Models and Behaviors

Jan C. Willems

K.U. Leuven, Flanders, Belgium

Where do I come from?

Adrianus VI 1459-1523

Erasmus de la Valleé Poussin
1469-1536 1866-1962

Lemaître 1894-1966

Lecture

- Mathematical models

The behavior
Dynamical systems
A bit of history
Linear time-invariant systems
Kernel representations
Latent variables
The elimination theorem

Mathematical models

A bit of mathematics \& philosophy

Mathematical models

Assume that we have a 'real' phenomenon that produces 'events', 'outcomes'.

Mathematical models

Assume that we have a 'real' phenomenon that produces 'events', 'outcomes'.

We view a deterministic mathematical model for a phenomenon as a prescription of which events can occur, and which events cannot occur.

Aim of this lecture

In the first part of this lecture, we develop this point of view into a mathematical formalism.

Aim of this lecture

In the first part of this lecture, we develop this point of view into a mathematical formalism.

In the second part, we apply this formalism to dynamical systems, and zoom in on linear time-invariant differential systems.

The universum

Mathematization

The outcomes can be described in the language of mathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

Mathemativation

The outcomes can be described in the language of mathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

- Do the events belong to a discrete set?
\leadsto discrete event phenomena.
- Are the events real numbers, or vectors of real numbers?
\leadsto continuous phenomena.
- Are the events functions of time?
\leadsto dynamical phenomena.
- Are the events functions of space, or time \& space?
\sim distributed phenomena.

Mathematization

The outcomes can be described in the language of mathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

The set where the events belong to is called the universum, denoted by \mathscr{U}.

Discrete event phenomena

Examples:

Words in a natural language
$\mathscr{U} \cong\{a, b, c, \ldots, x, y, z\}^{\mathrm{n}}$
with $\mathrm{n}=$ the number of letters in the longest word

Continuous phenomena

Examples:

- The pressure, volume, quantity, and temperature of a gas in a vessel

Dynamical phenomena

Examples:

- Planetary motion

The events are maps from \mathbb{R} to \mathbb{R}^{3}

$$
\leadsto \quad \mathscr{U}=\left\{w: \mathbb{R} \rightarrow \mathbb{R}^{3}\right\}
$$

Dynamical phenomena

Examples:

- Planetary motion

The events are maps from \mathbb{R} to \mathbb{R}^{3}

$$
\leadsto \quad \mathscr{U}=\left\{w: \mathbb{R} \rightarrow \mathbb{R}^{3}\right\} \quad=\left(\mathbb{R}^{3}\right)^{\mathbb{R}}
$$

$A^{B}:=$ the set of maps from B to $A \quad$ i.e. $A^{B}:=\{f: B \rightarrow A\}$

Dynamical phenomena

The voltage across and the current into an electrical port with 'dynamics'

The events are maps from \mathbb{R} to \mathbb{R}^{2}

$$
\leadsto \quad \mathscr{U}=\left\{(V, I): \mathbb{R} \rightarrow \mathbb{R}^{2}\right\}=\left(\mathbb{R}^{2}\right)^{\mathbb{R}}
$$

Distributed phenomena

Temperature profile of, and heat absorbed by, a rod

Events: maps from $\mathbb{R} \times \mathbb{R}$ to $[0, \infty) \times \mathbb{R}$

$$
\leadsto \quad \mathscr{U}=\left\{(T, q): \mathbb{R}^{2} \rightarrow[0, \infty) \times \mathbb{R}\right\}=\left(\mathbb{R}^{2}\right)^{\mathbb{R}^{2}}
$$

A model is a subset: the 'behavior'

The behavior

Given is a phenomenon with universum \mathscr{U}. Without further scrutiny, every event in \mathscr{U} can occur.

After studying the situation, the conclusion is reached that the events are constrained, that some laws are in force.

The behavior

Given is a phenomenon with universum \mathscr{U}. Without further scrutiny, every event in \mathscr{U} can occur.

After studying the situation, the conclusion is reached that the events are constrained, that some laws are in force.

Modeling means that certain events are declared to be impossible, that they cannot occur.

The possibilities that remain constitute what we call the 'behavior' of the model.

The behavior

Given is a phenomenon with universum \mathscr{U}. Without further scrutiny, every event in \mathscr{U} can occur.

After studying the situation, the conclusion is reached that the events are constrained, that some laws are in force.

A model is a subset \mathscr{B} of \mathscr{U}
\mathscr{B} is called the behavior of the model

The behavior

The behavior \& scientific theory

Every "good" scientific theory is prohibition: it forbids certain things to happen... The more a theory forbids, the better it is.

Karl Popper

Conjectures and Refutations:
The Growth of Scientific Knowledge
Routhledge, 1963

Karl Popper (1902-1994)

Examples

Discrete event phenomena

Examples:

- Words in a natural language
$\mathscr{U}=\{a, b, c, \ldots, x, y, z\}^{n}$
with $\mathrm{n}=$ the number of letters in the longest word
$\mathscr{B}=$ all words recognized by the spelling checker. For example, $\mathrm{SPQR} \notin \mathscr{B}$.
\mathscr{B} is basically defined by enumeration, by listing its elements.

Discrete event phenomena

32-bit binary strings with a parity check.

$$
\begin{aligned}
& \mathscr{U}=\{0,1\}^{32} \\
& \mathscr{B}=\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\} \text { and } a_{32} \stackrel{(\bmod 2)}{=} \sum_{\mathrm{k}=1}^{31} a_{\mathrm{k}}\right\}
\end{aligned}
$$

Discrete event phenomena

- 32-bit binary strings with a parity check.
$\mathscr{U}=\{0,1\}^{32}$
$\mathscr{B}=\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\}\right.$ and $\left.a_{32} \stackrel{(\bmod 2)}{=} \sum_{\mathrm{k}=1}^{31} a_{\mathrm{k}}\right\}$
\mathscr{B} can be expressed in many other ways. For example,

$$
\begin{gathered}
\mathscr{B}=\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\} \text { and } \sum_{\mathrm{k}=1}^{32} a_{\mathrm{k}} \stackrel{(\bmod 2)}{=} 0\right\} \\
\left.\left.\mathscr{B}=\left\{\begin{array}{c}
a_{1}^{a_{1}} \\
a_{2} \\
\vdots \\
a_{31} \\
a_{32}
\end{array}\right] \right\rvert\, \exists\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{30} \\
b_{31}
\end{array}\right] \text { s.t. }\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{31} \\
a_{32}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & -1 & 1 \\
0 & 0 & \cdots & 0 & -1
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{33} \\
b_{31}
\end{array}\right]\right\}
\end{gathered}
$$

Discrete event phenomena

- 32-bit binary strings with a parity check.
$\mathscr{U}=\{0,1\}^{32}$
$\mathscr{B}=\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\}\right.$ and $\left.a_{32} \stackrel{(\bmod 2)}{=} \sum_{\mathrm{k}=1}^{31} a_{\mathrm{k}}\right\}$ input/output representation
\mathscr{B} can be expressed in many other ways. For example,

$$
\begin{gathered}
\mathscr{B}=\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\} \text { and } \sum_{\mathrm{k}=1}^{32} a_{\mathrm{k}} \stackrel{(\bmod 2)}{=} 0\right\} \\
\left.\left.\mathscr{B}=\left\{\begin{array}{c}
\text { kernel representation } \\
a_{1} \\
a_{2} \\
\vdots \\
a_{31} \\
a_{32}
\end{array}\right] \right\rvert\, \exists\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{30} \\
b_{31}
\end{array}\right] \text { s.t. }\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{31} \\
a_{32}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
-1 & 1 & 0 & 0 \\
\vdots & \ddots & \ddots & \cdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & -1 \\
0 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
0
\end{array}\right]\right\}
\end{gathered}
$$

Continuous phenomena

Examples:

- The pressure, volume, quantity, and temperature of a gas in a vessel

$$
\mathscr{U}=(0, \infty) \times(0, \infty) \times(0, \infty) \times(0, \infty)
$$

Gas law: $\mathscr{B}=\{(P, V, N, T) \in \mathscr{U} \mid P V=N T$

Dynamical phenomena

Planetary motion

$$
\mathscr{U}=\left(\mathbb{R}^{3}\right)^{\mathbb{R}}
$$

Kepler's laws $\leadsto \mathscr{B}$

Dynamical phenomena

- Planetary motion $\quad \mathscr{U}=\left(\mathbb{R}^{3}\right)^{\mathbb{R}}$

Kepler's laws $\leadsto \mathscr{B}=$ the orbits $\mathbb{R} \rightarrow \mathbb{R}^{3}$ that satisfy:
K. 1 periodic, ellipses, with the sun in one of the foci;
K. 2 the vector from sun to planet sweeps out equal areas in equal time;
K. 3 the square of the period divided by the third power of the major axis is the same for all the planets

Dynamical phenomena

- The second law

Isaac Newton by William Blake

$$
\begin{gathered}
\mathscr{U}=\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)^{\mathbb{R}} \\
\mathscr{B}=\left\{(F, q): \mathbb{R} \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3} \left\lvert\, F=\frac{d^{2}}{d t^{2}} q\right.\right\}
\end{gathered}
$$

Distributed phenomena

The temperature profile of, and heat absorbed by, a rod

Events: maps from $\mathbb{R} \times \mathbb{R}$ to $[0, \infty) \times \mathbb{R}$

$$
\begin{gathered}
\mathscr{U}=\left\{(T, q): \mathbb{R}^{2} \rightarrow[0, \infty) \times \mathbb{R}\right\} \\
\mathscr{B}=\left\{(T, q): \mathbb{R}^{2} \rightarrow[0, \infty) \times \mathbb{R} \left\lvert\, \frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q\right.\right\}
\end{gathered}
$$

Behavioral models

Behavioral models fit the tradition of modeling, but modeling has not been approached in this manner in a deterministic setting.

The behavior captures the essence of what a model articulates.

The behavior is all there is.
Equivalence of models, properties of models, symmetry, optimality,
system identification (modeling from measured data), etc., must all refer to the behavior.

Recapitulation

A model deals with events
The events belong to a universum, \mathscr{U}
A model is specified by its behavior \mathscr{B},
a subset of the event set \mathscr{C}
In dynamical systems, the events are functions of time and the behavior \mathscr{B} is hence a family of time-trajectories.

Dynamical systems

The dynamic behavior

In dynamical systems, 'events' are maps, with the time axis as domain, hence functions of time.

It is convenient to distinguish in the notation
the domain of the maps, the time set
and their codomain, the signal space the set where the functions take on their values.

The dynamic behavior

In dynamical systems, 'events' are maps, with the time axis as domain, hence functions of time.

It is convenient to distinguish in the notation
the domain of the maps, the time set
and their codomain, the signal space
the set where the functions take on their values.
The behavior of a dynamical system is usually described by a system of ordinary differential equations (ODEs) or difference equations.

In contrast to distributed phenomena
\leadsto partial differential equations (PDEs)

The dynamic behavior

A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$

$$
\begin{aligned}
& \mathbb{T} \subseteq \mathbb{R} \\
& \mathbb{W}
\end{aligned}
$$

'time set'
'signal space'

$$
\mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}} \quad \text { the 'behavior' }
$$

$$
\text { a family of trajectories } \mathbb{T} \rightarrow \mathbb{W}
$$

The dynamic behavior

A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$

$$
\begin{array}{ll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time set' } \\
\mathbb{W} & \text { 'signal space' } \\
\mathscr{B} \subseteq \mathbb{W}^{T} & \text { the 'behavior' }
\end{array}
$$

a family of trajectories $\mathbb{T} \rightarrow \mathbb{W}$
mostly, $\quad \mathbb{T}=\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}$, or $\mathbb{N}\left(\cong \mathbb{Z}_{+}\right)$,
and, in this lecture, $\mathbb{W}=\mathbb{R}^{\mathrm{W}}$,
\mathscr{B} is a family of
(finite dimensional) vector-valued time trajectories

The dynamic behavior

A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$

$$
\begin{array}{ll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time set' } \\
\mathbb{W} & \text { 'signal space' } \\
\mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { the 'behavior' }
\end{array}
$$

a family of trajectories $\mathbb{T} \rightarrow \mathbb{W}$
$w: \mathbb{T} \rightarrow \mathbb{R}^{\mathrm{w}} \in \mathscr{B} \Leftrightarrow{ }^{6} w$ is compatilble with the model' $w: \mathbb{T} \rightarrow \mathbb{R}^{\mathrm{w}} \notin \mathscr{B} \Leftrightarrow{ }^{\text {'t }}$ the model forbids w^{\prime}

The dynamic behavior

A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$

$$
\begin{array}{ll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time set' } \\
\mathbb{W} & \text { 'signal space }
\end{array}
$$

$\mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}} \quad$ the 'behavior'
a family of trajectories $\mathbb{T} \rightarrow \mathbb{W}$
$w: \mathbb{T} \rightarrow \mathbb{R}^{w} \in \mathscr{B} \Leftrightarrow{ }^{6} w$ is compatilble with the model' $w: \mathbb{T} \rightarrow \mathbb{R}^{\mathrm{w}} \notin \mathscr{B} \Leftrightarrow{ }^{\text {' }}$ the model forbids w^{\prime}
$\mathbb{T}=\mathbb{R}$ or $\mathbb{R}_{+} \sim$ 'continuous-time' systems and ODEs
$\mathbb{T}=\mathbb{Z}$ or $\mathbb{N} \leadsto$ 'discrete-time' systems and difference eqn's
We deal with the case $\mathbb{T}=\mathbb{R}$ only.

Systems

- open
- interconnected
- modular
- dynamic
- open
- interconnected
- modular
- dynamic

Theme:

> develop a suitable mathematical language

Open, connected, modular, dynamic

Systems interact with their environment

Connected

Architecture

Systems consist of subsystems, interconnected

Modular

Systems consist of an interconnection of 'building blocks'

There is a delay, an after-effect, memory

The development of the notion

of a dynamical system

a brief causerie

Mathemativation

1. Get the physics right
2. The rest is mathematics

R.E. Kalman

Opening lecture
IFAC World Congress
Prague, July 4, 2005

Mathematization

1. Get the physics right
2. The rest is mathematics

Prima la fisica, poi la matematica

R.E. Kalman

Opening lecture
IFAC World Congress
Prague, July 4, 2005

How it all began ...

How, for heaven's sake, does it move?

Kepler's laws

Johannes Kepler 1571-1630

PLANET

Kepler's laws:
Ellipse, sun in focus;
= areas in = times;
$(\text { period })^{2} \cong(\text { diameter })^{3}$

The equation of the planet

Consequence: acceleration $=$ function of position and velocity

$$
\frac{d^{2}}{d t^{2}} w(t)=A\left(w(t), \frac{d}{d t} w(t)\right)
$$

$\sim \quad$ via calculus and calculation

$$
\frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{|w(t)|^{2}}=0
$$

Isaac Newton (1643-1727)

The equation of the planet

Consequence:
acceleration = function of position and velocity

$$
\frac{d^{2}}{d t^{2}} w(t)=A\left(w(t), \frac{d}{d t} w(t)\right)
$$

$\leadsto \quad$ via calculus and calculation

$$
\frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{|w(t)|^{2}}=0
$$

\cong another representation of K.1, K.2, K. 3

Newton's laws

2-nd law $\quad F^{\prime}(t)=m \frac{d^{2}}{d t^{2}} w(t)$
gravity $\quad F^{\prime \prime}(t)=m \frac{1_{w(t)}}{|w(t)|^{2}}$
3-rd law $F^{\prime}(t)+F^{\prime \prime}(t)=0$

$$
\frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{|w(t)|^{2}}=0
$$

Newton's laws

2-nd law $\quad F^{\prime}(t)=m \frac{d^{2}}{d t^{2}} w(t)$
gravity $\quad F^{\prime \prime}(t)=m \frac{1_{w(t)}}{|w(t)|^{2}}$
3-rd law $F^{\prime}(t)+F^{\prime \prime}(t)=0$

Isaac Newton by William Blake
\Downarrow

$$
\frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{|w(t)|^{2}}=0
$$

Viewing as interconnection is the key to generalization

The paradigm of closed systems

K.1, K.2, \& K. 3

$$
\leadsto \quad \frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{\left|\frac{d}{d t} w(t)\right|^{2}}=0
$$

$$
\leadsto \text { with } x=\left(w, \frac{d}{d t} w\right) \quad \frac{d}{d t} x=f(x)
$$

'Axiomatization'

K.1, K.2, \& K. 3

$$
\begin{aligned}
\leadsto & \frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{\left|\frac{d}{d t} w(t)\right|^{2}}=0 \\
& \leadsto \text { with } x=\left(w, \frac{d}{d t} w\right) \quad \frac{d}{d t} x=f(x) \\
& \leadsto \text { generalization } \frac{d}{d t} x=f(x) \\
& \leadsto \text { 'dynamical systems', flows }
\end{aligned}
$$

$~$ flows as paradigm of dynamics \leadsto closed systems

Motion determined by internal initial conditions.

'Axiomatization'

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930-)

'Axiomativation'

A dynamical system is defined by
a state space X and
a state transition function
ϕ : \cdots such that \cdots
$\phi(t, \mathrm{x})=$ state at time t starting from state x

'Axiomatization'

A dynamical system is defined by
a state space X and
a state transition function
ϕ : \cdots such that \cdots
$\phi(t, \mathrm{x})=$ state at time t starting from state x

This framework of closed systems is universally used for dynamics in mathematics and physics

'Axiomatization'

How could they forget Newton's $2^{\text {nd }}$ law, about Maxwell's eq'ns, about thermodynamics, about tearing \& zooming \& linking, ...?

'Axiomativation'

How could they forget Newton's $2^{\text {nd }}$ law, about Maxwell's eq'ns, about thermodynamics, about tearing \& zooming \& linking, ...?
Reply: assume 'fixed boundary conditions'

'Axiomatization'

How could they forget Newton's $2^{\text {nd }}$ law, about Maxwell's eq'ns, about thermodynamics, about tearing \& zooming \& linking, ...?
Reply: assume 'fixed boundary conditions'

\leadsto to model a system, we have to model also the environment!

'Axiomatization'

How could they forget Newton's $2^{\text {nd }}$ law, about Maxwell's eq'ns, about thermodynamics, about tearing \& zooming \& linking, ...?
Reply: assume 'fixed boundary conditions'

\leadsto to model a system, we have to model also the environment!
Chaos theory, cellular automata, sync, etc., function in this framework ...

Inputs and outputs

meanwhile, in engineering...

Norbert Wiener (1894-1964)

and the many electrical circuit theorists ...

Mathematical description

u : input, y : output,
SISO, LTI case $\leadsto G(s)=\frac{q(s)}{p(s)}$ transfer functions, impedances, admittances.

Circuit analysis and synthesis Classical control Bode, Nyquist, root-locus.

Mathematical description

$$
y(t)=\int_{0 \text { or }-\infty}^{t} H\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}
$$

Mathematical description

$$
y(t)=\int_{0 \text { or }-\infty}^{t} H\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}
$$

$$
\begin{aligned}
& y(t)=H_{0}(t)+\int_{-\infty}^{t} H_{1}\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}+ \\
& \quad \int_{-\infty}^{t} \int_{-\infty}^{t^{\prime}} H_{2}\left(t-t^{\prime}, t^{\prime}-t^{\prime \prime}\right) u\left(t^{\prime}\right) u\left(t^{\prime \prime}\right) d t^{\prime} d t^{\prime \prime}+\cdots
\end{aligned}
$$

Awkward nonlinear - far from the physics
Fail to deal with 'initial conditions'.

Input/state/output systems

Around 1960: a paradigm shift to

$$
\frac{d}{d t} x=f(x, u), y=g(x, u)
$$

Rudolf Kalman (1930-)

Input/state/output systems

Around 1960: a paradigm shift to

$$
\frac{d}{d t} x=f(x, u), y=g(x, u)
$$

- open
- deals with initial conditions

Rudolf Kalman (1930-)

- incorporates nonlinearities, time-variation
- models many physical phenomena

'Axiomatization'

State transition function: $\phi(t, \mathrm{x}, u)$: state reached at time t from x using input u.

$$
\frac{d}{d t} x=f(x, u), y=g(x, u)
$$

Read-out function:
 $g(\mathrm{x}, \mathrm{u}):$ output value with state x and input value u.

The input/state/output view turned out to be very effective and fruitful

The input/state/output paradigm

The input/state/output view turned out to be very effective and fruitful

- for modeling
- for control (stabilization, robustness, ...) prediction of one signal from another, filtering
- understanding system representations
(transfer f'n, input/state/output repr., etc.)
- model simplification, reduction
system ID: models from data
- etc., etc., etc.

Linear time-invariant differential systems

LTIDSs

LTIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right) \sim \mathscr{B}$ is said to be
\llbracket linear $\rrbracket: \Leftrightarrow \llbracket \llbracket w_{1}, w_{2} \in \mathscr{B}, \alpha \in \mathbb{R} \rrbracket \Rightarrow \llbracket w_{1}+w_{2} \in \mathscr{B} \rrbracket \rrbracket$

LIIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right) \sim \mathscr{B}$ is said to be
\llbracket linear $\rrbracket: \Leftrightarrow \llbracket \llbracket w_{1}, w_{2} \in \mathscr{B}, \alpha \in \mathbb{R} \rrbracket \Rightarrow \llbracket w_{1}+w_{2} \in \mathscr{B} \rrbracket \rrbracket$
\llbracket time-invariant $\rrbracket: \Leftrightarrow \llbracket \llbracket w \in \mathscr{B}, \sigma^{t}$ the t-shift $\rrbracket \Rightarrow \llbracket \sigma^{t} w \in \mathscr{B} \forall t \in \mathbb{R} \rrbracket \rrbracket$
$\left(\sigma^{t} f\right)\left(t^{\prime}\right):=f\left(t^{\prime}+t\right)$

LTIIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right) \sim \mathscr{B}$ is said to be
\llbracket linear $\rrbracket: \Leftrightarrow \llbracket \llbracket w_{1}, w_{2} \in \mathscr{B}, \alpha \in \mathbb{R} \rrbracket \Rightarrow \llbracket \alpha w_{1}+w_{2} \in \mathscr{B} \rrbracket \rrbracket$
\llbracket time-invariant $\rrbracket: \Leftrightarrow \llbracket \llbracket w \in \mathscr{B}, \sigma^{t}$ the t-shift $\rrbracket \Rightarrow \llbracket \sigma^{t} w \in \mathscr{B} \forall t \in \mathbb{R} \rrbracket \rrbracket$
\llbracket differential $\rrbracket: \Leftrightarrow \llbracket \mathscr{B}$ is 'described' by an ODE \rrbracket.

Linearity

This definition of linearity has as a special case

$$
u \mapsto y=L(u) \quad L \text { a linear map }
$$

$u \in$ a space of inputs, $y \in$ a space of outputs, $\quad w=\left[\begin{array}{l}u \\ y\end{array}\right]$.

$$
\mathscr{B}=\left\{\left.w=\left[\begin{array}{l}
u \\
y
\end{array}\right] \right\rvert\, y=L(u)\right\}=\text { the 'graph' of } L
$$

Linearity

This definition of linearity has as a special case

$$
u \mapsto y=L(u) \quad L \text { a linear map }
$$

$u \in$ a space of inputs, $y \in$ a space of outputs, $\quad w=\left[\begin{array}{l}u \\ y\end{array}\right]$.

$$
\mathscr{B}=\left\{\left.w=\left[\begin{array}{l}
u \\
y
\end{array}\right] \right\rvert\, y=L(u)\right\}=\text { the 'graph' of } L
$$

But, a dynamical system, even an input/output system, is seldom an input/output map:

Response depends on initial condition, as well as on driving input.

LTIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is

a linear time-invariant differential system (LTIDS) : \Leftrightarrow the behavior consists of the set of solutions of a system of linear, constant coefficient, ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

$R_{0}, R_{1}, \cdots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$ real matrices that parametrize the system, and $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{W}}$.

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is

a linear time-invariant differential system (LTIDS) : \Leftrightarrow the behavior consists of the set of solutions of a system of linear, constant coefficient, ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

$R_{0}, R_{1}, \cdots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$ real matrices that parametrize the system, and $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}}$. In polynomial matrix notation

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0
$$

with $R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}} \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$
a polynomial matrix, usually 'wide' \square

We should define what we mean by a solution of

$$
R\left(\frac{d}{d t}\right) w=0
$$

LTIDS

We should define what we mean by a solution of

$$
R\left(\frac{d}{d t}\right) w=0
$$

For ease of exposition, we take $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions. Hence the behavior defined is

$$
\mathscr{B}=\left\{w \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

LTIDS

We should define what we mean by a solution of

$$
R\left(\frac{d}{d t}\right) w=0
$$

For ease of exposition, we take $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$ solutions. Hence the behavior defined is

$$
\mathscr{B}=\left\{w \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

$\mathscr{B}=\mathbf{k e r n e l}\left(R\left(\frac{d}{d t}\right)\right) \quad$ 'kernel representation' of this \mathscr{B}.
Notation:

$$
\mathscr{B} \in \mathscr{L}^{\mathrm{w}}
$$

$\mathscr{L}^{\mathrm{w}}=$ the LTIDSs with w variables

$$
\mathscr{B} \in \mathscr{L}^{\bullet}, \quad \mathscr{L}^{\bullet}=\text { the LTIDSs. }
$$

Representations of LTIDSs

There are numerous representations of LTIDSs

- As the solutions of $R\left(\frac{d}{d t}\right) w=0 R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$ (our def.)
$R\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(R)}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(R)}\right)$ 'kernel repr'n'

Representations of UTIDSs

There are numerous representations of LTIDSs

- As the solutions of $R\left(\frac{d}{d t}\right) w=0 R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$ (our def.) $R\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(R)}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(R)}\right)$ 'kernel repr'n'
- With input/output partition

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right] \quad \operatorname{det}(P) \neq 0, P^{-1} Q \text { proper }
$$

Representations of UTIDSs

There are numerous representations of LTIDSs

- As the solutions of $R\left(\frac{d}{d t}\right) w=0 R \in \mathbb{R}[\xi]^{\bullet \times w}$ (our def.) $R\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(R)}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(R)}\right)$ 'kernel repr'n'
- With input/output partition

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right] \quad \operatorname{det}(P) \neq 0, P^{-1} Q \text { proper }
$$

- Input/state/output representation in terms of matrices A, B, C, D such that
\mathscr{B} consists of all $w^{\prime} s$ generated by

$$
\frac{d}{d t} x=A x+B u, y=C x+D u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Rudolf E. Kalman
born 1930

Representations of LTIDSs

- $w=M\left(\frac{d}{d t}\right) \ell \quad$ with $M \in \mathbb{R}[\xi]^{\mathbf{w} \times \bullet}$
$M\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(M)}\right) \rightarrow$
$\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(M)}\right)$ 'image repr'n’ $\mathscr{B}=$ image $\left(M\left(\frac{d}{d t}\right)\right)$

Representations of UTIDSs

- $w=M\left(\frac{d}{d t}\right) \ell \quad$ with $M \in \mathbb{R}[\xi]^{\mathrm{w} \times \bullet}$
$M\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(M)}\right) \rightarrow$
$\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(M)}\right)$ 'image repr'n' $\mathscr{B}=$ image $\left(M\left(\frac{d}{d t}\right)\right)$
- First principles models often contain 'latent variables’ (see later)
$\leadsto R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \quad$ 'latent variable repr'n'

$$
\mathscr{B}=\{w \mid \exists \ell \text { such that } \ldots\}
$$

Representations of UTIDSs

- $\quad w=M\left(\frac{d}{d t}\right) \ell \quad$ with $M \in \mathbb{R}[\xi]^{\mathrm{w} \times \bullet}$
$M\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(M)}\right) \rightarrow$
$\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(M)}\right)$ 'image repr'n' $\mathscr{B}=$ image $\left(M\left(\frac{d}{d t}\right)\right)$
- First principles models often contain 'latent variables’ (see later)
$\leadsto R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \quad$ 'latent variable repr'n'

$$
\mathscr{B}=\{w \mid \exists \ell \text { such that } \ldots\}
$$

- Special case: $\frac{d}{d t} F x=A x+B w \quad$ DAEs

$$
\mathscr{B}=\{w \mid \exists x \text { such that } \ldots\}
$$

Representations of LTIDSs

representations with rational symbols
$R\left(\frac{d}{d t}\right) w=0, w=M\left(\frac{d}{d t}\right) \ell$, etc.
with $R, M \in \mathbb{R}(\xi)^{\bullet \bullet \bullet}$, or proper stable rational, etc.

Representations of UTIDSs

- representations with rational symbols
$R\left(\frac{d}{d t}\right) w=0, w=M\left(\frac{d}{d t}\right) \ell$, etc.
with $R, M \in \mathbb{R}(\xi)^{\bullet \bullet}$, or proper stable rational, etc. and then, there are the convolution representations

$$
\int_{-\infty}^{+\infty} H\left(t^{\prime}\right) w\left(t-t^{\prime}\right) d t^{\prime}=0
$$

with the kernel, input/output, image versions

$$
y(t)=\int_{-\infty}^{+\infty} H\left(t^{\prime}\right) u\left(t-t^{\prime}\right) d t^{\prime}, \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Representations of UTIDSs

- representations with rational symbols
$R\left(\frac{d}{d t}\right) w=0, w=M\left(\frac{d}{d t}\right) \ell$, etc.
with $R, M \in \mathbb{R}(\xi)^{\bullet \bullet}$, or proper stable rational, etc. and then, there are the convolution representations

$$
\int_{-\infty}^{+\infty} H\left(t^{\prime}\right) w\left(t-t^{\prime}\right) d t^{\prime}=0
$$

with the kernel, input/output, image versions

$$
y(t)=\int_{-\infty}^{+\infty} H\left(t^{\prime}\right) u\left(t-t^{\prime}\right) d t^{\prime}, \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

- Rich ... but confusing!

Recapitulation

Dynamical systems $\sim \Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$ with behavior $\mathscr{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ a family of time trajectories

Closed systems: awkward special case
Input/output systems: successful special case
LTIDSs: \mathscr{B} is the sol'n set of a system of linear constant coefficient ODEs

Latent variables

Kernels, images, and projections

A model \mathscr{B} is a subset of \mathscr{U}. There are many ways to specify a subset. For example,

- as the solution set of equations
- as an image of a map
- as a projection

Kernels, images, and projections

A model \mathscr{B} is a subset of \mathscr{U}. There are many ways to specify a subset. For example,

- as the solution set of equations

$$
f: \mathscr{U} \rightarrow \bullet ; \quad \mathscr{B}=\{w \mid f(w)=0\}
$$

- as an image of a map

$$
f: \bullet \rightarrow \mathscr{U} ; \quad \mathscr{B}=\{w \mid \exists \ell \text { such that } w=f(\ell)\}
$$

- as a projection
$\mathscr{B}_{\text {extended }} \subseteq \mathscr{U} \times \mathscr{L} ; \quad \mathscr{B}=\left\{w \mid \exists \ell\right.$ such that $\left.(w, \ell) \in \mathscr{B}_{\text {extended }}\right\}$

Kernels, images, and projections

A model \mathscr{B} is a subset of \mathscr{U}. There are many ways to specify a subset. For example,

- as the solution set of equations 'kernel representation'

$$
f: \mathscr{U} \rightarrow \bullet ; \quad \mathscr{B}=\{w \mid f(w)=0\}
$$

- as an image of a map 'image representation’

$$
f: \bullet \rightarrow \mathscr{U} ; \quad \mathscr{B}=\{w \mid \exists \ell \text { such that } w=f(\ell)\}
$$

- as a projection ‘latent variable representation'
$\mathscr{B}_{\text {extended }} \subseteq \mathscr{U} \times \mathscr{L} ; \quad \mathscr{B}=\left\{w \mid \exists \ell\right.$ such that $\left.(w, \ell) \in \mathscr{B}_{\text {extended }}\right\}$

Kernel

Kernel

For example, $p_{0} y+p_{1} \frac{d}{d t} y+\cdots+p_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} y$

$$
=q_{0} u+q_{1} \frac{d}{d t} u+\cdots+q_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} u, \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Image

Image

For example, $u=p_{0} \ell+p_{1} \frac{d}{d t} \ell+\cdots+p_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} \ell$,

$$
y=q_{0} \ell+q_{1} \frac{d}{d t} \ell+\cdots+q_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} \ell, \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Projection

For example, $\frac{d}{d t} x=A x+B u, y=C x+D u, \quad w=\left[\begin{array}{l}u \\ y\end{array}\right]$

Latent variable representations

Combining equations with latent variables \sim
$\mathscr{B}_{\text {extended }}$ specified by

$$
\begin{gathered}
\mathscr{B}_{\text {extended }}=\{(w, \ell) \mid f(w, \ell)=0=0\} \\
\mathscr{B}=\{w \mid \exists \ell \text { such that } f(w, \ell)=0\}
\end{gathered}
$$

Latent variable representations

Combining equations with latent variables \sim
$\mathscr{B}_{\text {extended }}$ specified by

$$
\begin{gathered}
\mathscr{B}_{\text {extended }}=\{(w, \ell) \mid f(w, \ell)=0=0\} \\
\mathscr{B}=\{w \mid \exists \ell \text { such that } f(w, \ell)=0\}
\end{gathered}
$$

First principles models usually come in this form. Latent variables naturally emerge from interconnections.

Example

Two springs interconnected in series

ii Model relation between L and $F!!$

Two springs interconnected in series

ii Model relation between L and $F!!$

View as interconnection of two springs

Two springs interconnected in series

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted).

$$
\begin{aligned}
& L_{1}=\rho_{1}\left(F_{1}\right) \quad L_{2}=\rho_{1}\left(F_{2}\right) \\
& F=F_{1}=F_{2} \quad L=L_{1}+L_{2}
\end{aligned}
$$

Two springs interconnected in series

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted).

$$
\begin{array}{rlrl}
L_{1} & =\rho_{1}\left(F_{1}\right) & & L_{2}=\rho_{1}\left(F_{2}\right) \\
F & =F_{1}=F_{2} & L & =L_{1}+L_{2}
\end{array}
$$

L, F : 'manifest variables' $L_{1}, F_{1}, L_{2}, F_{2}$: 'Iatent variables'
$\leadsto \quad L=\rho_{1}(F)+\rho_{2}(F)$
Latent variables are easily eliminated, for this example.

Two springs interconnected in series

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted).

$$
\begin{array}{rlrl}
L_{1} & =\rho_{1}\left(F_{1}\right) & & L_{2}=\rho_{1}\left(F_{2}\right) \\
F & =F_{1}=F_{2} & L & =L_{1}+L_{2}
\end{array}
$$

L, F : 'manifest variables' $L_{1}, F_{1}, L_{2}, F_{2}$: 'Iatent variables'
$\leadsto \quad L=\rho_{1}(F)+\rho_{2}(F)$
Latent variables are easily eliminated, for this example.
In the linear case: $\quad L_{1}=L_{1}^{*}+\rho_{1} F_{1} \quad L_{2}=L_{2}^{*}+\rho_{2} F_{2}$
After elimination $\leadsto L=L_{1}^{*}+L_{2}^{*}+\left(\rho_{1}+\rho_{2}\right) F$

Two springs interconnected in paralled

'!! Model relation between L and F !!

Two springs interconnected in parallel

'!'! Model relation between L and F !!
View as interconnection of two springs

Two springs interconnected in parallel

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted, and neglect the dimensions of the interconnecting mechanism).

$$
\begin{aligned}
& L_{1}=\rho_{1}\left(F_{1}\right) \quad L_{2}=\rho_{1}\left(F_{2}\right) \\
& F=F_{1}+F_{2} \quad L=L_{1}=L_{2}
\end{aligned}
$$

Two springs interconnected in parallel

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted, and neglect the dimensions of the interconnecting mechanism).

$$
\begin{aligned}
& L_{1}=\rho_{1}\left(F_{1}\right) \quad L_{2}=\rho_{1}\left(F_{2}\right) \\
& F=F_{1}+F_{2} \quad L=L_{1}=L_{2}
\end{aligned}
$$

L, F : 'manifest variables' $L_{1}, F_{1}, L_{2}, F_{2}$: 'latent variables'
$\leadsto \quad \mathscr{B}=\left\{(L, F) \mid \exists \alpha: L=\rho_{1}(\alpha), \quad \rho_{1}(\alpha)=\rho_{2}(F-\alpha)\right\}$
Latent variables are not easily eliminated, for this example,

Two springs interconnected in parallel

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted, and neglect the dimensions of the interconnecting mechanism).

$$
\begin{aligned}
& L_{1}=\rho_{1}\left(F_{1}\right) \quad L_{2}=\rho_{1}\left(F_{2}\right) \\
& F=F_{1}+F_{2} \quad L=L_{1}=L_{2}
\end{aligned}
$$

L, F : 'manifest variables' $L_{1}, F_{1}, L_{2}, F_{2}$: 'Iatent variables'
$\leadsto \quad \mathscr{B}=\left\{(L, F) \mid \exists \alpha: L=\rho_{1}(\alpha), \quad \rho_{1}(\alpha)=\rho_{2}(F-\alpha)\right\}$
Latent variables are not easily eliminated, for this example, unless we are in the linear case: $L_{1}=L_{1}^{*}+\rho_{1} F_{1}, L_{2}=L_{2}^{*}+\rho_{2} F_{2}$

After elimination $\leadsto L=\frac{\rho_{2}}{\rho_{1}+\rho_{2}} L_{1}^{*}+\frac{\rho_{1}}{\rho_{1}+\rho_{2}} L_{2}^{*}+\frac{\rho_{1} \rho_{2}}{\rho_{1}+\rho_{2}} F$

A dynamic example

Dimination problem

First principles models invariably contain (many) auxiliary variables in addition to the variables whose behavior we wish to model.

Blimination problem

First principles models invariably contain (many) auxiliary variables in addition to the variables whose behavior we wish to model.

Can these latent variables be eliminated?

We illustrate the emergence of latent variables and the elimination question by means of an extensive example in the dynamic systems case.

RLC circuit

Model the port behavior of

by tearing, zooming, and linking.

RLC circuit

Model the port behavior of

by tearing, zooming, and linking.
In each vertex there is an element \leadsto module equations involving 2 variables (potential, current) for each terminal,
In each edge a connection \leadsto interconnection equations

capacitor C

resistor R_{C}

resistor R_{L}

inductor L

connector 2

Module equations

vertex 1 : $\quad V_{\text {connector }_{1}, 1}=V_{\text {connector }_{1}, 2}=V_{\text {connector }_{1}, 3}$

$$
I_{\text {connector }_{1}, 1}+I_{\text {connector }_{1}, 2}+I_{\text {connector }_{1}, 3}=0
$$

vertex 2 : $\quad V_{R_{C}, 1}-V_{R_{C}, 2}=R_{C} I_{R_{C}, 1}, I_{R_{C}, 1}+I_{R_{C}, 2}=0$
vertex 3 : $\quad L \frac{d}{d t} I_{L, 1}=V_{L, 1}-V_{L, 2}, I_{L, 1}+I_{L, 2}=0$
vertex 4 : $C \frac{d}{d t}\left(V_{C, 1}-V_{C, 2}\right)=I_{C, 1}, I_{C, 1}+I_{C, 2}=0$
vertex 5 : $\quad V_{R_{L}, 1}-V_{R_{L}, 2}=R_{L} I_{R_{L}, 1}$

$$
I_{R_{L}, 1}+I_{R_{L}, 2}=0
$$

vertex 6 : $\quad V_{\text {connector }_{2}, 1}=V_{\text {connector }_{2}, 2}=V_{\text {connector }_{2}, 3}$

$$
I_{\text {connector }_{2}, 1}+I_{\text {connector }_{2}, 2}+I_{\text {connector }_{2}, 3}=0
$$

Interconnection equations:

potential left $=$ potential right

current left + current right $=0$

Interconnection equations

edge c: $\quad V_{R_{C, 1}}=V_{\text {connectorl }_{2}} \quad I_{R_{C, 1}}+I_{\text {connector } 1,2}=0$
edge d : $\quad V_{L_{1}}=V_{\text {connectorl }_{3}} \quad I_{L_{1}}+I_{\text {connector1 }_{3}}=0$
edge e: $\quad V_{R_{C, 2}}=V_{C_{1}}$
$I_{R_{C, 2}}+I_{C_{1}}$
$=0$
edge f: $\quad V_{L_{2}}=V_{R_{C, 1}}$
$I_{L_{2}}+I_{R_{L, 1}}=0$
edge g: $\quad V_{C_{2}}=V_{\text {connector2 }} \quad I_{C_{2}}+I_{\text {connector } 2_{1}}=0$
edge h: $\quad V_{R_{L, 2}}=V_{\text {connector } 2_{2}} \quad I_{R_{L, 2}}+I_{\text {connector } 2_{2}}=0$
$\begin{array}{ll}V_{\text {externalport }} & =V_{\text {connector }_{1}, 1}-V_{\text {connector }_{2}, 3} \\ I_{\text {externalport }} & =I_{\text {connector }_{1}}\end{array}$
vertex 1: $\quad V_{\text {connector }_{1}, 1}=V_{\text {connector }_{1}, 2}=V_{\text {connector }_{1}, 3}$

$$
I_{\text {connector }_{1}, 1}+I_{\text {connector }_{1}, 2}+I_{\text {connector }_{1}, 3}=0
$$

vertex 2: $\quad V_{R_{C}, 1}-V_{R_{C}, 2}=R_{C} I_{R_{C}, 1}, I_{R_{C}, 1}+I_{R_{C}, 2}=0$
vertex 3 : $\quad L \frac{d}{d t} I_{L, 1}=V_{L, 1}-V_{L, 2}, I_{L, 1}+I_{L, 2}=0$
vertex 4: $\quad C \frac{d}{d t}\left(V_{C, 1}-V_{C, 2}\right)=I_{C, 1}, I_{C, 1}+I_{C, 2}=0$
vertex $5: \quad V_{R_{L}, 1}-V_{R_{L}, 2}=R_{L} I_{R_{L}, 1}$
$I_{R_{L}, 1}+I_{R_{L}, 2}=0$
vertex 6 : $\quad V_{\text {connector }_{2}, 1}=V_{\text {connector }_{2}, 2}=V_{\text {connector }_{2}, 3}$
$I_{\text {connector }_{2}, 1}+I_{\text {connector }_{2}, 2}+I_{\text {connector }_{2}, 3}=0$
$\begin{array}{ll}\text { edge c : } & V_{R_{C, 1}}=V_{\text {connector }_{2}} \\ & I_{R_{C, 1}}+I_{\text {connector } 1,2}=0\end{array}$
edge d : $\quad V_{L_{1}}=V_{\text {connectorl }_{3}}$
$I_{L_{1}}+I_{\text {connector }_{3}}=0$
edge e : $\quad V_{R_{C, 2}}=V_{C_{1}}$
$I_{R_{C, 2}}+I_{C_{1}}=0$
edge $\mathbf{f}: \quad V_{L_{2}}=V_{R_{C, 1}}$
$I_{L_{2}}+I_{R_{L, 1}}=0$
edgeg: $\quad V_{C_{2}}=V_{\text {connector } 2_{1}}$
$I_{C_{2}}+I_{\text {connector } 2_{1}}=0$
edge \mathbf{h} : $\quad V_{R_{L, 2}}=V_{\text {connector } 2_{2}}$
$I_{R_{L, 2}}+I_{\text {Connector2 }}=0$

$$
V_{\text {externalport }}=V_{\text {connector }_{1}, 1}-V_{\text {connector }_{2}, 3} \quad I_{\text {externalport }}=I_{\text {connector1 }_{1}}
$$

Variables and equations

In total 28 latent variables $V_{\text {connector }_{1}, 1}, \ldots, V_{R_{C, 1}}, I_{R_{C, 1}}, \ldots, I_{\text {connector }_{2}, 3}$
2 manifest variables, ($\left.V_{\text {externalport }}, I_{\text {externalport }}\right)$
24 equations.
Which equation(s) govern(s) ($\left.V_{\text {externalport }}, I_{\text {externalport }}\right)$
A constant-coefficient linear differential equation that does not contain the branch variables?

Does the fact that all the equations before elimination of the latent (auxiliary) variables are constant-coefficient linear differential equations imply the same after elimination?

The port equation

The port defines the system $\Sigma=\left(\mathbb{R}, \mathbb{R}^{2}, \mathscr{B}\right)$ with behavior \mathscr{B} specified by:
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}\right. & \left.+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V_{\text {externalport }} \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I_{\text {externalport }}
\end{aligned}
$$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V_{\text {exterralport }}=\left(1+C R_{C}\right) \frac{d}{d t} R_{C} I_{\text {externalport }}
$$

The elimination theorem

Elimination theorem

Theorem
 \mathscr{L}^{\bullet} is closed under projection

Dlimination theorem

Theorem
 \mathscr{L}^{\bullet} is closed under projection

Consider

$$
\mathscr{B}=\left\{\left(w_{1}, w_{2}\right): \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}_{1}} \times \mathbb{R}^{\mathrm{w}_{2}} \mid\left(w_{1}, w_{2}\right) \in \mathscr{B}\right\}
$$

Define the projection

$$
\mathscr{B}_{1}=\left\{w_{1}: \mathbb{R} \rightarrow \mathbb{R}^{w_{1}} \mid \exists w_{2}: \mathbb{R} \rightarrow \mathbb{R}^{w_{1}} \text { such that }\left(w_{1}, w_{2}\right) \in \mathscr{B}\right\}
$$

The theorem states that $\llbracket \mathscr{B} \in \mathscr{L}^{\mathrm{w}_{1}+\mathrm{w}_{2}} \rrbracket \Rightarrow \llbracket \mathscr{B}_{1} \in \mathscr{L}^{\mathrm{w}_{1}} \rrbracket$
This is, as seen, important in modeling.

Applications of the elimination theorem

$$
\begin{gathered}
\llbracket \frac{d}{d t} x=A x+B u, y=C x+D u \rrbracket \Rightarrow \llbracket P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u \rrbracket \\
\llbracket E \frac{d}{d t} x=A x+B w \rrbracket \Rightarrow \llbracket R\left(\frac{d}{d t}\right) w=0 \rrbracket
\end{gathered}
$$

linear DAE's allow elimination of nuisance variables

$$
\llbracket R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \rrbracket \Rightarrow \llbracket R^{\prime}\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

elimination of latent variables in LTIDSs is always possible.

$$
\llbracket w=M\left(\frac{d}{d t}\right) \ell \rrbracket \Rightarrow \llbracket R^{\prime}\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

Models are usually given as equations
First principles models invariantly contain (many) latent variables

In LTIDSs, latent variables can be completely climinated

Summary

- A model is a subset \mathscr{B} of a universum \mathscr{U}. \mathscr{B} is the behavior of the model.
- A model is a subset \mathscr{B} of a universum \mathscr{U}. \mathscr{B} is the behavior of the model.

First principles models contain latent variables.

The main points

- A model is a subset \mathscr{B} of a universum \mathscr{U}. \mathscr{B} is the behavior of the model.
- First principles models contain latent variables.

LTIDSs are those described by linear, constant-coefficient differential equations

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0, R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}
$$

The main points

- A model is a subset \mathscr{B} of a universum \mathscr{U}. \mathscr{B} is the behavior of the model.
- First principles models contain latent variables.
- LTIDSs are those described by linear, constant-coefficient differential equations

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0, R \in \mathbb{R}[\xi]^{\bullet \times \mathfrak{W}}
$$

- The elimination theorem: \mathscr{L}^{\bullet} is closed under projection. Latent variables can be eliminated from linear constant coefficient ODEs.

The main points

- A model is a subset \mathscr{B} of a universum \mathscr{U}.
\mathscr{B} is the behavior of the model.
- First principles models contain latent variables.
- LTIDSs are those described by linear, constant-coefficient differential equations

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0, R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

- The elimination theorem: \mathscr{L}^{\bullet} is closed under projection. Latent variables can be eliminated from linear constant coefficient ODEs.
- Behavioral systems are fundamental. Input/output and input/state/output systems are important special cases.

The main points

- A model is a subset \mathscr{B} of a universum \mathscr{U}.
\mathscr{B} is the behavior of the model.
- First principles models contain latent variables.
- LTIDSs are those described by linear, constant-coefficient differential equations

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0, R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

- The elimination theorem: \mathscr{L}^{\bullet} is closed under projection. Latent variables can be eliminated from linear constant coefficient ODEs.
- Behavioral systems are fundamental. Input/output and input/state/output systems are important special cases.

End of the lecture

