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Outline

◮ Mathematical models

◮ The behavior

◮ Dynamical systems

◮ A bit of history

◮ Linear time-invariant systems

◮ Kernel representations

◮ Latent variables

◮ The elimination theorem
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Mathematical models

A bit of mathematics & philosophy
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Mathematical models

Assume that we have a ‘real’ phenomenon that produces
‘events’, ‘outcomes’.

Phenomenon

event, outcome   

– p. 7/98



Mathematical models

Assume that we have a ‘real’ phenomenon that produces
‘events’, ‘outcomes’.

Phenomenon

event, outcome   

We view a deterministic mathematical model for a
phenomenon as a prescription of which eventscanoccur,
and which eventscannotoccur.
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Aim of this lecture

◮ In the first part of this lecture, we develop this point of
view into a mathematical formalism.
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Aim of this lecture

◮ In the first part of this lecture, we develop this point of
view into a mathematical formalism.

◮ In the second part, we apply this formalism to dynamical
systems, and zoom in on linear time-invariant
differential systems.
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The universum
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Mathematization

The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?
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Mathematization

The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

◮ Do the events belong to a discrete set?
; discrete event phenomena.

◮ Are the events real numbers, or vectors of real numbers?
; continuous phenomena.

◮ Are the events functions of time?
; dynamical phenomena.

◮ Are the events functions of space, or time & space?
; distributed phenomena.
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Mathematization

The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

The set where the events belong to is called theuniversum ,
denoted byU .
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Discrete event phenomena

Examples:

◮ Words in a natural language
U ∼= {a,b,c, . . . ,x,y,z}n

with n = the number of letters in the longest word
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Continuous phenomena

Examples:

◮ The pressure, volume, quantity, and temperature of a gas
in a vessel

Gas

(pressure, volume, quantity, temperature)     

; U = (0,∞)× (0,∞)× (0,∞)× (0,∞)
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Dynamical phenomena

Examples:

◮ Planetary motion

SUN

PLANET

The events are maps fromR to R
3

; U = {w : R → R
3}
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Dynamical phenomena

Examples:

◮ Planetary motion

SUN

PLANET

The events are maps fromR to R
3

; U = {w : R → R
3} =

(

R
3)R

– p. 13/98



Notation

AB := the set of maps from B to A i.e. AB := { f : B → A}
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Dynamical phenomena

◮ The voltage across and the current into an electrical port
with ‘dynamics’

V

I

−

+
�
�
�
�

R
L

C

C

LR ��

��

The events are maps fromR to R
2

; U = {(V, I) : R → R
2} =

(

R
2)R
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Distributed phenomena

◮ Temperature profile of, and heat absorbed by, a rod

���������������
���������������
���������������
����������������

�
�
�

q(x,t)

T(x,t)x

Events: maps from R×R to [0,∞)×R

; U = {(T,q) : R
2 → [0,∞)×R} =

(

R
2)R

2
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A model is a subset: the ‘behavior’
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The behavior

Given is a phenomenon with universumU .
Without further scrutiny, every event in U can occur.

After studying the situation, the conclusion is reached that the
events are constrained, that some laws are in force.
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The behavior

Given is a phenomenon with universumU .
Without further scrutiny, every event in U can occur.

After studying the situation, the conclusion is reached that the
events are constrained, that some laws are in force.

Modeling means that certain events are declared to be
impossible, that they cannot occur.

The possibilities that remain constitute what we call the
‘behavior’ of the model.
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The behavior

Given is a phenomenon with universumU .
Without further scrutiny, every event in U can occur.

After studying the situation, the conclusion is reached that the
events are constrained, that some laws are in force.

A model is a subsetB of U

B is called the behavior of the model
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The behavior

B

U

allowed, according to the model

forbidden

possible events
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The behavior & scientific theory

Every “good” scientific theory is prohibition:
it forbids certain things to happen...
The more a theory forbids, the better it is.

Karl Popper
Conjectures and Refutations:
The Growth of Scientific Knowledge
Routhledge, 1963

Karl Popper
(1902-1994)
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Examples
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Discrete event phenomena

Examples:

◮ Words in a natural language
U = {a,b,c, . . . ,x,y,z}n

with n = the number of letters in the longest word

B = all words recognized by the spelling checker.
For example, SPQR/∈ B.

B is basically defined by enumeration, by listing its
elements.
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Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32
(mod 2)

=
31

∑
k=1

ak

}
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Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32
(mod 2)

=
31

∑
k=1

ak

}

B can be expressed in many other ways. For example,

B = {a1a2 · · ·a31a32 | ak ∈{0,1} and
32

∑
k=1

ak
(mod 2)

= 0}

B =





















a1
a2
...

a31
a32






| ∃









b1
b2
...

b30
b31









s.t.







a1
a2
...

a31
a32






=









1 0 0 ··· 0
−1 1 0 ··· 0... ... ... ...... ... ... ...
0 0 ··· −1 1
0 0 ··· 0 −1

















b1
b2
...

b30
b31
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Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32
(mod 2)

=
31

∑
k=1

ak

}

B can be expressed in many other ways. For example,

B = {a1a2 · · ·a31a32 | ak ∈{0,1} and
32

∑
k=1

ak
(mod 2)

= 0}

B =





















a1
a2
...

a31
a32






| ∃









b1
b2
...

b30
b31









s.t.







a1
a2
...

a31
a32






=









1 0 0 ··· 0
−1 1 0 ··· 0... ... ... ...... ... ... ...
0 0 ··· −1 1
0 0 ··· 0 −1

















b1
b2
...

b30
b31























input/output representation

kernel representation

image representation
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Continuous phenomena

Examples:

◮ The pressure, volume, quantity, and temperature of a gas
in a vessel

Gas

(pressure, volume, quantity, temperature)     

U = (0,∞)× (0,∞)× (0,∞)× (0,∞)

Gas law: B = {(P,V,N,T ) ∈ U | PV = NT }
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Dynamical phenomena

◮ Planetary motion U =
(

R
3
)R

Kepler’s laws ; B
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Dynamical phenomena

◮ Planetary motion U =
(

R
3
)R

PLANET

SUN

D
C

B

A 1 year

34 months

Kepler’s laws ; B = the orbits R → R
3 that satisfy:

K.1 periodic, ellipses, with the sun in one of the foci;
K.2 the vector from sun to planet sweeps out equal areas

in equal time;
K.3 the square of the period

divided by the third power
of the major axis is the
same for all the planets
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Dynamical phenomena

◮ The second law

Isaac Newton
by William Blake

unit mass

+

force   F   

position  q

U =
(

R
3×R

3)R

B =

{

(F,q) : R → R
3×R

3 | F = d2

dt2 q

}
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Distributed phenomena

◮ The temperature profile of, and heat absorbed by, a rod

���������������
���������������
���������������
����������������

�
�
�

q(x,t)

T(x,t)x

Events: maps fromR×R to [0,∞)×R

U = {(T,q) : R
2 → [0,∞)×R}

B =
{

(T,q) : R
2 → [0,∞)×R | ∂

∂ t T = ∂ 2

∂ x2 T +q
}
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Behavioral models

Behavioral models fit the tradition of modeling, but
modeling has not been approached in this manner in a
deterministic setting.

The behavior captures the essence of what a model
articulates.

The behavior is all there is.
Equivalence of models, properties of models,

symmetry, optimality,
system identification (modeling from measured data),

etc., must all refer to the behavior.
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Recapitulation

◮ A model deals with events

◮ The events belong to a universum,U

◮ A model is specified by its behaviorB,

a subset of the event setU

◮ In dynamical systems, the events are functions of

time and the behaviorB is hence a family of

time-trajectories.
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Dynamical systems
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The dynamic behavior

In dynamical systems, ‘events’ are maps, with the time axis as
domain, hence functions of time.

It is convenient to distinguish in the notation

the domain of the maps, thetime set
and their codomain, the signal space

the set where the functions take on their values.
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The dynamic behavior

In dynamical systems, ‘events’ are maps, with the time axis as
domain, hence functions of time.

It is convenient to distinguish in the notation

the domain of the maps, thetime set
and their codomain, the signal space

the set where the functions take on their values.

The behavior of a dynamical system is usually described by a
system of ordinary differential equations (ODEs) or
difference equations.

In contrast to distributed phenomena
; partial differential equations (PDEs)
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The dynamic behavior

A dynamical system:⇔ (T,W,B)

T ⊆ R ‘time set’
W ‘signal space’
B ⊆ W

T the ‘behavior’
a family of trajectories T → W
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The dynamic behavior

A dynamical system:⇔ (T,W,B)

T ⊆ R ‘time set’
W ‘signal space’
B ⊆ W

T the ‘behavior’
a family of trajectories T → W

mostly, T = R,R+,Z, or N (∼= Z+),
and, in this lecture,W = R

w,
B is a family of

(finite dimensional) vector-valued time trajectories
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The dynamic behavior

A dynamical system:⇔ (T,W,B)

T ⊆ R ‘time set’
W ‘signal space’
B ⊆ W

T the ‘behavior’
a family of trajectories T → W

w : T → R
w ∈ B ⇔ ‘w is compatible with the model’

w : T → R
w /∈ B ⇔ ‘the model forbids w’
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The dynamic behavior

A dynamical system:⇔ (T,W,B)

T ⊆ R ‘time set’
W ‘signal space’
B ⊆ W

T the ‘behavior’
a family of trajectories T → W

w : T → R
w ∈ B ⇔ ‘w is compatible with the model’

w : T → R
w /∈ B ⇔ ‘the model forbids w’

T = R or R+ ; ‘continuous-time’ systems and ODEs
T = Z or N ; ‘discrete-time’ systems and difference eqn’s
We deal with the caseT = R only.
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Systems
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Features

◮ open

◮ interconnected

◮ modular

◮ dynamic
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Features

◮ open

◮ interconnected

◮ modular

◮ dynamic

Theme:

develop a suitable mathematical language
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Open, connected, modular, dynamic
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Open

SYSTEM

ENVIRONMENT

Boundary

Systems interact with their environment
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Connected

Architecture

Systems consist of subsystems, interconnected
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Modular

Systems consist of an interconnection of‘building blocks’

�
�
�
�
�
�
�
�

��
��
��
��

��

����
����
����
����

SYSTEM

x
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Dynamic

time

w2

w1

w3

There is a delay, an after-effect, memory
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The development of the notion

of a dynamical system

a brief causerie
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Mathematization

1. Get the physics right

2. The rest is mathematics

R.E. Kalman
Opening lecture

IFAC World Congress
Prague, July 4, 2005
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Mathematization

1. Get the physics right

2. The rest is mathematics

R.E. Kalman
Opening lecture

IFAC World Congress
Prague, July 4, 2005Prima la fisica, poi la matematica
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How it all began ...
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The celestial question

Planet ???

How, for heaven’s sake, does it move?
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Kepler’s laws

Johannes Kepler
1571-1630

PLANET

SUN

D
C

B

A 1 year

34 months

Kepler’s laws:
Ellipse, sun in focus;
= areas in = times;
(period)2 ∼= (diameter)3
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The equation of the planet

Consequence:
acceleration = function of position and velocity

d2

dt2w(t) = A(w(t),
d
dt

w(t))

; via calculusand calculation

d2

dt2
w(t)+

1w(t)

|w(t)|2
= 0

Isaac Newton (1643-1727)
– p. 46/98



The equation of the planet

Consequence:
acceleration = function of position and velocity

d2

dt2w(t) = A(w(t),
d
dt

w(t))

; via calculusand calculation

d2

dt2
w(t)+

1w(t)

|w(t)|2
= 0

Isaac Newton (1643-1727)

Hypotheses 
 non

 fingo

∼= another representation
of K.1, K.2, K.3
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Newton’s laws

2-nd law F ′(t) = m d2

dt2w(t)

gravity F ′′(t) = m
1w(t)

|w(t)|2

3-rd law F ′(t)+F ′′(t) = 0

⇓

d2

dt2
w(t)+

1w(t)

|w(t)|2
= 0
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Newton’s laws

2-nd law F ′(t) = m d2

dt2w(t)

gravity F ′′(t) = m
1w(t)

|w(t)|2

3-rd law F ′(t)+F ′′(t) = 0
Isaac Newton by William Blake

⇓

d2

dt2
w(t)+

1w(t)

|w(t)|2
= 0

Viewing as interconnection is the key to generalization
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The paradigm of closedsystems
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‘Axiomatization’

K.1, K.2, & K.3

;
d2

dt2w(t)+
1w(t)

| d
dt w(t)|2

= 0

; with x = (w, d
dt w) d

dt x = f (x)
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‘Axiomatization’

K.1, K.2, & K.3

;
d2

dt2w(t)+
1w(t)

| d
dt w(t)|2

= 0

; with x = (w, d
dt w) d

dt x = f (x)

; generalization d
dt x = f (x)

; ‘dynamical systems’, flows

; flows as paradigm of dynamics ; closed systems

Motion determined by internal initial conditions.
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‘Axiomatization’

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930- )
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‘Axiomatization’

X

A dynamical systemis defined by
a state spaceX and
a state transition function

φ : · · · such that · · ·

φ(t,x) = state at timet starting from state x
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‘Axiomatization’

X

A dynamical systemis defined by
a state spaceX and
a state transition function

φ : · · · such that · · ·

φ(t,x) = state at timet starting from state x

This framework of closed systems is universally
used for dynamics in mathematics and physics
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‘Axiomatization’

How could they forget Newton’s2nd law,
about Maxwell’s eq’ns,

about thermodynamics,
about tearing & zooming & linking, ...?
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‘Axiomatization’

How could they forget Newton’s2nd law,
about Maxwell’s eq’ns,

about thermodynamics,
about tearing & zooming & linking, ...?

Reply: assume‘fixed boundary conditions’
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‘Axiomatization’

How could they forget Newton’s2nd law,
about Maxwell’s eq’ns,

about thermodynamics,
about tearing & zooming & linking, ...?

Reply: assume‘fixed boundary conditions’

SYSTEM

ENVIRONMENT

Boundary

; to model a system, we have to model also the environment!
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‘Axiomatization’

How could they forget Newton’s2nd law,
about Maxwell’s eq’ns,

about thermodynamics,
about tearing & zooming & linking, ...?

Reply: assume‘fixed boundary conditions’

SYSTEM

ENVIRONMENT

Boundary

; to model a system, we have to model also the environment!

Chaos theory, cellular automata, sync, etc., function in this
framework ...
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Inputs and outputs

meanwhile, in engineering...
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Input/output systems

SYSTEMstimulus response

cause
input

effect
output
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The originators

Oliver Heaviside (1850-1925) Norbert Wiener (1894-1964)

and the many electrical circuit theorists ...
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Mathematical description

SYSTEM output  input    

u: input, y: output ,

SISO, LTI case ; G(s) = q(s)
p(s) transfer functions,

impedances, admittances.

Circuit analysis and synthesis
Classical control
Bode, Nyquist, root-locus.
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Mathematical description

SYSTEM output  input    

y(t) =
∫ t

0 or −∞ H(t − t ′)u(t ′) dt ′
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Mathematical description

SYSTEM output  input    

y(t) =
∫ t

0 or −∞ H(t − t ′)u(t ′) dt ′

y(t) = H0(t)+
∫ t

−∞
H1(t − t ′)u(t ′) dt ′+

∫ t

−∞

∫ t ′

−∞
H2(t − t ′,t ′− t ′′)u(t ′)u(t ′′) dt ′dt ′′ + · · ·

Awkward nonlinear — far from the physics
Fail to deal with ‘initial conditions’.
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Input/state/output systems

Around 1960: aparadigm shift to

d
dt x = f (x,u), y = g(x,u)

Rudolf Kalman (1930- )
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Input/state/output systems

Around 1960: aparadigm shift to

d
dt x = f (x,u), y = g(x,u)

Rudolf Kalman (1930- )

◮ open

◮ deals with initial conditions

◮ incorporates nonlinearities, time-variation

◮ models many physical phenomena

◮ · · ·
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‘Axiomatization’

State transition function:
φ(t,x,u) : state reached at timet from x using input u.

X

d
dt x = f (x,u), y = g(x,u)

Read-out function:
g(x,u) : output value with statex and input value u.
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The input/state/output paradigm

The input/state/output view turned out to be
very effective and fruitful
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The input/state/output paradigm

The input/state/output view turned out to be
very effective and fruitful

◮ for modeling

◮ for control (stabilization, robustness, ...)

◮ prediction of one signal from another, filtering

◮ understanding system representations
(transfer f’n, input/state/output repr., etc.)

◮ model simplification, reduction

◮ system ID: models from data

◮ etc., etc., etc.
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Linear time-invariant differential systems

LTIDSs
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LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈ B,α ∈ R]] ⇒ [[αw1 +w2 ∈ B]] ]]
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LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈ B,α ∈ R]] ⇒ [[αw1 +w2 ∈ B]] ]]

[[ time-invariant ]] :⇔ [[[[w∈B,σ t the t-shift]]⇒ [[σ tw∈B ∀t ∈R]]]]

(σ t f )(t ′) := f (t ′ + t)
σ

t−shift        

f

map  

t        f

t        
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LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈ B,α ∈ R]] ⇒ [[αw1 +w2 ∈ B]] ]]

[[ time-invariant ]] :⇔ [[[[w∈B,σ t the t-shift]]⇒ [[σ tw∈B ∀t ∈R]]]]

[[ differential ]] :⇔ [[B is ‘described’ by an ODE]].
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Linearity

This definition of linearity has as a special case

u 7→ y = L(u) L a linear map

u ∈ a space of inputs,y ∈ a space of outputs, w =

[

u
y

]

.

B = {w =

[

u
y

]

| y = L(u)} = the ‘graph’ of L
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Linearity

This definition of linearity has as a special case

u 7→ y = L(u) L a linear map

u ∈ a space of inputs,y ∈ a space of outputs, w =

[

u
y

]

.

B = {w =

[

u
y

]

| y = L(u)} = the ‘graph’ of L

But, a dynamical system, even an input/output system,
is seldom an input/output map !

Response depends on initial condition, as well as on driving
input.

– p. 64/98



LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔
the behavior consists of the set of solutions of a system of
linear, constant coefficient, ODEs

R0w+R1
d
dt

w+ · · ·+Rn

dn

dtn
w = 0.

R0,R1, · · · ,Rn ∈ R
•×w real matrices that parametrize the

system, andw : R → R
w.
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LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔
the behavior consists of the set of solutions of a system of
linear, constant coefficient, ODEs

R0w+R1
d
dt

w+ · · ·+Rn

dn

dtn
w = 0.

R0,R1, · · · ,Rn ∈ R
•×w real matrices that parametrize the

system, andw : R → R
w. In polynomial matrix notation

; R
(

d
dt

)

w = 0

with R(ξ ) = R0 +R1ξ + · · ·+Rnξ n ∈ R [ξ ]•×w

a polynomial matrix , usually ‘wide’ or square.
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LTIDS

We should define what we mean by a solution of

R
(

d
dt

)

w = 0
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LTIDS

We should define what we mean by a solution of

R
(

d
dt

)

w = 0

For ease of exposition, we takeC ∞ (R,Rw) solutions.
Hence the behavior defined is

B =

{

w ∈ C
∞ (R,Rw) | R

(

d
dt

)

w = 0

}
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LTIDS

We should define what we mean by a solution of

R
(

d
dt

)

w = 0

For ease of exposition, we takeC ∞ (R,Rw) solutions.
Hence the behavior defined is

B =

{

w ∈ C
∞ (R,Rw) | R

(

d
dt

)

w = 0

}

B = kernel
(

R
(

d
dt

))

‘kernel representation’ of this B.

Notation:
B ∈ L w L w = the LTIDSs with w variables

B ∈ L •, L • = the LTIDSs.
– p. 66/98



Representations of LTIDSs

There are numerous representations of LTIDSs

◮ As the solutions of R
(

d
dt

)

w = 0 R ∈ R [ξ ]•×w (our def.)

R
(

d
dt

)

: C ∞ (

R,Rcoldim(R)
)

→ C ∞ (

R,Rrowdim(R)
)

‘kernel repr’n’
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Representations of LTIDSs

There are numerous representations of LTIDSs

◮ As the solutions of R
(

d
dt

)

w = 0 R ∈ R [ξ ]•×w (our def.)

R
(

d
dt

)

: C ∞ (

R,Rcoldim(R)
)

→ C ∞ (

R,Rrowdim(R)
)

‘kernel repr’n’

◮ With input/output partition

P
(

d
dt

)

y = Q
(

d
dt

)

u w ∼=

[

u

y

]

det(P) 6= 0,P−1Q proper
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Representations of LTIDSs

There are numerous representations of LTIDSs

◮ As the solutions of R
(

d
dt

)

w = 0 R ∈ R [ξ ]•×w (our def.)

R
(

d
dt

)

: C ∞ (

R,Rcoldim(R)
)

→ C ∞ (

R,Rrowdim(R)
)

‘kernel repr’n’

◮ With input/output partition

P
(

d
dt

)

y = Q
(

d
dt

)

u w ∼=

[

u

y

]

det(P) 6= 0,P−1Q proper

◮ Input/state/output representation
in terms of matrices A,B,C,D such that
B consists of allw′s generated by

d
dt x = Ax +Bu, y = Cx+Du w ∼=

[

u
y

]

Rudolf E. Kalman
born 1930
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Representations of LTIDSs

◮ w = M
(

d
dt

)

ℓ with M ∈ R [ξ ]w×•

M
(

d
dt

)

: C ∞ (

R,Rcoldim(M)
)

→

C ∞ (

R,Rrowdim(M)
)

‘image repr’n’ B = image
(

M
(

d
dt

))
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Representations of LTIDSs

◮ w = M
(

d
dt

)

ℓ with M ∈ R [ξ ]w×•

M
(

d
dt

)

: C ∞ (

R,Rcoldim(M)
)

→

C ∞ (

R,Rrowdim(M)
)

‘image repr’n’ B = image
(

M
(

d
dt

))

◮ First principles models often contain ‘latent variables’
(see later)
; R

(

d
dt

)

w = M
(

d
dt

)

ℓ ‘latent variable repr’n’

B = {w | ∃ ℓ such that ...}
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Representations of LTIDSs

◮ w = M
(

d
dt

)

ℓ with M ∈ R [ξ ]w×•

M
(

d
dt

)

: C ∞ (

R,Rcoldim(M)
)

→

C ∞ (

R,Rrowdim(M)
)

‘image repr’n’ B = image
(

M
(

d
dt

))

◮ First principles models often contain ‘latent variables’
(see later)
; R

(

d
dt

)

w = M
(

d
dt

)

ℓ ‘latent variable repr’n’

B = {w | ∃ ℓ such that ...}

◮ Special case:ddt Fx = Ax +Bw DAEs

B = {w | ∃ x such that ...}
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Representations of LTIDSs

◮ representations withrational symbols
R

(

d
dt

)

w = 0, w = M
(

d
dt

)

ℓ, etc.

with R,M ∈ R(ξ )•×•, or proper stable rational, etc.
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Representations of LTIDSs

◮ representations withrational symbols
R

(

d
dt

)

w = 0, w = M
(

d
dt

)

ℓ, etc.

with R,M ∈ R(ξ )•×•, or proper stable rational, etc.

◮ and then, there are theconvolution representations

∫ +∞

−∞
H(t ′)w(t − t ′)dt ′ = 0

with the kernel, input/output, image versions

y(t) =
∫ +∞

−∞
H(t ′)u(t − t ′)dt ′, w =

[

u
y

]
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Representations of LTIDSs

◮ representations withrational symbols
R

(

d
dt

)

w = 0, w = M
(

d
dt

)

ℓ, etc.

with R,M ∈ R(ξ )•×•, or proper stable rational, etc.

◮ and then, there are theconvolution representations

∫ +∞

−∞
H(t ′)w(t − t ′)dt ′ = 0

with the kernel, input/output, image versions

y(t) =
∫ +∞

−∞
H(t ′)u(t − t ′)dt ′, w =

[

u
y

]

◮ Rich ... but confusing!
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Recapitulation

◮ Dynamical systems; Σ = (T,W,B) with

behavior B ⊆ (W)T a family of time trajectories

◮ Closed systems: awkward special case

◮ Input/output systems: successful special case

◮ LTIDSs: B is the sol’n set of a system of linear

constant coefficient ODEs
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Latent variables
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Kernels, images, and projections

A model B is a subset ofU . There are many ways to specify
a subset. For example,

◮ as the solution set of equations

◮ as an image of a map

◮ as a projection
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Kernels, images, and projections

A model B is a subset ofU . There are many ways to specify
a subset. For example,

◮ as the solution set of equations

f : U →•; B = {w | f (w) = 0 }

◮ as an image of a map

f : •→ U ; B = {w | ∃ ℓ such that w = f (ℓ) }

◮ as a projection

Bextended⊆U ×L ; B = {w | ∃ ℓ such that (w, ℓ) ∈ Bextended}
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Kernels, images, and projections

A model B is a subset ofU . There are many ways to specify
a subset. For example,

◮ as the solution set of equations ‘kernel representation’

f : U →•; B = {w | f (w) = 0 }

◮ as an image of a map ‘image representation’

f : •→ U ; B = {w | ∃ ℓ such that w = f (ℓ) }

◮ as a projection ‘latent variable representation’

Bextended⊆U ×L ; B = {w | ∃ ℓ such that (w, ℓ) ∈ Bextended}
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Kernel

f

0B

U
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Kernel

f

0B

U

For example, p0y+ p1
d
dt

y+ · · ·+ pn
dn

dtn
y

= q0u+q1
d
dt

u+ · · ·+qn
dn

dtn
u, w =

[

u
y

]
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Image

f

B

U
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Image

f

B

U

For example, u = p0ℓ+ p1
d
dt

ℓ+ · · ·+ pn
dn

dtn
ℓ,

y = q0ℓ+q1
d
dt

ℓ+ · · ·+qn
dn

dtn
ℓ, w =

[

u
y

]
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Projection

Bextended

B

U
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Projection

Bextended

B

U

For example,
d
dt

x = Ax+Bu,y = Cx+Du, w =

[

u
y

]
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Latent variable representations

Combining equations with latent variables;

Bextendedspecified by

Bextended= {(w, ℓ) | f (w, ℓ) = 0 = 0}

B = {w | ∃ ℓ such that f (w, ℓ) = 0}
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Latent variable representations

Combining equations with latent variables;

Bextendedspecified by

Bextended= {(w, ℓ) | f (w, ℓ) = 0 = 0}

B = {w | ∃ ℓ such that f (w, ℓ) = 0}

First principles models usually come in this form.
Latent variables naturally emerge from interconnections.

– p. 76/98



Example
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Two springs interconnected in series

FF

L

k1 k2

¡¡ Model relation betweenL and F !!
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Two springs interconnected in series

FF

L

k1 k2

¡¡ Model relation betweenL and F !!

View as interconnection of two springs

F1F1

L1

F2 F2

L2

ρ1 ρ2

– p. 78/98



Two springs interconnected in series

k k’
F F

L

F1F1

L1

F2 F2

L2

ρ1 ρ2

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 = F2 L = L1 +L2
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Two springs interconnected in series

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 = F2 L = L1 +L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; L = ρ1(F)+ρ2(F)

Latent variables are easily eliminated, for this example.
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Two springs interconnected in series

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 = F2 L = L1 +L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; L = ρ1(F)+ρ2(F)

Latent variables are easily eliminated, for this example.

In the linear case: L1 = L∗
1 +ρ1F1 L2 = L∗

2 +ρ2F2

After elimination ; L = L∗
1 +L∗

2 +(ρ1 +ρ2)F
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Two springs interconnected in parallel

F F

L

k1

k2

’!’! Model relation between L and F !!
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Two springs interconnected in parallel

F F

L

k1

k2

’!’! Model relation between L and F !!

View as interconnection of two springs

F1F1

L1

F2 F2

L2

ρ1 ρ2
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Two springs interconnected in parallel

k

k’
FF

L

F1F1

L1

F2 F2

L2

ρ1 ρ2

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted, and neglect the
dimensions of the interconnecting mechanism).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 + F2 L = L1 = L2
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Two springs interconnected in parallel

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted, and neglect the
dimensions of the interconnecting mechanism).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 + F2 L = L1 = L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; B = {(L,F) | ∃ α : L = ρ1(α), ρ1(α) = ρ2(F −α)}

Latent variables are not easily eliminated, for this example,
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Two springs interconnected in parallel

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted, and neglect the
dimensions of the interconnecting mechanism).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 + F2 L = L1 = L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; B = {(L,F) | ∃ α : L = ρ1(α), ρ1(α) = ρ2(F −α)}

Latent variables are not easily eliminated, for this example,
unless we are in the linear case:L1 = L∗

1 +ρ1F1,L2 = L∗
2 +ρ2F2

After elimination ; L = ρ2
ρ1+ρ2

L∗
1 + ρ1

ρ1+ρ2
L∗

2 + ρ1ρ2
ρ1+ρ2

F
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A dynamic example
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Elimination problem

First principles models invariably contain (many) auxiliary
variables in addition to the variables whose behavior we wish
to model.
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Elimination problem

First principles models invariably contain (many) auxiliary
variables in addition to the variables whose behavior we wish
to model.

Can these latent variables be eliminated?

We illustrate the emergence of latent variables and the
elimination question by means of an extensive example in the
dynamic systems case.
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RLC circuit

Model the port behavior of

��

R
L

C

C

LRI

V
−

+
��

��

�� ��

��
��
��
��

����

��

by tearing, zooming, and linking.
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RLC circuit

Model the port behavior of

��

R
L

C

C

LRI

V
−

+
��

��

d

f

b

c

h

��

1

4

6

3

5

2

a

e

g

��

��
��
��
��

����

��

;

by tearing, zooming, and linking.

In each vertex there is an element; module equations
involving 2 variables (potential, current) for each terminal,

In each edge a connection; interconnection equations
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Modules

1

3

2

22

1
1 1

1
1

2

322

��
��
��

��
��
��

��
��
��

��
��
��

connector 1

capacitor C connector 2

inductor Lresistor RC

resistor RL

– p. 85/98



Module equations

vertex 1 : Vconnector1,1 = Vconnector1,2 = Vconnector1,3

Iconnector1,1 + Iconnector1,2 + Iconnector1,3 = 0

vertex 2 : VRC,1−VRC,2 = RCIRC,1, IRC,1 + IRC,2 = 0

vertex 3 : L d
dt IL,1 = VL,1−VL,2, IL,1 + IL,2 = 0

vertex 4 : C d
dt

(

VC,1−VC,2
)

= IC,1, IC,1 + IC,2 = 0

vertex 5 : VRL,1−VRL,2 = RLIRL,1

IRL,1+ IRL,2 = 0

vertex 6 : Vconnector2,1 = Vconnector2,2 = Vconnector2,3

Iconnector2,1 + Iconnector2,2 + Iconnector2,3 = 0
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Interconnection

current left current right

potential left potential right

Interconnection of two electrical terminals

Interconnection equations:

potential left = potential right

current left + current right = 0
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Interconnection equations

edge c: VRC,1 = Vconnector12 IRC,1 + Iconnector1,2 = 0

edge d: VL1 = Vconnector13 IL1 + Iconnector13 = 0

edge e: VRC,2 = VC1 IRC,2 + IC1 = 0

edge f: VL2 = VRC,1 IL2 + IRL,1 = 0

edge g: VC2 = Vconnector21 IC2 + Iconnector21 = 0

edge h: VRL,2 = Vconnector22 IRL,2 + Iconnector22 = 0
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Manifest variable assignment

Vexternalport = Vconnector1,1−Vconnector2,3

Iexternalport = Iconnector11
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Tableau

vertex 1 : Vconnector1,1 = Vconnector1,2 = Vconnector1,3

Iconnector1,1 + Iconnector1,2 + Iconnector1,3 = 0

vertex 2 : VRC ,1−VRC ,2 = RCIRC ,1, IRC ,1 + IRC ,2 = 0

vertex 3 : L d
dt IL,1 = VL,1−VL,2, IL,1 + IL,2 = 0

vertex 4 : C d
dt

(

VC,1−VC,2
)

= IC,1, IC,1 + IC,2 = 0

vertex 5 : VRL ,1−VRL ,2 = RLIRL,1

IRL,1 + IRL ,2 = 0

vertex 6 : Vconnector2,1 = Vconnector2,2 = Vconnector2,3

Iconnector2,1 + Iconnector2,2 + Iconnector2,3 = 0

edge c: VRC,1 = Vconnector12

IRC,1 + Iconnector1,2 = 0

edge d: VL1 = Vconnector13

IL1 + Iconnector13 = 0

edge e: VRC,2 = VC1

IRC,2 + IC1 = 0

edge f: VL2 = VRC,1

IL2 + IRL,1 = 0

edge g: VC2 = Vconnector21

IC2 + Iconnector21 = 0

edge h: VRL,2 = Vconnector22

IRL,2 + Iconnector22 = 0

Vexternalport = Vconnector1,1−Vconnector2,3 Iexternalport = Iconnector11
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Variables and equations

In total 28 latent variables Vconnector1,1, . . . ,VRC,1, IRC,1, . . . , Iconnector2,3

2 manifest variables,
(

Vexternalport, Iexternalport
)

24 equations.

Which equation(s) govern(s)
(

Vexternalport, Iexternalport
)

A constant-coefficient linear differential equation that does
not contain the branch variables?

Does the fact that all the equationsbefore elimination of the
latent (auxiliary) variables are constant-coefficient linear
differential equations imply the sameafter elimination?
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The port equation

The port defines the systemΣ = (R,R2,B) with behavior B

specified by:

Case 1: CRC 6=
L

RL

(

RC

RL
+

(

1+
RC

RL

)

CRC
d
dt

+CRC
L

RL

d2

dt2

)

Vexternalport

=

(

1+CRC
d
dt

)(

1+
L

RL

d
dt

)

RCIexternalport

Case 2: CRC =
L

RL
(

RC

RL
+CRC

d
dt

)

Vexternalport= (1+CRC)
d
dt

RCIexternalport
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The elimination theorem
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Elimination theorem

Theorem
L • is closed under projection
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Elimination theorem

Theorem
L • is closed under projection

Consider

B = {(w1,w2) : R → R
w1 ×R

w2 | (w1,w2) ∈ B}

Define the projection

B1 = {w1 : R → R
w1 | ∃ w2 : R → R

w1 such that (w1,w2) ∈ B}

The theorem states that [[B ∈ L w1+w2]] ⇒ [[B1 ∈ L w1]]

This is, as seen, important in modeling.
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Applications of the elimination theorem

[[
d
dt

x = Ax+Bu,y = Cx+Du]] ⇒ [[P

(

d
dt

)

y = Q

(

d
dt

)

u]]

[[E
d
dt

x = Ax+Bw]] ⇒ [[R

(

d
dt

)

w = 0]]

linear DAE’s allow elimination of nuisance variables

[[R

(

d
dt

)

w = M

(

d
dt

)

ℓ]] ⇒ [[R′

(

d
dt

)

w = 0]]

elimination of latent variables in LTIDSs is always possible.

[[w = M

(

d
dt

)

ℓ]] ⇒ [[R′

(

d
dt

)

w = 0]]
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Recapitulation

◮ Models are usually given as equations

◮ First principles models invariantly contain

(many) latent variables

◮ In LTIDSs, latent variables can be completely

eliminated
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Summary
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.

◮ First principles models contain latent variables.
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.

◮ First principles models contain latent variables.

◮ LTIDSs are those described by linear,
constant-coefficient differential equations

; R
(

d
dt

)

w = 0,R ∈ R [ξ ]•×w
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.

◮ First principles models contain latent variables.

◮ LTIDSs are those described by linear,
constant-coefficient differential equations

; R
(

d
dt

)

w = 0,R ∈ R [ξ ]•×w

◮ The elimination theorem: L • is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODEs.
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.

◮ First principles models contain latent variables.

◮ LTIDSs are those described by linear,
constant-coefficient differential equations

; R
(

d
dt

)

w = 0,R ∈ R [ξ ]•×w

◮ The elimination theorem: L • is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODEs.

◮ Behavioral systems are fundamental.
Input/output and input/state/output systems are
important special cases.
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.

◮ First principles models contain latent variables.

◮ LTIDSs are those described by linear,
constant-coefficient differential equations

; R
(

d
dt

)

w = 0,R ∈ R [ξ ]•×w

◮ The elimination theorem: L • is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODEs.

◮ Behavioral systems are fundamental.
Input/output and input/state/output systems are
important special cases.

End of the lecture
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