

DISTANCE BETWEEN LINEAR SYSTEMS

and

ORDER REDUCTION

Jan C. Willems
ESAT, K.U. Leuven, Flanders, Belgium

In honor of Adhemar Bultheel on the occasion of his 60th birthday

Open systems

Open systems

Systems interact with their environment

How are open systems formalized?

Classical approach: input/output systems

Convolutions, transfer functions, impedances, ...

Classical approach: input/output systems

Oliver Heaviside (1850-1925)

Norbert Wiener (1894-1964) and many electrical circuit theorists

Input/state/output systems

Around 1960: a paradigm shift to

$$
\frac{d}{d t} x=f(x, u), y=g(x, u)
$$

Rudolf Kalman (1930-)

This framework turned out to be very effective and useful, for example in model order reduction (MOR).

Model order reduction

MOR for linear systems (\cong rational approximation)

$$
\frac{d}{d t} x=A x+B u, y=C x, \quad x \in \mathbb{R}^{\mathrm{n}}, u \in \mathbb{R}^{\mathrm{m}}, y \in \mathbb{R}^{\mathrm{p}}
$$

Assume stable (A Hurwitz: roots in open left half of \mathbb{C}).

Model order reduction

MOR for linear systems (\cong rational approximation)

$$
\frac{d}{d t} x=A x+B u, y=C x, \quad x \in \mathbb{R}^{\mathrm{n}}, u \in \mathbb{R}^{\mathrm{m}}, y \in \mathbb{R}^{\mathrm{p}}
$$

Assume stable (A Hurwitz: roots in open left half of \mathbb{C}). Leads to a bounded i/o map

$$
u \mapsto y
$$

$$
y(t)=\int_{-\infty}^{t} C e^{A\left(t-t^{\prime}\right)} B u\left(t^{\prime}\right) d t^{\prime}
$$

Model order reduction

MOR for linear systems (\cong rational approximation)

$$
\frac{d}{d t} x=A x+B u, y=C x, \quad x \in \mathbb{R}^{\mathrm{n}}, u \in \mathbb{R}^{\mathrm{m}}, y \in \mathbb{R}^{\mathrm{p}}
$$

Assume stable (A Hurwitz: roots in open left half of \mathbb{C}). Leads to a bounded i/o map

$$
u \mapsto y \quad y(t)=\int_{-\infty}^{t} C e^{A\left(t-t^{\prime}\right)} B u\left(t^{\prime}\right) d t^{\prime}
$$

ii Approximate this system, this map, by another one

$$
u \mapsto y \quad y(t)=\int_{-\infty}^{t} C_{\text {red }} e^{A_{\text {red }}\left(t-t^{\prime}\right)} B_{\text {red }} u\left(t^{\prime}\right) d t^{\prime}
$$

'simpler': lower state dim. !! $\quad x_{\text {red }} \in \mathbb{R}^{n_{\text {red }}}, n_{\text {red }} \ll n$
\sim balancing, AAK, Krylov, POD, etc.

Model order reduction

MOR for linear systems (\cong rational approximation)

$$
\frac{d}{d t} x=A x+B u, y=C x, \quad x \in \mathbb{R}^{\mathrm{n}}, u \in \mathbb{R}^{\mathrm{m}}, y \in \mathbb{R}^{\mathrm{p}}
$$

Assume stable (A Hurwitz: roots in open left half of \mathbb{C}). Leads to a bounded i/o map

$$
u \mapsto y \quad y(t)=\int_{-\infty}^{t} C e^{A\left(t-t^{\prime}\right)} B u\left(t^{\prime}\right) d t^{\prime}
$$

ii Approximate this system, this map, by another one

$$
u \mapsto y \quad y(t)=\int_{-\infty}^{t} C_{\mathrm{red}} e^{A_{\mathrm{red}}\left(t-t^{\prime}\right)} B_{\mathrm{red}} u\left(t^{\prime}\right) d t^{\prime}
$$

'simpler': lower state dim. !! $\quad x_{\text {red }} \in \mathbb{R}^{n_{\text {red }}}, n_{\text {red }} \ll n$
\sim balancing, AAK, Krylov, POD, etc.
\exists effective methods for MOR for stable LTI i/o systems

Drawbacks of input/output thinking

Physical systems with terminals

Associated with each terminal there are two variables. Which should be considered input? output?

Physical systems with terminals

Associated with each terminal there are two variables. Which should be considered input? output?

- mechanical systems (terminal var's: force \& position) et cetera

The classical view of system interconnection:

There are many examples where output-to-input connection is eminently natural.

There are many examples where output-to-input connection is eminently natural.

But for other interconnections, \mathbf{i} / \mathbf{o} is more problematic.

Interconnection = variable sharing, not output-to-input assignment

Ceterum censeo

The input/output approach as the primary and universal view of open systems is a misconception. Physical systems are not signal processors!

Ceterum censeo

The input/output approach as the primary and universal view of open systems is a misconception. Physical systems are not signal processors !

How should we formalize open systems, if not as input/output systems?

How does MOR function then?

Linear time-invariant differential systems

LTIDSs

LTIDSs

We consider systems described by linear, constant-coefficient, differential equations

$$
R\left(\frac{d}{d t}\right) w=0
$$

with R a polynomial matrix, $\quad R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$

LTIDSs

We consider systems described by linear, constant-coefficient, differential equations

$$
R\left(\frac{d}{d t}\right) w=0
$$

$$
w=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{\mathrm{w}}
\end{array}\right]=\left[\begin{array}{c}
V_{1} \\
I_{1} \\
V_{2} \\
I_{2} \\
\vdots \\
V_{N} \\
I_{N}
\end{array}\right]
$$

All system variables are treated on the same footing.
A model = a relation (rather than a map)

LTIDSs

We consider systems described by linear, constant-coefficient, differential equations

$$
R\left(\frac{d}{d t}\right) w=0
$$

Behavior $\mathscr{B}:=$ the set of solutions
If you so like, assume the solutions in $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$.

LTIDSs - Rational symbol representation

$$
R\left(\frac{d}{d t}\right) w=0
$$

readily generalized to the case where R is a matrix of rational functions $\quad R \in \mathbb{R}(\xi)^{\bullet \times \text { w }}$

$$
\begin{gathered}
R=P^{-1} Q, \quad P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \text { left coprime } \\
R\left(\frac{d}{d t}\right) w=0 \quad: \Leftrightarrow \quad Q\left(\frac{d}{d t}\right) w=0
\end{gathered}
$$

LTIDSs - Rational symbol representation

$$
R\left(\frac{d}{d t}\right) w=0
$$

readily generalized to the case where R is a matrix of rational functions $\quad R \in \mathbb{R}(\xi)^{\bullet \times w}$

$$
\begin{gathered}
R=P^{-1} Q, \quad P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \text { left coprime } \\
R\left(\frac{d}{d t}\right) w=0 \quad: \Leftrightarrow \quad Q\left(\frac{d}{d t}\right) w=0
\end{gathered}
$$

\leadsto A LTID behavior has many representations.

A very special representation

Norm-preserving image representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows an observable 'image representation'

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

Norm-preserving image representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows an observable 'image representation'
$w=M\left(\frac{d}{d t}\right) \ell \quad$ with $M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}$ such that $M(-\xi)^{\top} M(\xi)=I$
norm-preserving image representation

$$
\text { i.e. } \quad \int_{-\infty}^{+\infty}\|w(t)\|^{2} d t=\int_{-\infty}^{+\infty}\|\ell(t)\|^{2} d t
$$

Norm-preserving image representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows an observable 'image representation'
$w=M\left(\frac{d}{d t}\right) \ell \quad$ with $M \in \mathbb{R}(\xi)^{w \times \bullet}$ such that $M(-\xi)^{\top} M(\xi)=I$
norm-preserving image representation

$$
\text { i.e. } \quad \int_{-\infty}^{+\infty}\|w(t)\|^{2} d t=\int_{-\infty}^{+\infty}\|\ell(t)\|^{2} d t
$$

M cannot be polynomial, it must be rational .
Obviously M must also be proper.
Can also make M stable (meaning: its poles are in the left half of the complex plane).

Distance between behaviors

Distance between subspaces

A model is a behavior, a set (of trajectories).
Hence the distance between LTIDSs translates into the distance between linear subspaces.

Distance between sulospaces

Hence the distance between LTIDSs translates into the distance between linear subspaces.
$\mathscr{L}_{1}, \mathscr{L}_{2}$ linear subspaces of a Hilbert space.

$$
\vec{d}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right):=\sup _{x_{1} \in \mathscr{L}_{1},\left\|x_{1}\right\|=1} \inf _{x_{2} \in \mathscr{L}_{2}}\left\|x_{1}-x_{2}\right\|
$$

closest point on unit sphere of \mathscr{L}_{1} from \mathscr{L}_{2}

Distance between subspaces

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right): & =\max \left\{\vec{d}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right), \vec{d}\left(\mathscr{L}_{2}, \mathscr{L}_{1}\right)\right\} \\
0 & \leq \boldsymbol{\operatorname { a r p }}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \leq 1
\end{aligned}
$$

The behavior \mathscr{B} of a LTIDS is not a subspace of a Hilbert space.

Which subspace of which Hilbert space should we associate with a LTID behavior \mathscr{B} ?

The behavior \mathscr{B} of a LTIDS is not a subspace of a Hilbert space.

Which subspace of which Hilbert space should we associate with a LTID behavior \mathscr{B} ?

$$
\mathscr{B} \mapsto \mathscr{B}^{\mathscr{L}_{2}}:=\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)
$$

Distance between behaviors

Define the distance between two LTID behaviors as

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\mathscr{B}_{1}^{\mathscr{L}_{2}}, \mathscr{B}_{2}^{\mathscr{L}_{2}}\right)
$$

So, we consider the \mathscr{L}_{2}-trajectories for measuring distance.

Distance between behaviors

Define the distance between two LTID behaviors as

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\mathscr{B}_{1}^{\mathscr{L}_{2}}, \mathscr{B}_{2}^{\mathscr{L}_{2}}\right)
$$

So, we consider the \mathscr{L}_{2}-trajectories for measuring distance. Keep notation \mathscr{B} for $\mathscr{B}^{\mathscr{L}_{2}}=\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$.
$\forall w_{1} \in \mathscr{B}_{1}, \exists w_{2} \in \mathscr{B}_{2}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{1}\right\|$
$\forall w_{2} \in \mathscr{B}_{2}, \exists w_{1} \in \mathscr{B}_{1}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{2}\right\|$

Distance between behaviors

Define the distance between two LTID behaviors as

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\mathscr{B}_{1}^{\mathscr{L}_{2}}, \mathscr{B}_{2}^{\mathscr{L}_{2}}\right)
$$

So, we consider the \mathscr{L}_{2}-trajectories for measuring distance.
Keep notation \mathscr{B} for $\mathscr{B}^{\mathscr{L}_{2}}=\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$.
$\forall w_{1} \in \mathscr{B}_{1}, \exists w_{2} \in \mathscr{B}_{2}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{1}\right\|$
$\forall w_{2} \in \mathscr{B}_{2}, \exists w_{1} \in \mathscr{B}_{1}$ such that $\left\|w_{1}-w_{2}\right\| \leq \boldsymbol{\operatorname { g a p }}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{2}\right\|$
Small gap \Rightarrow the LTIDSs are 'close'.
'Phenomena' in \mathscr{B}_{1} are well approximated by
'phenomena' in \mathscr{B}_{2}, and vice-versa.

Computation of the gap

Distance between LTIID behaviors

How to compute the gap?
Model reduce according to the gap!

Formula for the gap for LTID behaviors

$\mathscr{B}_{1}, \mathscr{B}_{2} \quad$ LTID behaviors.
Take norm-preserving image representations

$$
w=M_{1}\left(\frac{d}{d t}\right) \ell_{1}, \quad w=M_{2}\left(\frac{d}{d t}\right) \ell_{2}
$$

Then

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right) & =\left\|M_{1}(i \omega) M_{1}(-i \omega)^{\top}-M_{2}(i \omega) M_{2}(-i \omega)^{\top}\right\|_{\mathscr{L}_{\infty}} \\
& \leq\left\|M_{1}(i \omega)-M_{2}(i \omega)\right\|_{\mathscr{L}_{\infty}}
\end{aligned}
$$

MOR in the gap

Balanced MOR

Let M be the transfer function of a stable input/output system (strictly proper rational function, n poles, all in open left half plane).

Associated with M there are nonnegative real numbers (the Hankel singular values)

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\mathrm{n}_{\text {red }}} \geq \cdots \geq \sigma_{\mathrm{n}}>0
$$

Balanced MOR

Let M be the transfer function of a stable input/output system (strictly proper rational function, n poles, all in open left half plane).

Associated with M there are nonnegative real numbers (the Hankel singular values)

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\mathrm{n}_{\text {red }}} \geq \cdots \geq \sigma_{\mathrm{n}}>0
$$

leading to $M_{\text {red }}$ stable input/output reduced system with $\mathrm{n}_{\text {red }}$ poles, in LHP.

Balanced model reduction \Rightarrow

$$
\left\|M(i \omega)-M_{\mathrm{red}}(i \omega)\right\|_{\mathscr{H}_{\infty}} \leq 2 \sum_{\text {neglected Hankel SVs of } G} \sigma_{\mathrm{k}}
$$

Reduction of a stable norm-preserving representation

Start with a LTID behavior \mathscr{B}. Represent \mathscr{B} by a norm-preserving, stable image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

Reduction of a stable norm-preserving representation

Start with a LTID behavior \mathscr{B}. Represent \mathscr{B} by a norm-preserving, stable image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{w \times}
$$

Now MOR (in the sense of the state dimension \cong the order of the underlying ODE), in the classical way, viewed as a stable input/output system (input ℓ, output w) using balancing

$$
\leadsto w=M_{\mathrm{red}}\left(\frac{d}{d t}\right) \ell
$$

Error bound (classical - 'twice the sum of the tail'):

$$
\left\|M(i \omega)-M_{\text {red }}(i \omega)\right\|_{\mathscr{H} \infty} \leq 2 \underset{\text { neglected Hankel SVs of } M}{\Sigma} \sigma_{\mathrm{k}}
$$

Behavior approximation and gap error bound

Start with stable norm-preserving representation of \mathscr{B}

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

MOR using balancing $\leadsto \quad w=M_{\text {red }}\left(\frac{d}{d t}\right) \ell$.
Call the behavior of the reduced system $\mathscr{B}_{\text {red }}$.

Behavior approximation and gap error bound

Start with stable norm-preserving representation of \mathscr{B}

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{w \times \bullet}
$$

MOR using balancing $\leadsto \quad w=M_{\text {red }}\left(\frac{d}{d t}\right) \ell$.
Call the behavior of the reduced system $\mathscr{B}_{\text {red }}$.
Error bound

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{B}, \mathscr{B}_{\text {red }}\right) & =\left\|M(i \omega) M(-i \omega)^{\top}-M_{\text {red }}(i \omega) M_{\text {red }}(-i \omega)^{\top}\right\|_{\mathscr{L}_{\infty}} \\
& \leq\left\|M(i \omega)-M_{\text {red }}(i \omega)\right\|_{\mathscr{H}} \\
& \leq 2 \sum_{\text {neglected Hankel SVs of } M} \sigma_{\mathrm{k}}
\end{aligned}
$$

Gap error bound

$\forall w \in \mathscr{B} \exists w^{\prime} \in \mathscr{B}_{\text {red }}$ such that

$$
\left\|w-w^{\prime}\right\| \leq\left(2_{\text {neglected Hankel SVs of } M} \sigma_{\mathrm{k}}\right)\|w\|
$$

and vice-versa.
$\begin{aligned} & \sum_{\text {neglected Hankel SVs of } M} \sigma_{\mathrm{k}} \text { small } \\ & \Rightarrow \quad \begin{array}{r}\text { as linear subspaces, }\end{array} \\ & \mathscr{B}_{\text {red }} \text { is a good approximation of } \mathscr{B} \\ & \text { in the gap metric. }\end{aligned}$

Example

LCLC circuit

LCLC circuit

system order $=4$. Reduce to $\mathbf{2 !}$

$$
\text { image } \quad\left[\begin{array}{l}
I \\
V
\end{array}\right]=\left[\begin{array}{c}
1+5 \frac{d^{2}}{d t^{2}}+4 \frac{d^{4}}{d t^{4}} \\
3 \frac{d}{d t}+6 \frac{d^{4}}{d t^{3}}
\end{array}\right] \ell
$$

stable norm-preserving image

$$
\left[\begin{array}{c}
I \\
V
\end{array}\right]=\frac{1}{1+3 \frac{d}{d t}+5 \frac{d^{2}}{d t^{2}}+6 \frac{d^{3}}{d t^{3}}+4 \frac{d^{4}}{d t^{4}}}\left[\begin{array}{c}
1+5 \frac{d^{2}}{d t^{2}}+4 \frac{d^{4}}{d t^{4}} \\
3 \frac{d}{d t}+6 \frac{d^{3}}{d t^{3}}
\end{array}\right] \ell
$$

Apply balancing algorithm \leadsto

LCLC circuit

stable norm-preserving image

$$
\left[\begin{array}{c}
I \\
V
\end{array}\right]=\frac{1}{1+3 \frac{d}{d t}+5 \frac{d^{2}}{d t^{2}}+6 \frac{d^{3}}{d t^{3}}+4 \frac{d^{4}}{d t^{4}}}\left[\begin{array}{c}
1+5 \frac{d^{2}}{d t^{2}}+4 \frac{d^{4}}{3 t^{4}} \\
3 \frac{d}{d t}+6 \frac{d^{3}}{d t^{3}}
\end{array}\right] \ell
$$

red. order $=\mathbf{2}\left[\begin{array}{l}I \\ V\end{array}\right]=\frac{1}{\frac{d^{2}}{d t^{2}}+0.1861 \frac{d}{d t}+0.3298}\left[\begin{array}{c}\frac{d^{2}}{d t^{2}}+0.3298 \\ 0.1861 \frac{d}{d t}\end{array}\right] \ell$

Recapitulation

The gap is a measure of the distance between closed linear subspaces of a Hilbert space.

Through the \mathscr{L}_{2} behavior, the gap gives a measure of the distance between controllable LTIDSs.

Recapitulation

The gap is a measure of the distance between closed linear subspaces of a Hilbert space.
Through the \mathscr{L}_{2} behavior, the gap gives a measure of the distance between controllable LTIDSs.

Observable norm-preserving image representations of LTIDSs allow to compute the gap, and lead to a model reduction algorithm with an error bound in the gap.

The lecture frames are available from/at

http://www.esat.kuleuven.be/~jwillems

The lecture frames are available from/at

http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

!!! AD MULTOS ANNOS FELICES !!!

!!! AD MULTOS ANNOS FELICES !!!

!!! AD MULTOS ANNOS FELICES !!!

!!! AD MULTOS ANNOS FELICES !!!

