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Models and Behaviors

Jan C. Willems
K.U. Leuven, Flanders, Belgium

Aveiro, Portugal September 24, 2008
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Where do | come from?
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= =

‘Elriansl Erasmus de la Vallee Poussin Lemare
1459-1523 1469-1536 1866—-1962 1894—-196¢€
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Lecture
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Mathematical models

The behavior

Dynamical systems

A bit of history

Linear time-invariant systems
Kernel representations
Latent variables

The elimination theorem
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Mathematical models

A bit of mathematics & philosophy
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Assume that we have a ‘real’ phenomenon that produces

‘events’, ‘outcomes.

Phenomenor

event, outcome
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Assume that we have a ‘real’ phenomenon that produces
‘events), ‘outcomes.

Phenomenon

event, outcome

We view a deterministic mathematical model for a
phenomenon as a prescription of which eventsan occur,
and which eventscannotoccur.
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>

In the first part of this lecture, we develop this point of
view into a mathematical formalism.
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>

>

In the first part of this lecture, we develop this point of
view into a mathematical formalism.

In the second part, we apply this formalism to dynamical
systems, and zoom in on linear time-invariant
differential systems.

—n. 8/



The universum
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The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?
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The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

>

>

Do the events belong to a discrete set?
~» discrete event phenomena

Are the events real numbers, or vectors of real numbers?
~»  continuous phenomena

Are the events functions of time?
~» dynamical phenomena

Are the events functions of space, or time & space?
~» distributed phenomena
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The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

The set where the events belong to is called tr universum ,
denoted by% .
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Examples

» Words in a natural language
% ={a,b,c,...,Xy,z}"
with n = the number of letters in the longest word
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Examples

» The pressure, volume, guantity, and temperature of a gas
In a vessel

(pressure, volume, quantity, temperature)

~ Y = (0,00) x (0,00) x (0,00) x (0, 00)
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Examples

» Planetary motion

SUN

The events are maps fromR to R3

~ U ={w:R—R3}

PLANET
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Examples Bl ANET

» Planetary motion

SUN

The events are maps fromR to R3

~ U ={w:R — R} :(IR{?’)R
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AB := the set of maps from B to A

i.e. AB:={f:B— A}
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Dynamical phenomene

» The voltage across and the current into an electrical port
with ‘dynamics’

1

V

The events are maps fronR to R?

~ U ={V,]):R>RY = (R®)"
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» Temperature profile of, and heat absorbed by, a rod

q(x,1)
W

X ¢ T(X,t)

Events: maps from R xR to [0,0) xR

-~ U = {(T,q): R> = [0,00) x R} = (IR{Z)R2
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A model Is a subset: the ‘behavior]
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Given is a phenomenon with universunv/Z .
Without further scrutiny, every event in %/ can occur.

After studying the situation, the conclusion is reached thathe
events are constrained, that some laws are in force.
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Given is a phenomenon with universunv/Z .
Without further scrutiny, every event in %/ can occur.

After studying the situation, the conclusion is reached thathe
events are constrained, that some laws are in force.

Modeling means that certain events are declared to be
Impossible, that they cannot occur.

The possibilities that remain constitute what we call the
‘behavior’ of the model.
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Given is a phenomenon with universunv/Z .
Without further scrutiny, every event in %/ can occur.

After studying the situation, the conclusion is reached thathe
events are constrained, that some laws are in force.

A model Is a subset%# of %

A IS called the behavior of the model
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The behavior

allowed, according to the model

forbidden

possible events
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The behavior & scientific theory

Every “good” scientific theory is prohibition:
it forbids certain things to happen...
The more a theory forbids, the better it is.

Karl Popper

Conjectures and Refutations:

The Growth of Scientific Knowledge
Routhledge, 1963

Karl Popper
(1902-1994)
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Examples
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Examples

» Words in a natural language
% ={ab,c,...,xy,z}"
with n = the number of letters in the longest word

2% = all words recognized by the spelling checker.
For example, SPQR¢ Z.

% is basically defined by enumeration, by listing its
elements.
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» 32-bit binary strings with a parity check.
U =1{0,1}3

B = {alaz---aglagz |a, € {0,1} and as»
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» 32-bit binary strings with a parity check.

U = {0,132
(mod 2 31
B=(aar---azjas | a; € {0,1}and az; = Z Ay
k=1

2% can be expressed in many other ways. For example,

32

(mod 2
B ={aay---aziazz| &, € {0,1} and Z a = 0}
k=1

( - ay - - by T - ag - "1 0 0 - 07 [b17)Y

a by a 11 0 - 0 by
B=L1:113]:|st|:|=|: .. e

dzj b3p dzj O 0o - -1 1 b3p
| La32. | baq_ _ a3 | 0 0 - 0 —1J Lbgd )
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» 32-bit binary strings with a parity check.

U = {0,132
(mod 2 31
B=(aar---azjas | a; € {0,1}and az; = Z Ay
k=1

2% can be expressed in many other ways. For example,

32

(mod 2
B ={aay---aziazz| &, € {0,1} and Z a = 0}
k=1

( - ay - - by T - ag - "1 0 0 - 07 [b17)Y

a by a 11 0 - 0 by
B=L1:113]:|st|:|=|: .. e

dzj b3p dzj O 0o - -1 1 b3p
| La32. | baq_ _ a3 | 0 0 - 0 —1J Lbgd )
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Examples

» The pressure, volume, guantity, and temperature of a gas
In a vessel

(pressure, volume, quantity, temperature)

U = (0,00) x (0,00) x (0,00) x (0,0)
Gaslaw: #Z={(PV,N,T)e Z | PV =NT } #{ e
Vol d

(Y
v
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Dynamical phenomene

» Planetary motion U = (R3)R

Kepler's laws ~» %

edped-aoidoyy

<
z
<.
[aW .;-5
z
<
ar=:

epler | = [YHAIPLL.\
1571-1630 | o cga =




. R
» Planetary motion U = (R
PLAN ET 34 months

Kepler's laws ~» % = the orbits R — R?3 that satisfy:

K.1 periodic, ellipses, with the sun in one of the foci;

K.2 the vector from sun to planet sweeps out equal areas
In equal time;

K.3 the square of the period
divided by the third power
of the major axis is the
same for all the planets

MAGYAR POSTA

epler s -\
15 116"50 s "




Dynamical phenomene

» The second law

unit mass
position q
force F
Isaac Newton
by William Blake
U = (R?x R?’)R

%:{(F,q):R->R3><R3| Fngzzq}

—n. 26/



» The temperature profile of, and heat absorbed by, a rod

q(x,1)
W

X ¢ T(X,t)

Events: maps fromR xR to [0,0) xR

% = {(T.q) : R2— [0,00) x R}

2
%= {(T,0):R?— [0,00) xR §T = 2T +q}
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Behavioral models fit the tradition of modeling, but
modeling has not been approached in this manner in a

deterministic setting.

The behavior captures the essence of what a model
articulates.

The behavior is all there is.
Equivalence of models, properties of models,
symmetry, optimality,
system identification (modeling from measured data),
etc., must all refer to the behavior.
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A model deals with events
The events belong to a universumy/

A model is specified by its behavior#,
a subset of the event set/

In dynamical systems, the events are functions of
time and the behavior % is hence a family of
time-trajectories.



Dynamical system:

~

D
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In dynamical systems, ‘events’ are maps, with the time axissa
domain, hence functions of time.

It IS convenient to distinguish in the notation

the domain of the maps, the time set
and their codomain, the signal space
the set where the functions take on their values.
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In dynamical systems, ‘events’ are maps, with the time axissa
domain, hence functions of time.

It IS convenient to distinguish in the notation

the domain of the maps, the time set

and their codomain, the signal space
the set where the functions take on their values.

The behavior of a dynamical system is usually described by a
system of ordinary differential equations (ODES) or
difference equations.

In contrast to distributed phenomena
~» partial differential equations (PDES)

—n. 31/



A dynamical system (T,W, %)
TCR ‘time set’
W ‘sighal space’
#CW!'  the ‘behavior’
a family of trajectories T — W
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A dynamical system (T,W, %)
TCR ‘time set’
W ‘sighal space’
#CW!'  the ‘behavior’
a family of trajectories T — W

mostly, T=R,R,,Z,orN(=ZZ,),
and, in this lecture, W = R¥,
% is a family of
(finite dimensional) vector-valued time trajectories

—n. 32/



A dynamical system= (T,W, %)
TCR ‘time set’
W ‘sighal space’
#CW!'  the ‘behavior’
a family of trajectories T — W

W:T-R'eA &
w: T — RY ¢ & < ‘the model forbids w’
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A dynamical system (T,W, %)
TCR ‘time set’
W ‘sighal space’
#CW!'  the ‘behavior’
a family of trajectories T — W

W:T-R'eA &
w: T — RY ¢ & < ‘the model forbids w’

T =R or R, ~» ‘continuous-time’ systems and ODEs
T=ZorN ~‘discrete-time’ systems and difference eqn’s

We deal with the casel’ = R only.
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Systems
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vvyyvyy

open
Interconnected
modular
dynamic
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» open

» Interconnected

» modular

» dynamic
Theme:

develop a suitable mathematical language

—pn. 35/



Open, connected, modular, dynamic
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ENVIRONMENT

SYSTEM

Boundary

Systems interact with their environment
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Architecture

-LT

i

Systems consist of subsystems, interconnected
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Systems consist of an interconnection dbuilding blocks’

=

-
- ]
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There is a delay, an after-effect, memory

time
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The development of the notion

of a dynamical system

a brief causerie
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1. | Get the physics right

2. The restis mathematics

R.E. Kalman

Opening lecture

IFAC World Congress
Prague, July 4, 2005
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1. | Get the physics right

2. The restis mathematics

R.E. Kalman

Opening lecture

_ - _ _ IFAC World Congress
Prima la fisica, poi la matematica Prague, July 4, 2005
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How it all began ...
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Planet‘W’???

How, for heaven’s sake, does it move?
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b 1
[ i 4
|2 = | 3
| v 4 ‘
b |- el
@) Johannes

= Kepler | ¢

b |= 15711630 | &

p .

Johannes Kepler

1571-1630
PLAN ET 34 months
...... } C o
90 D ’ .
B .. N
SUN Af//’ -------- o 1 year

L3
L3
..........
------
..........

Kepler's laws:
Ellipse, sun in focus;
= areas in = times;
(period)? = (diameter)?




The equation of the planet

Consequence:

N>

acceleration = function of position and velocity

2
SW(t) = AW(t), Sw()

via calculusand calculation

Isaac Newton (1643-1727)
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The equation of the planet

Consequence:
acceleration = function of position and velocity

2
Sw(t) = A(W(D), Sw(t)

~» Via calculusand calculation

Hypothese

d2 1W('[ )
SW(t) + 255 =0 e
dt 2 ( ) I |W(t ) ‘ 2 NE/f} i @) U % $ : fing

e N
VD

=~ another representation
of K.1, K.2, K.3

Isaac Newton (1643-1727)
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2
2-nd law  F'(t) = mSsw(t)

L)
w(t)|?

3-rdlaw  F'(t)+F”(t) =0

gravity F”’(t)=m

d_2 | 1W(t) _
dtZW(t) | wi(t)|? =0
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2-nd law  F'(t) = m35w(t)

Lt

Jw(t)[2

3-rdlaw  F'(t)+F”(t) =0

gravity  F’(t) =m— >

Isaac Newton y William Blake

4
EW(t) + 20 = 0
dt2 Cw(t)|]2 T

Viewing as interconnection is the key to generalization
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The paradigm of closedsystems



K.1, K.2, & K.3

d2 1
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K.1, K.2, & K.3

d2 vy
~ dtZW(t) T ENGIE 0

~ with x= (w, Sw) &x= f(X)
~+ generalization $x= f(x)

~ ‘dynamical systems’, flows

~» flows as paradigm of dynamics ~» closed systems

Motion determined by internal initial conditions.
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George Birkhoff (1884-1944)

Stephen Smale (1930-

)
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A dynamical systenms defined by
a state spaceX and
a state transition function
@: ---suchthat ---

@(t,x) = state at timet starting from state x
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A dynamical systenms defined by \

a state spaceX and .
a state transition function
@: ---suchthat ---
@(t,x) = state at timet starting from state x \

This framework of closed systems is universally

used for dynamics in mathematics and physics

—n. 51/



How could they forget Newton’s2"d law,
about Maxwell’'s eg’ns,
about thermodynamics,
about tearing & zooming & linking, ...7?
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How could they forget Newton’s2"d law,
about Maxwell’'s eg’ns,
about thermodynamics,

about tearing & zooming & linking, ..."

Reply: assumefixed boundary conditions’
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How could they forget Newton’s2"d law,
about Maxwell’'s eg’'ns,
about thermodynamics,

about tearing & zooming & linking, ...~

Reply: assumefixed boundary conditions’

ENVIRONMENT

SYSTEM

Boundary

~» 10 model a system, we have to model also the environment!
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How could they forget Newton’s2"d law,
about Maxwell’'s eg’'ns,
about thermodynamics,
about tearing & zooming & linking, ...?

Reply: assumefixed boundary conditions’

ENVIRONMENT

SYSTEM

Boundary

~» 10 model a system, we have to model also the environment!

Chaos theory, cellular automata, sync, etc., function in tfs
framework ...
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Inputs and outputs

meanwhile, in engineering...

—pn. 53/



stimulus

cause
Input

Input/output systems

SYSTEM

response

effect
output
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The originators

Oliver Heaviside (1850-1925) Norbert Wiener (1894-1964)

and the many electrical circuit theorists ...
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output

input SYSTEM

u: iInput, y. output,

SISO, LTl case ~ G(s) = % transfer functions,
Impedances, admittances.
Circuit analysis and synthesis

Classical control
Bode, Nyquist, root-locus.



input

SYSTEM

Y(t) = Joor — H(t —t)u(t') dt’

output
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input SYSTEM output

) = o W HE Ut ot
/ Ha (t —t)u(t’) dt'+

/ /ti Ha(t —t' t' —t")u(t ) u(t”) dt'dt” + -

Awkward nonlinear — far from the physics
Fail to deal with ‘initial conditions’.
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Input/state/output systems

Around 1960: aparadigm shift to

%X: f(X7 U), y= g(X7 U)

Rudolf Kalman (1930-

)
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Around 1960: aparadigm shift to

%X: f(Xa U), y= g(X, U)

open

Incorporates nonlinearities, time-variation
models many physical phenomena

vvyyvyyvVvyy

deals with initial conditions Rudolf Kalman (1930-

)
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State transition function:
@(t,x,u) . state reached at timet from x using input u.

dx = f(x,u), y=g(x,u)

\X
Read-out function: \

g(x,u) : output value with state x and input value u.
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The input/state/output paradigm

The input/state/output view turned out to be
very effective and fruitful
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The input/state/output view turned out to be

vV v v V¥V

vV Vv

very effective and fruitful

for modeling

for control (stabilization, robustness, ...)

prediction of one signal from another, filtering

understanding system representations
(transfer f'n, input/state/output repr., etc.)

model simplification, reduction

system ID: models from data
etc., etc., etc.
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Linear time-invariant differential systems

LTIDSS




The dynamical system (R, R, %) ~ % is saidto be

[linear | :< [ [wi,We € #,a € R]| = [awy +W2 € A |
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The dynamical system (R, R, %) ~ % is saidto be

[linear | :< [ [wi,We € #,a € R]| = [awy +W2 € A |
[ time-invariant | :< [[we 4, o' the t-shift] = [o'we Z Vt € R]]

(g f)(t") = f(t' +1) )

o
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The dynamical system (R, R, %) ~ % is saidto be

[linear | :< [ [wi,We € #,a € R]| = [awy +W2 € A |

[ time-invariant | :< [[we 4, o' the t-shift] = [o'we Z Vt € R]]

| differential || :< | % is ‘described’ by an ODE].
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This definition of linearity has as a special case
u—y=>L(u) Lalinearmap

U € a space of inputsy € a space of outputs, w=

B ={w= y ly=L(u)} = the ‘graph’ of L
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This definition of linearity has as a special case

u—y=>L(u) Lalinearmap

U € a space of inputsy € a space of outputs, w= ; .
B ={w= ; ly=L(u)} = the ‘graph’ of L

But, a dynamical system, even an input/output system,
IS seldom an input/output| map|!

Response depends on initial condition, as well as on driving
iInput.
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The dynamical system(R,R", %) is

a linear time-invariant differential system (LTIDS) <
the behavior consists of the set of solutions of a system of
linear, constant coefficient, ODEs
Row+ R dw+ + R drlw—O
Lt i R
Ro,R1, -, R, € R**¥ real matrices that parametrize the
system, andw : R — R".
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The dynamical system(R,R", %) is

a linear time-invariant differential system (LTIDS) <

the behavior consists of the set of solutions of a system of
linear, constant coefficient, ODEs

d d®
R — .-+ R,—w=0.
Row + 1dtW+ + dtnw

Ro,R1, -, R, € R**¥ real matrices that parametrize the
system, andw : R — R". In polynomial matrix notation

~> R(%)W:O

a polynomial matrix, usually ‘wide’ or square.

—n. 65/



We should define what we mean by a solution of

R(§)w=0
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We should define what we mean by a solution of
d
R(g)w=0

For ease of exposition, we tak& (R, R") solutions.
Hence the behavior defined is

B = {we ¢ (R,R") | R(%)w:o}
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We should define what we mean by a solution of
d
R(g)w=0

For ease of exposition, we tak& (R, R") solutions.
Hence the behavior defined is

B = {we ¢ (R,R") | R(%)w:o}

% =kernel (R(&)) ‘kernel representatiohof this .

Notation:
Bec L | LY =the LTIDSs with w variables

BeL ZL*=thelTIDSs.




There are numerous representations of LTIDSs

» Asthe solutions of R(Z)w=0 Re R[&]**" (our def.)
R(&): €™ (R,RCON MR _, @ (R R oW MR)) ‘kernel repr'n’
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There are numerous representations of LTIDSs

» Asthe solutions of R(Z)w=0 Re R[&]**" (our def.)
R(&): €™ (R,RCON MR _, @ (R R oW MR)) ‘kernel repr'n’
» With input/output partition

P(&)y=Q(f)u w= || detP) 0P Qproper

y
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There are numerous representations of LTIDSs

» Asthe solutions of R(Z)w=0 Re R[&]**" (our def.)
R(&): €™ (R,RCON MR _, @ (R R oW MR)) ‘kernel repr'n’
» With input/output partition
P(@)y=Q(d)u w=|!| detP) 20 iQproper

» |nput/state/output representation

A consists of allw's generated by

EX p— AX"‘ BU, y — CX_I_ Du W = ol . Kalman
born 1930
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Representations of LTIDSs

> w=M(Z)/ with M e R[E]"*
M (d ) L (R RCOI di rr(M))
¢ (R,R" oW MM)) “image repr'n’

% =image (M (%))
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w=M ()¢ with M € R[&]"

M (%) . (R,RCOI di n(M)) N

¢ (R,R" oW MM)) “image reprn’ % =i mage (M (%))
First principles models often contain ‘latent variables’
(see later)

~ R(&)w=M (%) ¢ ‘latentvariable reprn

#={w| F¢suchthat...}
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w=M (&) ¢ with MeR[E]7

M (%) . (R,RCOI di r’r’(l\/l)) N

¢ (R,R" oW MM)) “image reprn’ % =i mage (M (%))
First principles models often contain ‘latent variables’
(see later)

~ R(&)w=M (%) ¢ ‘latentvariable reprn
#={w| F¢suchthat...}
Special case:fFx=Ax+Bw  DAESs

%A ={w| dxsuchthat...}
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>

representations withrational symbols
R(&)w=0,w=M (%), etc.

with RM € R (&)***, or proper stable rational, etc.
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representations withrational symbols

R(&)w=0,w=M (%), etc.

with RM € R (&)***, or proper stable rational, etc.
and then, there are theconvolution representations

—+00
H({t)w(t —t")dt'=0

—00

with the kernel, input/output, image versions

y(t) = +OOH(t’)U(t—t’)dt’, w=|"

— 00
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representations withrational symbols

R(&)w=0,w=M (%), etc.

with RM € R (&)***, or proper stable rational, etc.
and then, there are theconvolution representations

—+00
H({t)w(t —t")dt'=0

—00

with the kernel, input/output, image versions

y(t) = +OOH(t’)U(t—t’)dt’, w=|"

— 00

» Rich ... but confusing!

—pn. 69/



Dynamical systemsw: > = (T, W, %) with
behavior 2 C (W) a family of time trajectories

Closed systems: awkward special case
Input/output systems: successful special case

LTIDSs: & Is the sol'n set of a system of linear
constant coefficient ODEs



L atent variables
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A model # is a subset ofZ. There are many ways to specify
a subset. For example,

» as the solution set of equations

» as animage of a map

» as aprojection
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A model # is a subset ofZ. There are many ways to specify
a subset. For example,

» as the solution set of equations
f:% —eo;, HF={w]| f(w)=0}
» asanimage of amap
f.e—>%; A={w|3Ilsuchthat w= f(/) }
» as aprojection

%extendecg % X CZ, % — {W| EI g SUCh that (W7 6) c %extended}
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A model # is a subset ofZ. There are many ways to specify
a subset. For example,

» as the solution set of equations ‘kernel representation’
f:% —eo;, HB={w]| f(w)=0}
» asanimage of amap ‘image representation’
f.e—>%; A={w]|3Ilsuchthat w= (/) }
» as aprojection ‘latent variable representation’

%extendecg % X CZ, % — {W| EI 6 SUCh that (W, 6) & %extended}

—n. 72/



—n. 73/



d d®
For example, poy+ pldty+ +pndtny
QU G Ut ﬁu W= u
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For example, u = pol+ p1%€+---+pn%€,

d d" u
y = qo€+Q1a€+“'+Qn@€a W=
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%extended
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For example,

dt

%extended

dx:Ax+Bu,y:Cx+Du, W =

—n. 75/



Combining equations with latent variables~

PextendedSPECIfied by
Pextended= 1 (W, £) | f(w,£) =0 =0}

A ={w |3 /¢ suchthat f(w,¢) =0}
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Combining equations with latent variables~

PextendedSPECIfied by
Pextended= 1 (W, £) | f(w,£) =0 =0}

A ={w |3 /¢ suchthat f(w,¢) =0}

First principles models usually come in this form.

Latent variables naturally emerge from interconnections.

—n. 76/



Example
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Two springs interconnected in serie

ii Model relation betweenL and F !!
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ii Model relation betweenL and F !

View as interconnection of two springs
L1 )

P1
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Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = pa(F) Lo = pi(R)
F = FH=F L = Li+L>
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Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = pu(F) L, = p(F)
F-=R=R L = L+l

L, F: ‘manifest variables’ Lq,F1,Lo,F: ‘latent variables’

~ L = p1(F) + p2(F)

Latent variables are easily eliminated, for this example.
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Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = pu(F) L, = p(F)
F-=R=R L = L+l

L, F: ‘manifest variables’ Lq,F1,Lo,F: ‘latent variables’

~ L = p1(F) + p2(F)

Latent variables are easily eliminated, for this example.

Inthe linear case: Li=L;+pF Ly=Li+pk
After elimination ~» L =L}+L5+ (p1+p2)F
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Two springs interconnected in parallel

'I'l Model relation between L and F !
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'I'l Model relation between L and F !

View as interconnection of two springs
L1 Lo




k
F ’ F

RN R
(Y

—

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted, and neglect the
dimensions of the interconnecting mechanism).

L1 = pu(F) L, = pi(R)
F = hRh+FkR L

|
—

I
—

N
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Model for (L,F) (assume that for the individual s
length is a function of the force exerted, and neg
dimensions of the interconnecting mechanism).

L1 = pu(F) L, = pi(R)
F=Rh+FR L =L =L

orings the

ect the

L, F: ‘manifest variables’ Lq,F1,Lo, F: ‘latent variables’

~ |(B={(LF)|Fa:L=pi(a), p(a)=p2(F-a)}

Latent variables are not easily eliminated, for this exampg,
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Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted, and neglect the
dimensions of the interconnecting mechanism).

L1 = pu(F) L, = pi(R)
F =FRh+FkR L =L =L

L, F: ‘manifest variables’ Lq,F1,Lo, F: ‘latent variables’
~ | #B={(LF)[Ja:L=pm(a), pi(a)=px(F—a)}

Latent variables are not easily eliminated, for this exampg,
unless we are in the linear casel; = L] + p1F1,Lo = L5 + pob

imi ' __ _P2 | x P1 | * P1P2
After elimination ~ L = 72211 + 5215+ 22 F



A dynamic example




First principles models invariably contain (many) auxiliary
variables in addition to the variables whose behavior we wis
to model.
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First principles models invariably contain (many) auxiliary
variables in addition to the variables whose behavior we wis
to model.

Can these latent variables be eliminated?

We illustrate the emergence of latent variables and the
elimination question by means of an extensive example in the
dynamic systems case.
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Model the port behavior of

by tearing, zooming, and linking.
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Model the port behavior of

by tearing, zooming, and linking.

In each vertex there is an element.>» module equations
Involving 2 variables (potential, current) for each terminal,

In each edge a connection- interconnection equations
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B B @

connector 1 resistor Re inductor L

T

capacitorC resistor R connector 2
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vertex 1:

vertex 2:
vertex 3:
vertex 4:

vertex 5:

vertex 6:

VconnectoI,l — VconnectoI,Z — VconnectoI,B
Iconnectoi,l + Iconnect0{,2 + |connect0{,3 =0
VRC,l _VF\’C,Z = Rc||:\>c71, IRC,]-—'_ IRC,Z =0
L%'L,l =WV1—V2 lLa+lL2=0

C% (Mc1—Vez2) =lc1, Ici+1c2=0
VRi1—VrR2=RLIRr 1

IR 1+Ir 2=0

Vconnectog,l — Vconnectoi,z — Vconnectog,B

IconnectOf,l T Iconnectog,Z T Iconnectog,B =0
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current left current right
R —

potential left potential right

Interconnection of two electrical terminals

Interconnection equations

potential left = potential right

current left + currentright =0
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edge

edge d.

edge €

edge f:

edge g.
edge h:

Vconnectori
Vconnector@

Ve

1
VRC,l
Vconnectorz

Vconnectora

|RC,1 + IconnectorJZ
|L1 + |connector§
IRe2 Tl

I|—2 + IRL,l

|C2 + Iconnectorz

|RL,2 + Iconnectorg

o O O O O O
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Manifest variable assignment

Vexternalport — Vconnecto;[,l — Vconnectog,S

Iexternalport — Iconnector1
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vertex 1:

vertex 2:
vertex 3:
vertex 4:

vertex 5:

vertex 6:

VconnectoI,l — VconnectoI,Z — VconnectoI,S
|connect01j,1 + IconnectoI,Z + IconnectoI,S =0
VRe1 = VRe2 =Relre 15 IRg, 1t IRe,2=0
L&li=Vi1—V2 ILi+lL2=0

C& (Vca—Vez) =lc1, lci+lce=0
VR1—Vr2=RlRr 1

IRL71 + IRL72 =0

Vconnectog,l — Vconnectog,z — Vconnectog,3

lconnectos,1 + lconnectos,2 + lconnectos,3 = 0

Vexternalport — Vconnect(){,l —Vconnecto_j_s,S

edgec  Vr.; = Vconnectorz
IRes  +  lconnectorp
edged: V, = Vconnector}
I, +  lconnector3
edgee Vr., = Vg
IR, + o
edgef. = VR,
L, + Irs
edgeg = Vconnectorg
I(;2 + |connector2
edgeh:  Vr, = Vconnectorz
IR, + lconnectorg
Iexternalport — Iconnector1
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In tOtaI 28 Iatent Varlab|eS VCOﬂﬂGCtO;[,].) . e 7VRC,17 IRC,l’ c ey Iconnectof73

2 manifest variables, (Vexternalport Iexternalpor)
24 equations.

Which equation(s) govern(s) (Vextemalport lexternalpor)

A constant-coefficient linear differential equation that does
not contain the branch variables?

Does the fact that all the equationsefore elimination of the
latent (auxiliary) variables are constant-coefficient lirear
differential equations imply the sameafter elimination?
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The port defines the systent = (R,R?, %) with behavior %
specified by:

L
Casel CRc# —

R
(% + <1+ %) CRC RCIIQ_L ;I;) Vexternalport
— (1+CRCE> ( I;_th) Rclexternalport
Case2 CRc = L
R

d

d
(% +CRc— dt ) Vexternalport— (1 T CRC) Rclexternalport
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The elimination theorem
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Theorem
Z* Is closed under projection
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Theorem
Z* Is closed under projection

Consider
B = {(W1,W2) : R — R"1 x R¥2 | (W,W>) € £}
Define the projection

P#1={w1:R— R"|dwy: R — R" such that (wy,w,) € £}

The theorem states thal| [Z € £L"11¥2] = [#, € L™

This Is, as seen, important in modeling.



[[ (X = Ax+Bu,y = Cx+Du]]:>[[P<CCIIt>y:Q(%>u]]

[[E%x: Ax+Bw| = [R (%) w = 0]

linear DAE’s allow elimination of nuisance variables

(g uu(§)1 - (oo

elimination of latent variables in LTIDSs is always possibé.

[[W:M<d)£]] = [[R’( )W 0]
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Models are usually given as equations

First principles models invariantly contain
(many) latent variables

In LTIDSS, latent variables can be completely
eliminated



Summary
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» A modelis a subsetZ of a universum % .
A 1s the behavior of the model.
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» A modelis a subsetZ of a universum % .
A 1s the behavior of the model.

» First principles models contain latent variables.
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A model Is a subsetZ of a universum % .
A 1s the behavior of the model.

First principles models contain latent variables.

LTIDSs are those described by linear,
constant-coefficient differential equations

~ R(&)w=0,Re R[&]"*"
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A model Is a subsetZ of a universum % .
A 1s the behavior of the model.

First principles models contain latent variables.

LTIDSs are those described by linear,
constant-coefficient differential equations

~ R(&)w=0,Re R[&]"*"

The elimination theorem: .Z* is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODES.
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A model Is a subsetZ of a universum % .
A 1s the behavior of the model.

First principles models contain latent variables.

LTIDSs are those described by linear,
constant-coefficient differential equations

~ R(&)w=0,Re R[&]"*"

The elimination theorem: .Z* is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODES.

Behavioral systems are fundamental.
Input/output and input/state/output systems are
Important special cases.
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A model Is a subsetZ of a universum % .
A 1s the behavior of the model.

First principles models contain latent variables.

LTIDSs are those described by linear,
constant-coefficient differential equations

~ R(&)w=0,Re R[&]"*"

The elimination theorem: .Z* is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODES.

Behavioral systems are fundamental.
Input/output and input/state/output systems are
Important special cases.

End of the lecture
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