

RECURSIVE COMPUTATION

OF THE MPUM

Jan C. Willems K.U. Leuven, Flanders, Belgium

Workshop on Uncertain Dynamical Systems, Awaji, Japan

July 4, 2008

System identification

System ID

Observed data: a vector time-series

$$\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots, \tilde{w}(T)) \qquad \tilde{w}(t) \in \mathbb{R}^{\mathsf{w}}$$

Observed data: a vector time-series

$$\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots, \tilde{w}(T)) \qquad \tilde{w}(t) \in \mathbb{R}^{\mathsf{w}}$$

Model class: linear time-invariant systems

$$R_0 w(t) + R_1 w(t+1) + \dots + R_L w(t+L) = 0$$

with $R_0, R_1, \cdots, R_L \in \mathbb{R}^{\bullet \times w}$

Model class: linear time-invariant systems

$$R_0 w(t) + R_1 w(t+1) + \dots + R_L w(t+L) = 0$$

Usually the model class considered is

$$P_{0}y(t) + P_{1}y(t+1) + \dots + Q_{0}u(t) + Q_{1}u(t+1) + \dots$$
$$= M_{0}\varepsilon(t) + M_{1}\varepsilon(t+1) + \dots + M_{L}\varepsilon(t+L)$$

with an input/output partition, w =

$$=\begin{bmatrix} u\\ y\end{bmatrix}$$

Usually the model class considered is

$$P_{0}y(t) + P_{1}y(t+1) + \dots + Q_{0}u(t) + Q_{1}u(t+1) + \dots$$
$$= M_{0}\varepsilon(t) + M_{1}\varepsilon(t+1) + \dots + M_{L}\varepsilon(t+L)$$

and the *e*'s: random variables to account for unobserved inputs, measurement noise, modeling errors, etc.

Provides SYSID algorithms with a 'certificate'.

Model class used today

with algorithms amenable to approximate modeling.

Observed data: a vector time-series

$$\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots, \tilde{w}(T))$$
 $\tilde{w}(t) \in \mathbb{R}^{W}$

We consider the simple case:

- 1. $T = \infty$
- 2. exact, deterministic, modeling

(with an eye towards approximations)

3. model class: linear time-invariant systems

The model class: \mathscr{L}^{w}

Linear time-invariant dynamical systems

described by difference equations

A (deterministic) dynamical system is a subset

 $\mathscr{B} \subseteq \left(\mathbb{R}^{\mathtt{w}}\right)^{\mathbb{N}}$

The family of time-series $\mathscr{B} \subseteq (\mathbb{R}^w)^{\mathbb{N}}$ is called the behavior of the model

 $\mathscr{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ belongs to the model class \mathscr{L}^{w} : \Leftrightarrow

● ℬ is linear, shift-invariant, and closed

 $\mathscr{B} \subseteq (\mathbb{R}^{\mathsf{w}})^{\mathbb{N}}$ belongs to the model class \mathscr{L}^{w} : \Leftrightarrow \mathscr{B} is linear, shift-invariant, and closed \exists matrices $R_0, R_1, \ldots, R_L \in \mathbb{R}^{\bullet \times w}$ such that $\mathscr{B} = \operatorname{all} w : \mathbb{N} \to \mathbb{R}^{\mathbb{W}}$ that satisfy $R_0 w(t) + R_1 w(t+1) + \dots + R_L w(t+L) = 0$ $\forall t \in \mathbb{N}$ i.e.,

$$R(\sigma)w=0$$

in the obvious polynomial matrix notation with

$$R(\xi) := R_0 + R_1 \xi + \cdots + R_L \xi^L$$
 and $\sigma :=$ left shift

 $\mathscr{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ belongs to the model class \mathscr{L}^{w} : \Leftrightarrow

- *B* is linear, shift-invariant, and closed
- $P R(\sigma)w = 0$
- **•** \exists matrices A, B, C, D such that \mathscr{B} consists of all w's generated by

$$x(t+1) = Ax(t) + Bu(t), \ y(t) = Cx(t) + Du(t) \quad w \cong \begin{bmatrix} u \\ y \end{bmatrix}$$

Rudolf Kalman

 $\mathscr{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ belongs to the model class \mathscr{L}^{w} : \Leftrightarrow

B is linear, shift-invariant, and closed

 $P R(\sigma)w = 0$

•
$$x(t+1) = Ax(t) + Bu(t), \ y(t) = Cx(t) + Du(t)$$
 $w \cong \begin{bmatrix} u \\ y \end{bmatrix}$

very many relevant equivalent representations

Given the observed (infinite-horizon) time-series

 $\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots) \qquad \tilde{w}(t) \in \mathbb{R}^{w}$

Given the observed (infinite-horizon) time-series

 $\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots) \qquad \tilde{w}(t) \in \mathbb{R}^{w}$

Call the model $\mathscr{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ unfalsified $:\Leftrightarrow \tilde{w} \in \mathscr{B}$

Given the observed (infinite-horizon) time-series

 $\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots) \qquad \tilde{w}(t) \in \mathbb{R}^{w}$

Call the model $\mathscr{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ unfalsified $:\Leftrightarrow \tilde{w} \in \mathscr{B}$

Call the model $\mathscr{B}_1 \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ more powerful than $\mathscr{B}_2 \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$: $\Leftrightarrow \mathscr{B}_1 \subset \mathscr{B}_2$

The more a model forbids, the better it is!

Sir Karl Popper(1902-1994)

Karl Popper

Call the model $\mathscr{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ **unfalsified** : $\Leftrightarrow \tilde{w} \in \mathscr{B}$

Call the model $\mathscr{B}_1 \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ more powerful than $\mathscr{B}_2 \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$: $\Leftrightarrow \mathscr{B}_1 \subset \mathscr{B}_2$

The most powerful unfalsified model (MPUM) in \mathscr{L}^{w}

:= the model \mathscr{B}^{\star} in \mathscr{L}^{w}

that explains the observations $\rightsquigarrow \tilde{w} \in \mathscr{B}^*$ 'unfalsified' + as little else as possible $\rightsquigarrow \mathscr{B}^*$ 'more powerful' than any other unfalsified model in \mathscr{L}^w

The MPUM = the smallest unfalsified model in \mathscr{L}^{w}

Does the MPUM in \mathscr{L}^{w} **exist?**

The MPUM in $\mathscr{L}^{\mathtt{w}}$

MPUM = (linearspan{ $\tilde{w}, \sigma \tilde{w}, \sigma^2 \tilde{w}, \ldots$ })^{closure}

linear, shift-invariant, closed $(\Rightarrow \in \mathscr{L}^{w}!)$

The MPUM in $\mathscr{L}^{\mathtt{w}}$

MPUM = (linearspan{ $\tilde{w}, \sigma \tilde{w}, \sigma^2 \tilde{w}, \ldots$ })^{closure}

linear, shift-invariant, closed ($\Rightarrow \in \mathscr{L}^{w}$!)

Our pbm: Given the observed (infinite horizon) time-series

$$\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots) \qquad \tilde{w}(t) \in \mathbb{R}^{W}$$

compute (a representation of) the MPUM in \mathscr{L}^{w} that generated these observations.

This is what is meant by 'exact', 'deterministic' modeling

The annihilators

Observations

$$\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots) \qquad \tilde{w}(t) \in \mathbb{R}^{W}$$

Look through the window

for weighted convolution sums that annihilate \tilde{w}

$$a_0 \tilde{w}(t) + a_1 \tilde{w}(t+1) + \dots + a_\Delta \tilde{w}(t+\Delta) = 0, \quad a_k \in \mathbb{R}^{1 \times w}$$

Observations

$$\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots) \qquad \tilde{w}(t) \in \mathbb{R}^{w}$$

Look through the window

for weighted convolution sums that annihilate \tilde{w}

$$a_0 \tilde{w}(t) + a_1 \tilde{w}(t+1) + \dots + a_\Delta \tilde{w}(t+\Delta) = 0, \quad a_k \in \mathbb{R}^{1 \times w}$$

$$\rightsquigarrow$$
 'annihilator' $a(\xi) = a_0 + a_1 \xi + \dots + a_\Delta \xi^\Delta \in \mathbb{R}[\xi]^{1 \times w}$

 \rightarrow the 'Hankel matrix of the data' emerges

Hermann Hankel

Finding the annihilators ⇔ compute the left kernel of the data Hankel matrix

this left kernel is $\{0\}$ or ∞ -dimensional ...

The module of left annihilators

We identify elements of the left kernel with vector polynomials

 $\cong \quad \boldsymbol{a}(\boldsymbol{\xi}) = a_0 + a_1 \boldsymbol{\xi} + \dots + a_\Delta \boldsymbol{\xi}^\Delta \in \mathbb{R}[\boldsymbol{\xi}]^{1 \times \mathbf{w}}$

 a_1

 a_0

Closed under addition

$$\begin{bmatrix} a_0 & \cdots & a_\Delta & 0 & \cdots \end{bmatrix}$$

$$\begin{array}{ccccc} \tilde{w}(1) & \cdots & \tilde{w}(t'') & \cdots \\ \tilde{w}(2) & \cdots & \tilde{w}(t''+1) & \cdots \\ \tilde{w}(3) & \cdots & \tilde{w}(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(t') & \cdots & \tilde{w}(t'+t''-1) & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right] = 0$$

Closed under addition

$$\begin{bmatrix} a_0 & \cdots & a_\Delta & 0 & \cdots \end{bmatrix}$$
$$\begin{bmatrix} b_0 & \cdots & b_\Delta & 0 & \cdots \end{bmatrix}$$

$$\begin{split} \tilde{w}(1) & \cdots & \tilde{w}(t'') & \cdots \\ \tilde{w}(2) & \cdots & \tilde{w}(t''+1) & \cdots \\ \tilde{w}(3) & \cdots & \tilde{w}(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(t') & \cdots & \tilde{w}(t'+t''-1) & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ \end{split} = 0$$

Closed under addition

$$\begin{bmatrix} a_0 & \cdots & a_\Delta & 0 & \cdots \end{bmatrix}$$
$$\begin{bmatrix} b_0 & \cdots & b_\Delta & 0 & \cdots \end{bmatrix}$$
$$\downarrow$$
$$a_0 + b_0 \cdots a_\Delta + b_\Delta & 0 & \cdots \end{bmatrix}$$

$$\begin{split} \tilde{w}(1) & \cdots & \tilde{w}(t'') & \cdots \\ \tilde{w}(2) & \cdots & \tilde{w}(t''+1) & \cdots \\ \tilde{w}(3) & \cdots & \tilde{w}(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(t') & \cdots & \tilde{w}(t'+t''-1) & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ \end{split} = 0$$

 $\begin{bmatrix} a_0 & a_1 & \cdots & a_\Delta & 0 & 0 & \cdots \end{bmatrix} \qquad \begin{bmatrix} \tilde{w}(2) \\ \tilde{w}(3) \\ \vdots \\ \vdots \\ \end{bmatrix}$

and under shifting

$$\begin{bmatrix} \tilde{w}(1) & \cdots & \tilde{w}(t'') & \cdots \\ \tilde{w}(2) & \cdots & \tilde{w}(t''+1) & \cdots \\ \tilde{w}(3) & \cdots & \tilde{w}(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(t') & \cdots & \tilde{w}(t'+t''-1) & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} = 0$$

 $\begin{bmatrix} a_0 & a_1 & \cdots & a_\Delta & 0 & 0 & \cdots \end{bmatrix}$ $\downarrow \downarrow$ $\begin{bmatrix} 0 & a_0 & \cdots & a_{\Delta-1} & a_\Delta & 0 & \cdots \end{bmatrix}$

and under shifting

$$\begin{bmatrix} \tilde{w}(1) & \cdots & \tilde{w}(t'') & \cdots \\ \tilde{w}(2) & \cdots & \tilde{w}(t''+1) & \cdots \\ \tilde{w}(3) & \cdots & \tilde{w}(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(t') & \cdots & \tilde{w}(t'+t''-1) & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} = 0$$
$$\begin{array}{l} a,b \in \mathbb{R}\left[\xi\right]^{1 \times w} \\ a(\xi) = a_0 + a_1 \xi + \dots + a_\Delta \xi^\Delta \quad \in \text{left kernel} \\ b(\xi) = b_0 + b_1 \xi + \dots + b_\Delta \xi^\Delta \quad \in \text{left kernel} \\ \Rightarrow \alpha a(\xi), \ a(\xi) + b(\xi) \quad \text{and} \quad \xi a(\xi) \quad \in \text{left kernel} \end{array}$$

$$\begin{aligned} a(\xi) &= a_0 + a_1 \xi + \dots + a_\Delta \xi^\Delta &\in \text{left kernel} \\ b(\xi) &= b_0 + b_1 \xi + \dots + b_\Delta \xi^\Delta &\in \text{left kernel} \\ &\Rightarrow \alpha a(\xi), \ a(\xi) + b(\xi) \quad \text{and} \quad \xi a(\xi) &\in \text{left kernel} \end{aligned}$$

 \Rightarrow The left kernel is an $\mathbb{R}[\xi]$ -submodule of $\mathbb{R}[\xi]^{1 \times w}$

$$\begin{aligned} a(\xi) &= a_0 + a_1 \xi + \dots + a_\Delta \xi^\Delta &\in \text{left kernel} \\ b(\xi) &= b_0 + b_1 \xi + \dots + b_\Delta \xi^\Delta &\in \text{left kernel} \\ &\Rightarrow \alpha a(\xi), \ a(\xi) + b(\xi) \quad \text{and} \quad \xi a(\xi) &\in \text{left kernel} \end{aligned}$$

The left kernel is an $\mathbb{R}[\xi]$ -submodule of $\mathbb{R}[\xi]^{1 \times w}$

and therefore finitely generated \Rightarrow \exists annihilators $a(\xi), b(\xi), \cdots, z(\xi)$ 'generators' that yield all other annihilators by shifting & lin. combinations

Emmy Noether

 \cong Left kernel is effectively finite dimensional ! (dimension $\leq w$)

$$\rightsquigarrow$$
 MPUM $R(\sigma)w = 0$

How can we obtain a module basis of the left kernel of the Hankel matrix of the data?

Recursive computation of the generators

$\tilde{w} \mapsto \mathbf{left} \ \mathbf{kernel}$

Suppose we have a left annihilator of

$$\begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta-1) & \cdots \end{bmatrix}$$

Does this simplify finding other left annihilators of

Unimodular completion

<u>Lemma</u>: $R(\xi) \in \mathbb{R}^{p \times w}[\xi]$ left prime $\Leftrightarrow \exists E(\xi) \in \mathbb{R}^{(w-p) \times w}[\xi]$:

$\begin{bmatrix} R(\xi) \\ E(\xi) \end{bmatrix}$ is unimodular (det = a non-zero constant)

defining property of Hermite rings

Charles Hermite

<u>Lemma</u>: $R(\xi) \in \mathbb{R}^{p \times w}[\xi]$ left prime $\Leftrightarrow \exists E(\xi) \in \mathbb{R}^{(w-p) \times w}[\xi]$:

$$\begin{bmatrix} R(\xi) \\ E(\xi) \end{bmatrix}$$
 is unimodular

Example:
$$p = 1, w = 2,$$

$$R(\xi) = \begin{bmatrix} r_1(\xi) & r_2(\xi) \end{bmatrix} \qquad \rightsquigarrow \qquad \begin{bmatrix} r_1 & r_2 \\ -y & x \end{bmatrix}$$

$$E(\xi) = \begin{bmatrix} -y(\xi) & x(\xi) \end{bmatrix} \qquad \rightsquigarrow \qquad \begin{bmatrix} r_1 & r_2 \\ -y & x \end{bmatrix}$$

Given $r_1(\xi), r_2(\xi) \in \mathbb{R}[\xi]$, find $x(\xi), y(\xi) \in \mathbb{R}[\xi]$:

 $r_1(\xi)x(\xi) + r_2(\xi)y(\xi) = 1$ (Bézout eq'n)

Solvable iff r_1, r_2 coprime, \exists algorithms, etc.

Étienne Bézout

<u>Lemma</u>: $R(\xi) \in \mathbb{R}^{p \times w}[\xi]$ left prime $\Leftrightarrow \exists E(\xi) \in \mathbb{R}^{(w-p) \times w}[\xi]$:

$$\begin{bmatrix} R(\xi) \\ E(\xi) \end{bmatrix}$$
 is unimodular

Equivalent proposition:

For a given $\mathscr{B} \in \mathscr{L}^{w}$, there exists $\mathscr{B}' \in \mathscr{L}^{w}$ such that

$$\mathscr{B} \oplus \mathscr{B}' = (\mathbb{R}^{\mathtt{w}})^{\mathbb{N}}$$

iff ${\mathscr B}$ is controllable (in the behavioral sense).

<u>Lemma</u>: $R(\xi) \in \mathbb{R}^{p \times w}[\xi]$ left prime $\Leftrightarrow \exists E(\xi) \in \mathbb{R}^{(w-p) \times w}[\xi]$:

$$\begin{bmatrix} R(\xi) \\ E(\xi) \end{bmatrix}$$
 is unimodular

Equivalent proposition:

For a given $\mathscr{B} \in \mathscr{L}^{w}$, there exists $\mathscr{B}' \in \mathscr{L}^{w}$ such that

$$\mathscr{B} \oplus \mathscr{B}' = (\mathbb{R}^{\mathtt{w}})^{\mathbb{N}}$$

iff \mathscr{B} is controllable (in the behavioral sense).

Controllability - henceforth assumed where needed.

Recursive computation of the generators

\rightsquigarrow annihilator

$$a(\xi) = a_0 + a_1 \xi + \dots + a_{\mathbf{n}_1} \xi^{\mathbf{n}_1} \in \mathbb{R}[\xi]^{1 \times w}$$

\rightsquigarrow annihilator

$$a(\xi) = a_0 + a_1 \xi + \dots + a_{n_1} \xi^{n_1} \in \mathbb{R} \left[\xi\right]^{1 \times w}$$

omplete $a(\xi) \mapsto \frac{E_a(\xi)}{E_a(\xi)} \in \mathbb{R} \left[\xi\right]^{(w-1) \times w}, \begin{bmatrix} a(\xi) \\ E_a(\xi) \end{bmatrix}$ unimodular

Note that \tilde{e} is (w-1)-dimensional.

Yields $b(\xi)$ and a second annihilator $b(\xi)E_a(\xi)$ for \tilde{w} Complete $b \rightsquigarrow E_b$, compute $\tilde{\tilde{e}} = E_b(\sigma)\tilde{e}$, find annihilator cYields a third annihilator $c(\xi)E_b(\xi)E_a(\xi)$ for \tilde{w} , etc.

Application to left kernel computation

Recursively,

$$egin{array}{lll} ilde{w}\mapsto a(\xi)\mapsto E_a(\xi)\mapsto E_a(\sigma) ilde{w}&= ilde{e}_{E_a}\ ilde{e}_{E_a}\mapsto b(\xi)\mapsto E_b(\xi)\mapsto E_b(\sigma) ilde{e}_{E_a}= ilde{e}_{E_b}\ dots\ dots\$$

 \rightsquigarrow annihilators $a, bE_a, cE_bE_a, \ldots, zE_y \cdots E_bE_a$

 $\Rightarrow \quad \mbox{a module basis of the left kernel} \\ \quad \mbox{obtained by computing } p \mbox{ times a left kernel vector.} \\$

Le coup de grâce

\rightsquigarrow MPUM

$$\begin{bmatrix} a \\ bE_a \\ cE_bE_a \\ \vdots \\ zE_y \cdots E_bE_a \end{bmatrix} (\sigma) w = 0$$

Le coup de grâce

Amenable to approximate LA LS SVD implementation by examining the SV's of the truncated Hankel matrices

Concluding Remarks

Exact deterministic modeling ~> MPUM

- Exact deterministic modeling ~> MPUM
- The left kernel of a Hankel matrix is a polynomial module therefore finitely generated.

Hence 'effectively' finite dimensional

- Exact deterministic modeling ~> MPUM
- The left kernel of a Hankel matrix is a polynomial module therefore finitely generated.
 Hence 'effectively' finite dimensional
- A basis can be computed recursively using the completion lemma and error propagation

- Exact deterministic modeling ~> MPUM
- The left kernel of a Hankel matrix is a polynomial module therefore finitely generated.
 Hence 'effectively' finite dimensional
- A basis can be computed recursively using the completion lemma and error propagation
- Requires computing p vectors in kernel of Hankel matrix of the 'errors'.

Summary

- Exact deterministic modeling ~ MPUM
- The left kernel of a Hankel matrix is a polynomial module therefore finitely generated.
 Hence 'effectively' finite dimensional
- A basis can be computed recursively using the completion lemma and error propagation
- Requires computing p vectors in kernel of Hankel matrix of the 'errors'.
- These computations can be executed (approximately) using numerical LA.

- Exact deterministic modeling ~> MPUM
- The left kernel of a Hankel matrix is a polynomial module therefore finitely generated.
 Hence 'effectively' finite dimensional
- A basis can be computed recursively using the completion lemma and error propagation
- Requires computing p vectors in kernel of Hankel matrix of the 'errors'.
- These computations can be executed (approximately) using numerical LA.
- Note the crucial role of the (Hermite) module structure!

● *T* finite, missing data

- *T* finite, missing data
- Multiple observed time-series

- *T* finite, missing data
- Multiple observed time-series
- Lack of controllability

- *T* finite, missing data
- Multiple observed time-series
- Lack of controllability
- Orthogonality in the matrix completion lemma.

Given $\mathscr{B} \in \mathscr{L}^{w}$, controllable, find $\mathscr{B}' \in \mathscr{L}^{w}$ such that

$$\mathscr{B} \oplus \mathscr{B}' = \left(\mathbb{R}^{\mathtt{W}}\right)^{\mathbb{N}}$$

with

$$\mathscr{B} \cap \ell_2(\mathbb{N}, \mathbb{R}^{\mathsf{w}}) \perp \mathscr{B}' \cap \ell_2(\mathbb{N}, \mathbb{R}^{\mathsf{w}})$$

 \rightsquigarrow slightly more complex, better behaved algorithms.

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems

From Ivan's Ph.D. dissertation

Markovsky, I., et al., *Exact and Approximate Modeling of Linear Systems: A Behavioral Approach*, SIAM series on Mathematical Modeling and Computation, volume 11, 2006.

Comparison

Performance

ш	Data ast name	T			
#	Data set name	1	m	p	l
1	Data of the western basin of Lake Erie	57	5	2	1
2	Data of Ethane-ethylene column	90	5	3	1
3	Data of a 120 MW power plant	200	5	3	2
4	Heating system	801	1	1	2
5	Data from an industrial dryer	867	3	3	1
6	Data of a hair dryer	1000	1	1	5
7	Data of the ball-and-beam setup in SISTA	1000	1	1	2
8	Wing flutter data	1024	1	1	5
9	Data from a flexible robot arm	1024	1	1	4
10	Data of a glass furnace (Philips)	1247	3	6	1
11	Heat flow density through a two layer wall	1680	2	1	2
12	Simulation of a pH neutralization process	2001	2	1	6
13	Data of a CD-player arm	2048	2	2	1
14	Data from an industrial winding process	2500	5	2	2
15	Liquid-saturated heat exchanger	4000	1	1	2
16	Data from an evaporator	6305	3	3	1
17	Continuous stirred tank reactor	7500	1	2	1
18	Model of a steam generator	9600	4	4	- - p.10
		1			

Comparison

Performance

Compare the misfit on the last 30% of the outputs and the execution time for computing the ID model from the first 70% of the data.

Misfit

Performance

– p.13/37

