A1, %Bo)||Wo|

Small gap=- the LTIDSs are ‘close’.

‘Phenomena’ in 4, are well approximated by
‘rhenomena’ in %4», and vice-versa.

—n. 21/



Computation of the gap



Distance between LTID behaviors

» How to compute the gap?
» Model reduce according to the gap!
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B, PBo LTID behaviors.

Take norm-preserving image representations

d d
W = Ml(a)fl, W = Mz(a)ﬁz
Then
gap(#1, %) = |IMiiw)Mi(—iw)" —Ma(iw)Ma(—iw)

VAN

[M1(1w) —Ma(iw)

|2,

.
|2,
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MOR In the gap



Let M be the transfer function of a stable input/output system
(strictly proper rational function, n poles, all in open left half
plane).

Associated withM there are nonnegative real numbers (the
Hankel singular values )

0-120-22"'Zanred2"'20-n>0
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Let M be the transfer function of a stable input/output system
(strictly proper rational function, n poles, all in open left half
plane).

Associated withM there are nonnegative real numbers (the
Hankel singular values )

0-120-22"'Zanred2"'20-n>0

leading to M,¢q Stable input/output reduced system withn, ¢g
poles, in LHP.

Balanced model reduction=-

M(1w) — Meg(l <2 > O
H ( ) red( )H‘%ﬂw ~ neglected Hankel SVs ofz .
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Reduction of a stable norm-preserving representatior

Start with a LTID behavior #. Represent# by a
norm-preserving, stable image representation

w=M(&)¢| with MeR (&)™




Start with a LTID behavior #. Represent# by a
norm-preserving, stable image representation

w=M($)¢| with MeR(&)"

Now MOR (in the sense of the state dimensiof the order of
the underlying ODE), in the classical way, viewed as a stable
Input/output system (input ¢, output w) using balancing

~ (W= Mred(%)g

Error bound (classical - ‘twice the sum of the tail’):

M(iw)—M |V <2 > O,
) red(10)]]z < neglected Hankel SVs oM :
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Start with stable norm-preserving representation of%#

W:M(%)é with M € R(&)"*®

MOR using balancing~ W= M eq(§).

Call the behavior of the reduced systeny; 4.
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Start with stable norm-preserving representation of%#

W:M(%)é with M € R(&)"*®

MOR using balancing~ W= M eq(§).

Call the behavior of the reduced systeny; 4.

Error bound

gap(‘%v‘%r ed)

VAN

IM(iw) — My ed(i0)]] 2,

2 2 Ox
neglected Hankel SVs oM

VAN

IM(iw)M(~iw) " —Mreq(iw)Mred(—iw) ' || 2,
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Vwe A IW € B eq Such that

w—w|| < (2 ; ok) ™

neglected Hankel SVs o

and vice-versa.

> Ox sSmall
neglected Hankel SVs oM

= as linear subspaces,
Py ed 1S @ good approximation of#
In the gap metric.

—n. 29/



Example

—n. 30/



5 d? d4
kernel (1+ 5? + 4d—> V =

mage | 1+5d2 + 49
— d g3
_V_ i 3dt + 6dt3

d4 |
dt4

system order = 4. Reduce to 2!

(53 +6%),
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system order = 4. Reduce to 2!

5 2 d4 d d3
kernel (1+5—+4— |V=(3—4+6—7 ]I
(+d2+d> (d+dt3>
. 1] [1+59 49
image = +ddt2 +d3dt4 ¢
_V_ i 3dt+6dt3 i
stable norm-preserving image
| 1 1+5d2+4g;_
v 1+3d+5d2+6 & +ad | 39 y6dy

Apply balancing algorithm ~»
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stable norm-preserving image

1

red. order = 2

\ 1+3d +5% + 68 +4% |

1

d? d? |
1459 2+4dt4 ,
3§+6

a3 |

& +0.3298

& +0.18614 +0.3298| 0.1861

!

v 0.18=—/— 1.77




The gap is a measure of the distance between closed
linear subspaces of a Hilbert space.

Through the % behavior, the gap gives a measure of the
distance between controllable LTIDSs.

—n. 32/



The gap is a measure of the distance between closed
linear subspaces of a Hilbert space.

Through the % behavior, the gap gives a measure of the
distance between controllable LTIDSs.

Observable norm-preserving image representations of
LTIDSs allow to compute the gap,

and lead to a model reduction algorithm with an error
bound in the gap.
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The lecture frames are available from/at
http://ww. esat. kul euven. be/ ~jw || ens
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The lecture frames are available from/at

http://ww. esat. kul euven. be/ ~jw || ens

Thank you

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you
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I AD MULTOS ANNOS FELICES !l
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