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Theme

OBSERVER

estimation error
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!! Keep estimation error

small, zero, convergent to zero, ... !!
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Theme

PLANT

z
y

estimates

y

variables
to−be−estimated

OBSERVER

observed 

z

variables

^

What is the model that relates the observed with

the to-be-estimated variables ?

Find the observer/filter algorithm !
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Message

Observers mean more

Controllers mean less
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History
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Wiener Filtering

PLANT y

variables
observed

z

to−be−estimated
variables

Modeling : Assume





y

z



 is a stochastic process
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Wiener Filtering

PLANT y

variables
observed

z

to−be−estimated
variables

Modeling : Assume





y

z



 is a stochastic process

Henceforth time-setR, stationary processes, normal, zero mean
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Wiener Filtering

Modeling : Assume





y

z



 is a stochastic process

OBSERVER

estimation error

e
y

z

estimates

to−be−estimated variables

−+

ẑ

PLANT

variables
observed 

Estimation criterion: E
(

|e(t)|2
)

; algorithms
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Wiener Filtering

Algorithms are easy to obtain if for the estimateẑ(t),

the observationsy(t′)

are availablefor all t′ ∈ R.

Much much harder if the observationsy(t′)

are availableonly for t′ ≤ t

; non-anticipating filter
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Wiener Filtering

Algorithms are easy to obtain if for the estimateẑ(t),

the observationsy(t′)

are availablefor all t′ ∈ R.

Much much harder if the observationsy(t′)

are availableonly for t′ ≤ t

This is the problem Wiener solved in 1942,

in the yellow peril

; non-anticipating filter , a.k.a. the Wiener filter
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Wiener Filtering
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The Wiener Filter

+

observed = signal + noise

estimates
ynoise y

n OBSERVER

z

z

signal

^

Signal⊥ noise

Signal spectral densitySz(s)

Noise white, intensityρ2
n

Filters according to the signal-to-noise ratio.
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The Wiener Filter

Knowledge ofy(t) ∀t ∈ R ; tf. fn.

y 7→ ẑ = 1 −
1

1 +
Sz(s)

ρ2
n

y

Knowledge ofy(t) in past, Wiener filter ; tf. fn.

y 7→ ẑ = 1 −
1

[

1 +
Sz(s)

ρ2
n

]

+

y

1 +
Sz(s)

ρ2
n

=

[

1 +
Sz(s)

ρ2
n

]

+

[

1 +
Sz(s)

ρ2
n

]

−

[ ]+ poles & zeros in LHP ‘spectral factorization’
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The Kalman Filter

By taking another representation of the stochastic

process





y

z



, the optimal non-anticipating filter

becomes much easier to compute.

d

dt
x = Ax + n1, y = Cx + n2, z = Hx,





n1

n2



 white

This is the representation used by Kalman (1960)

– p. 9/30



The Kalman Filter

d
dt

x = Ax + Bw, y = Cx + n, z = Hx

w ⊥ n, both white, intensitiesI

d
dt

x̂ = Ax̂ + ΣC⊤ (y − Cx̂) , ẑ = Hx̂

Σ suitable solution of the ARE

AΣ + ΣA⊤ − ΣC⊤CΣ + BB⊤ = 0

Exactly the Wiener filter, but in a form that is

recursive, algorithmic, generalizable

(finite time, time-varying, nonlinear) ...
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The Kalman Filter
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The Kalman Filter

The Kalman filter had a tremendous impact !

– p. 9/30



History

PLANT y

variables
observed

z

to−be−estimated
variables

Modeling :





y

z



 input/output of a linear system

d

dt
x = Ax + Bu, y =





u

Cx



 , z = Hx.
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History

OBSERVER

estimation error

e
y

z

estimates

to−be−estimated variables

−+

ẑ

PLANT

variables
observed 

Plant: d

dt
x = Ax + Bu, y =





u

Cx



 , z = Hx

Observer: d

dt
x̂ = Ax̂ + Bu + L (Cx − Cx̂) , ẑ = Hx̂

Error: d

dt
ex = (A − LC)ex, e = Hex
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History

State observer, first proposed in 1963 by Luenberger.

Many variations (reduced order, dead-beat, ...)

Structure inspired by the ‘optimal’ Kalman filter.

No stochastic assumptions !
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Systems & Their Properties
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Behaviors

w

variables
system 

SYSTEM

A dynamical systemis Σ = (T, W, B)

T ⊆ R ‘time-set’

W ‘signal space’

B ⊆ W
T ‘behavior’

R
(

d
)

w = 0
– p. 14/30



Behaviors

w

variables
system 

SYSTEM

A dynamical systemis Σ = (T, W, B)

T ⊆ R ‘time-set’

W ‘signal space’

B ⊆ W
T ‘behavior’

Considerw : T → W

w ∈ B the model allows the trajectory w

w /∈ B the modelforbids the trajectory w
– p. 14/30



Behaviors

w

variables
system 

SYSTEM

A dynamical systemis Σ = (T, W, B)

T ⊆ R ‘time-set’ today, T = R

W ‘signal space’ today,W = R
w

B ⊆ W
T ‘behavior’ today, LTIDS

R
(

d
)

w = 0
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Behaviors

A dynamical systemis Σ = (T, W, B)

T ⊆ R ‘time-set’ today, T = R

W ‘signal space’ today,W = R
w

B ⊆ W
T ‘behavior’ today, LTIDS

Linear time-invariant differential system (LTIDS):

B = all solutions of

R
(

d
dt

)

w = 0

whereR ∈ R [ξ]•×w

‘ kernel representation’ (numerous other repr.)
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Behaviors

A dynamical systemis Σ = (T, W, B)

T ⊆ R ‘time-set’ today, T = R

W ‘signal space’ today,W = R
w

B ⊆ W
T ‘behavior’ today, LTIDS

Linear time-invariant differential system (LTIDS):

B = all C
∞ (R, R

w)- solutions of

R
(

d
dt

)

w = 0
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Behaviors

A dynamical systemis Σ = (T, W, B)

T ⊆ R ‘time-set’ today, T = R

W ‘signal space’ today,W = R
w

B ⊆ W
T ‘behavior’ today, LTIDS

Linear time-invariant differential system (LTIDS):

B = all C
∞ (R, R

w)- solutions of

R0w + R1
d
dt

w + · · · + Rn

dn

dtn
w = 0
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Behaviors

A dynamical systemis Σ = (T, W, B)

T ⊆ R ‘time-set’ today, T = R

W ‘signal space’ today,W = R
w

B ⊆ W
T ‘behavior’ today, LTIDS

Linear time-invariant differential system (LTIDS):

B = all C
∞ (R, R

w)- solutions of

The behavior is all there is !

Representations, properties (controllability,

observability, symmetries) in terms of behavior
– p. 14/30



Behaviors

A dynamical systemis Σ = (T, W, B)

T ⊆ R ‘time-set’ today, T = R

W ‘signal space’ today,W = R
w

B ⊆ W
T ‘behavior’ today, LTIDS

Linear time-invariant differential system (LTIDS):

B = all C
∞ (R, R

w)- solutions of

The behavior is all there is !

SYSID refers to behavior,

control = restricting behavior, ...
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Behaviors

A dynamical systemis Σ = (T, W, B)

T ⊆ R ‘time-set’ today, T = R

W ‘signal space’ today,W = R
w

B ⊆ W
T ‘behavior’ today, LTIDS

Linear time-invariant differential system (LTIDS):

B = all C
∞ (R, R

w)- solutions of

The behavior is all there is !

Physical models specify the behavior !

– p. 14/30



LTIDSs

L
•: the LTIDSs. L

• is closed under projection
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LTIDSs

L
•: the LTIDSs. L

• is closed under projection

R1

(

d
dt

)

w1 = R2

(

d
dt

)

w2 (∗)

R1, R2 ∈ R [ξ]•×•.
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LTIDSs

L
•: the LTIDSs. L

• is closed under projection

R1

(

d
dt

)

w1 = R2

(

d
dt

)

w2 (∗)

R1, R2 ∈ R [ξ]•×•. Define

B1 := {w1 ∈ C
∞ (R, R

•) | ∃w2 such that (∗)}
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LTIDSs

L
•: the LTIDSs. L

• is closed under projection

R1

(

d
dt

)

w1 = R2

(

d
dt

)

w2 (∗)

R1, R2 ∈ R [ξ]•×•. Define

B1 := {w1 ∈ C
∞ (R, R

•) | ∃w2 such that (∗)}

Thm: B1 ∈ L
•

; R
(

d
dt

)

w1 = 0

∃ algorithms (R1, R2) 7→ R
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LTIDSs

L
•: the LTIDSs. L

• is closed under projection

F
(

d
dt

)

w = 0, F ∈ R [ξ]•×w

is a consequence of

R
(

d
dt

)

w = 0, R ∈ R [ξ]•×w :⇔

[[ R
(

d
dt

)

w = 0 ]] ⇒ [[ F
(

d
dt

)

w = 0 ]]
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LTIDSs

L
•: the LTIDSs. L

• is closed under projection

F
(

d
dt

)

w = 0, F ∈ R [ξ]•×w

is a consequence of

R
(

d
dt

)

w = 0, R ∈ R [ξ]•×w :⇔

[[ R
(

d
dt

)

w = 0 ]] ⇒ [[ F
(

d
dt

)

w = 0 ]]

Thm: Consequence⇔ F = F ′R
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System Properties

Controllable

Stabilizable

Autonomous

Stable

Observable

Detectable
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System Properties

Σ = (R, W, B) is controllable :⇔

1

W

undersired trajectory

w2

desired trajectory

w
time
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System Properties

Σ = (R, W, B) is controllable :⇔

1

W

undersired trajectory

w2

desired trajectory

w
time

w1

transition 
controlled 

undesired past

desired future

W

w

W

2w
0 t’

Behavioral controllability of a dynamical system   

time
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System Properties

Σ = (R, W, B) is autonomous :⇔

[[ w1, w2 ∈ B and w1(t) = w2(t) for t < 0 ]]

⇒ [[ w1(t) = w2(t) for t ≥ 0 ]]

‘past implies future’

stable :⇔ [[ w ∈ B ]] ⇒ [[ w(t) → 0 ast → ∞ ]]
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System Properties

R
(

d
dt

)

w = 0

defines a controllable system iff

rank (R (λ)) is the same for allλ ∈ C

a stabilizable one ....λ ∈ the closed RHP
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System Properties

R
(

d
dt

)

w = 0

defines an autonomous system iff

R (λ) full column rank ∀ but finite number λ ∈ C

∃ kernel repr. with R square anddet(R) 6= 0.

a stable one ...λ ∈ the closed LHP

∃ R ‘Hurwitz’
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Properties Involving Relations Among Variables

observed w2
to−be−deduced            SYSTEMw1variables variables
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Properties Involving Relations Among Variables

observed w2
to−be−deduced            SYSTEMw1variables variables

w1 is observable fromw2 in Σ = (T, W1 × W2, B) :⇔

[[
(

w1, w′
2

)

,
(

w1, w′′
2

)

∈ B ]]

⇒ [[ w′
2

= w′′
2
]]

Observed trajectory implies the to-be-deduced one
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Properties Involving Relations Among Variables

observed w2
to−be−deduced            SYSTEMw1variables variables

w1 is detectable fromw2 in Σ = (T, W1 × W2, B) :⇔

[[
(

w1, w′
2

)

,
(

w1, w′′
2

)

∈ B ]]

⇒ [[ w′
2
(t) − w′′

2
(t) → 0 ast → ∞ ]]

Observed trajectory implies the to-be-deduced one

asymptotically
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Tests for Observability and Detectability

R1

(

d
dt

)

w1 = R2

(

d
dt

)

w2

defines anobservable system iff

R2 (λ) has full column rank ∀ λ ∈ C

defines adetectable system iff

...∀ but finite number λ ∈ closed RHP
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Tests for Observability and Detectability

R1

(

d
dt

)

w1 = R2

(

d
dt

)

w2

observable iff there are ‘consequences’

w2 = F
(

d
dt

)

w1

; R
(

d
dt

)

w1 = 0, w2 = F
(

d
dt

)

w1

∃ algorithms ...
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Tests for Observability and Detectability

R1

(

d
dt

)

w1 = R2

(

d
dt

)

w2

detectable iff there are ‘consequences’

H
(

d
dt

)

w2 = F
(

d
dt

)

w1, with H ‘Hurwitz’

; R
(

d
dt

)

w1 = 0, H
(

d
dt

)

w2 = F
(

d
dt

)

w1

∃ algorithms ...
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System properties ought to hold beyond the state

space setting,

they ought to be representation independent
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What is an observer ?
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Observers

PLANT

z
y

estimates

y

variables
to−be−estimated

observed 
variables

z

SYSTEM 2

^

Consider two LTIDS systems.

When is system 2 an observer for the plant?

Denote their behavior by

Bplant and B̂

– p. 21/30



Observers

PLANT

z
y

estimates

y

variables
to−be−estimated

observed 
variables

z

SYSTEM 2

^

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂
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Observers

estimation error

e
y

z

estimates

to−be−estimated variables

−+

SYSTEM 2

ẑ

PLANT

variables
observed 

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous

Berror = {0}, exact observer

Berror nilpotent, dead-beat (discr. time)

Berror stable, asymptotic observer
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Observers

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous

These conditions imply that

1. it is possible to followz through y,

2. oncez(t′) = ẑ(t′) for t′ ∈ [T − ε, T ], ε > 0,

there holdsz(t) = ẑ(t) for t > T .

– p. 21/30



Observers

estimation error

e
y

z

estimates

to−be−estimated variables

−+

SYSTEM 2

ẑ

PLANT

variables
observed 

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous

Condition 3: WLOG, add y is free (‘input’) in B̂,

y is ‘processed’ inB̂
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Observers

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous

Condition 3: WLOG, add y is free (‘input’) in B̂,

y is ‘processed’ inB̂

These conditions are not independent.

1 + 3 (y input) + ẑ output ⇒ 2

controllability of plant + 2 + 3 ⇒ 1

Assume contr. & 3. Then Bplant ⊆ B̂ ⇔ observer
– p. 21/30



Observers

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous

Condition 3: WLOG, add y is free (‘input’) in B̂,

y is ‘processed’ inB̂

Theorem: An observer exists if and only if

{(z, y) ∈ Bplant | y = 0} is autonomous
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Observers

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous

Condition 3: WLOG, add y is free (‘input’) in B̂,

y is ‘processed’ inB̂

Roughly, observer design∼= finding a cover

Bplant ⊆ B̂
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Observer Design

– p. 22/30



Covers

Essential condition:

Bplant ⊆ B̂

Easy to find a supsystem,B′ ⊇ B, for a given

LTIDS B. For example, from ‘kernel representation’

R
(

d
dt

)

w = 0

Then B
′ ⊇ B iff B

′ has kernel representation

F
(

d
dt

)

R
(

d
dt

)

w = 0

for someF ∈ R [ξ]•×•.
– p. 23/30



Covers

Plant:

Z
(

d
dt

)

z = Y
(

d
dt

)

y

Observer therefore

F
(

d
dt

)

Z
(

d
dt

)

ẑ = F
(

d
dt

)

Y
(

d
dt

)

y

Error dynamics

F
(

d
dt

)

Z
(

d
dt

)

e = 0

Observer conditions:FZ square and non-singular.
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Covers

Given Z, Y ∈ R [ξ]•×•, what can be achieved by

F ∈ R [ξ]•×• (Z, Y ) 7→ (FZ, FY ) ?

Achievable error dynamics

F
(

d
dt

)

Z
(

d
dt

)

e = 0

Can the observer be madesmoothing ?

F
(

d
dt

)

Z
(

d
dt

)

ẑ = F
(

d
dt

)

Y
(

d
dt

)

y

transfer function (FZ)−1(FY )

proper, strictly proper, high-frequency roll-off, ...
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Covers

? F ? Z

taking into consideration roll-off of (FZ)−1(FY )
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Error Dynamics

Assume that in the plantz is observable from y.

Then ∀ r ∈ R [ξ], monic,∃ F such that

det(FZ) = r

r = 1 ; exact observer

r Hurwitz ; asymptotic observer

r(ξ) = ξd
; dead-beat observer (discr.-time)

Combinable with proper, high-frequency roll-off,

provided degree(r) sufficiently large.

– p. 24/30



Error Dynamics

Assumez is detectable from y. Then for any

r ∈ R [ξ], monic, with a given Hurwitz factor

(representing the unobservable modes) there existsF

such that

det(FZ) = r

r Hurwitz ; asymptotic observer

Combinable with proper, high-frequency roll-off,

provided degree(r) sufficiently large.
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Example

Autonomous system,z, y scalar:

R
(

d
dt

)

[

z

y

]

= 0

det (R) 6= 0.
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Example

Autonomous system,z, y scalar:

R
(

d
dt

)

[

z

y

]

= 0

det (R) 6= 0. Observability ⇒ representation

Y
(

d
dt

)

y = 0, z = Z
(

d
dt

)

y

Y, Z ∈ R [ξ]

– p. 25/30



Example

Y
(

d
dt

)

y = 0, z = Z
(

d
dt

)

y

Observer:

π1

(

d
dt

)

ẑ =
[

π1

(

d
dt

)

Z
(

d
dt

)

+ π2

(

d
dt

)

Y
(

d
dt

)]

y

π1 given, sufficiently high degree, roots arbitrary

arbitrary high roll-off by chosing π2

; simple polynomial algebra.
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Example

Y
(

d
dt

)

y = 0, z = Z
(

d
dt

)

y

Observer:

π1

(

d
dt

)

ẑ =
[

π1

(

d
dt

)

Z
(

d
dt

)

+ π2

(

d
dt

)

Y
(

d
dt

)]

y

π1 given, sufficiently high degree, roots arbitrary

arbitrary high roll-off by chosing π2

; simple polynomial algebra.

When plant is autonomous, the pole placement

combinable with arbitrary roll-off
– p. 25/30



Duality with Control
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Control in a Behavioral Setting

to−be−controlled

c

w

Controlled system

Plant Controller

control
terminals

terminals
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Control in a Behavioral Setting

to−be−controlled

c

w

Controlled system

Plant Controller

control
terminals

terminals

Behavior of to-be-controlled variables, before

controller is applied: Bplant, after: Bcontrolled
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Control in a Behavioral Setting

to−be−controlled

c

w

Controlled system

Plant Controller

control
terminals

terminals

Behavior of to-be-controlled variables, before

controller is applied: Bplant, after: Bcontrolled

Obviously, Bcontrolled ⊆ Bplant
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Control in a Behavioral Setting

to−be−controlled

c

w

Controlled system

Plant Controller

control
terminals

terminals

Behavior of to-be-controlled variables, before

controller is applied: Bplant, after: Bcontrolled

Obviously, Bcontrolled ⊆ Bplant

If w is observable fromc in the plant, then every

suchBcontrolled is implementable.
– p. 27/30



Duality

Given Bplant, LTIDS
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Duality

Given Bplant, LTIDS

Control ; find a subsystem

B ⊆ Bplant

that meets controller specs.

Given

R
(

d
dt

)

w = 0

C
(

d
dt

)

w = 0

‘Squaring up’ R to





R

C




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Duality

Given Bplant, LTIDS

Control ; find a subsystem

B ⊆ Bplant

that meets controller specs.

Observer; find a supsystem

B ⊇ Bplant

that meets observer specs.
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Duality

Given Bplant, LTIDS

Control ; find a subsystem

B ⊆ Bplant

that meets controller specs.

Observer; find a supsystem

B ⊇ Bplant

that meets observer specs.

Controllers mean less,Observers mean more

– p. 28/30



Extensions

Systems defined by rational (rather than

polynomial) ‘symbols’

Least squares,H∞, ...

nD systems , PDEs

– p. 29/30



Details & copies of frames are available from/at
Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/∼jwillems

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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