DOOA ESAT SISTA

A NEW LOOK AT OBSERVERS

Jan C. Willems, K.U. Leuven, Belgium

Introduction

Theme

Theme

Theme

!! Keep estimation error small, zero, convergent to zero, ... !!

Theme

- What is the model that relates the observed with the to-be-estimated variables?
- Find the observer/filter algorithm !

Joint Work with

Maria Elena Valcher
Università di Padova

Joint Work with

Jochen Trumpf
Australian National University

Observers mean more

Controllers mean less

History

Wiener Filtering

Modeling : Assume $\left[\begin{array}{l}y \\ z\end{array}\right]$ is a stochastic process

Wiener Filtering

Modeling: Assume $\left[\begin{array}{l}y \\ z\end{array}\right]$ is a stochastic process
Henceforth time-set \mathbb{R}, stationary processes, normal, zero mean

Wiener Filtering

Modeling : Assume $\left[\begin{array}{l}y \\ z\end{array}\right]$ is a stochastic process

Estimation criterion: $\mathbb{E}\left(|e(t)|^{2}\right) \sim$ algorithms

Wiener Filtering

Algorithms are easy to obtain if for the estimate $\hat{z}(t)$, the observations $\boldsymbol{y}\left(\boldsymbol{t}^{\prime}\right)$ are available for all $\boldsymbol{t}^{\prime} \in \mathbb{R}$.

Much much harder if the observations $\boldsymbol{y}\left(\boldsymbol{t}^{\prime}\right)$ are available only for $t^{\prime} \leq t$
\sim non-anticipating filter

Wiener Filtering

Algorithms are easy to obtain if for the estimate $\hat{z}(t)$, the observations $\boldsymbol{y}\left(\boldsymbol{t}^{\prime}\right)$ are available for all $t^{\prime} \in \mathbb{R}$.

Much much harder if the observations $\boldsymbol{y}\left(\boldsymbol{t}^{\prime}\right)$ are available only for $t^{\prime} \leq t$

This is the problem Wiener solved in 1942, in the yellow peril
$~$ non-anticipating filter, a.k.a. the Wiener filter

Wiener Filtering

signal

observed $=$ signal + noise

Signal \perp noise Signal spectral density $S_{z}(s)$
Noise white, intensity ρ_{n}^{2}
Filters according to the signal-to-noise ratio.

The Wiener Filter

Knowledge of $\boldsymbol{y}(\boldsymbol{t}) \forall \boldsymbol{t} \in \mathbb{R} \quad \leadsto \mathbf{t f} . \mathbf{f n}$.

$$
y \mapsto \hat{z}=1-\frac{1}{1+\frac{S_{z}(s)}{\rho_{n}^{2}}}, y
$$

Knowledge of $\boldsymbol{y}(t)$ in past, Wiener filter $\sim \mathbf{t f} . \mathbf{f n}$.

$$
\begin{gathered}
y \mapsto \hat{z}={\overline{1-\frac{1}{\left[1+\frac{S_{z}(s)}{\rho_{n}^{2}}\right]_{+}}} y}_{y}^{1+\frac{S_{z}(s)}{\rho_{n}^{2}}=\left[1+\frac{S_{z}(s)}{\rho_{n}^{2}}\right]_{+}\left[1+\frac{S_{z}(s)}{\rho_{n}^{2}}\right]_{-}}
\end{gathered}
$$

[]$_{+}$poles \& zeros in LHP 'spectral factorization'

The Kalman Filter

By taking another representation of the stochastic process $\left[\begin{array}{l}y \\ z\end{array}\right]$, the optimal non-anticipating filter becomes much easier to compute.

$$
\frac{d}{d t} x=A x+n_{1}, y=C x+n_{2}, z=H x,\left[\begin{array}{l}
n_{1} \\
n_{2}
\end{array}\right] \text { white }
$$

This is the representation used by Kalman (1960)

The Kalman Filter

$$
\frac{d}{d t} x=A x+B w, \quad y=C x+n, \quad z=H x
$$

$w \perp n$, both white, intensities I

$$
\frac{d}{d t} \hat{x}=\boldsymbol{A} \hat{\boldsymbol{x}}+\Sigma C^{\top}(y-C \hat{\boldsymbol{x}}), \hat{z}=\boldsymbol{H} \hat{\boldsymbol{x}}
$$

Σ suitable solution of the ARE

$$
A \Sigma+\Sigma A^{\top}-\Sigma C^{\top} C \Sigma+B B^{\top}=0
$$

Exactly the Wiener filter, but in a form that is recursive, algorithmic, generalizable (finite time, time-varying, nonlinear) ...

The Kalman Filter

The Kalman Filter

The Kalman filter had a tremendous impact !

Modeling: $\left[\begin{array}{l}y \\ z\end{array}\right]$ input/output of a linear system

$$
\frac{d}{d t} x=A x+B u, y=\left[\begin{array}{c}
u \\
C x
\end{array}\right], z=\boldsymbol{H} \boldsymbol{x}
$$

Plant:

$$
\frac{d}{d t} x=A x+B u, y=\left[\begin{array}{c}
u \\
C x
\end{array}\right], z=H x
$$

Observer: $\quad \frac{d}{d t} \hat{x}=A \hat{x}+B u+L(C x-C \hat{x}), \hat{z}=H \hat{x}$

Error:

$$
\frac{d}{d t} e_{x}=(A-L C) e_{x}, \quad e=H e_{x}
$$

History

State observer, first proposed in 1963 by Luenberger.

Many variations (reduced order, dead-beat, ...) Structure inspired by the 'optimal' Kalman filter.

No stochastic assumptions !

Systems \& Their Properties

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$
W $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} \quad$ 'behavior'
'time-set'
'signal space’

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{array}{ll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time-set' } \\
\mathbb{W} & \text { 'signal space' } \\
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { 'behavior' }
\end{array}
$$

Consider $w: \mathbb{T} \rightarrow \mathbb{W}$
$\boldsymbol{w} \in \mathfrak{B}$ the model allows the trajectory \boldsymbol{w}
$\boldsymbol{w} \notin \mathfrak{B}$ the model forbids the trajectory \boldsymbol{w}

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$
\mathbb{W}
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} \quad$ 'behavior' today, LTIDS
today, $\mathbb{T}=\mathbb{R}$
'signal space' today, $\mathbb{W}=\mathbb{R}^{w}$

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{array}{lll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time-set' } & \text { today, } \mathbb{T}=\mathbb{R} \\
\mathbb{W} & \text { 'signal space' } & \text { today, } \mathbb{W}=\mathbb{R}^{\mathbb{W}} \\
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { 'behavior' } & \text { today, } \text { LTIDS }
\end{array}
$$

Linear time-invariant differential system (LTIDS):
$\mathfrak{B}=$ all solutions of

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=0
$$

where $\boldsymbol{R} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \text { w }}$
'kernel representation' (numerous other repr.)

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$
W
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$
'time-set'
'signal space' today, $\mathbb{W}=\mathbb{R}^{\mathrm{W}}$
'behavior' today, LTIDS

Linear time-invariant differential system (LTIDS): $\mathfrak{B}=$ all $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$ - solutions of

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=0
$$

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$
\mathbb{W}
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$
'time-set'
'signal space'
'behavior'
today, $\mathbb{T}=\mathbb{R}$
today, $\mathbb{W}=\mathbb{R}^{W}$ today, LTIDS

Linear time-invariant differential system (LTIDS): $\mathfrak{B}=$ all $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ - solutions of

$$
\boldsymbol{R}_{0} \boldsymbol{w}+\boldsymbol{R}_{1} \frac{d}{d t} w+\cdots+\boldsymbol{R}_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} \boldsymbol{w}=0
$$

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{array}{lll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time-set' } & \text { today, } \mathbb{T}=\mathbb{R} \\
\mathbb{W} & \text { 'signal space' } & \text { today, } \mathbb{W}=\mathbb{R}^{\mathbb{W}} \\
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { 'behavior' } & \text { today, } \text { LTIDS }
\end{array}
$$

Linear time-invariant differential system (LTIDS): $\mathfrak{B}=$ all $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ - solutions of

The behavior is all there is !

Representations, properties (controllability, observability, symmetries) in terms of behavior

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{array}{lll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time-set' } & \text { today, } \mathbb{T}=\mathbb{R} \\
\mathbb{W} & \text { 'signal space' } & \text { today, } \mathbb{W}=\mathbb{R}^{\mathbb{W}} \\
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { 'behavior' } & \text { today, } \text { LTIDS }
\end{array}
$$

Linear time-invariant differential system (LTIDS):
$\mathfrak{B}=$ all $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ - solutions of
The behavior is all there is !

SYSID refers to behavior, control $=$ restricting behavior,...

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{array}{lll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time-set' } & \text { today, } \mathbb{T}=\mathbb{R} \\
\mathbb{W} & \text { 'signal space' } & \text { today, } \mathbb{W}=\mathbb{R}^{\mathbb{W}} \\
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { 'behavior' } & \text { today, } \text { LTIDS }
\end{array}
$$

Linear time-invariant differential system (LTIDS): $\mathfrak{B}=$ all $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ - solutions of

The behavior is all there is !

Physical models specify the behavior !

\mathfrak{L}^{\bullet} : the LTIDSs. $\mathfrak{L}^{\boldsymbol{\bullet}}$ is closed under projection

LTIDSs

\mathfrak{L}^{\bullet} : the LTIDSs. $\mathfrak{L}^{\boldsymbol{\bullet}}$ is closed under projection

$$
\begin{equation*}
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) \boldsymbol{w}_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) \boldsymbol{w}_{2} \tag{*}
\end{equation*}
$$

$\boldsymbol{R}_{1}, \boldsymbol{R}_{2} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \bullet}$.

LTIDSs

$\mathfrak{L}^{\bullet}:$ the LTIDSs. \mathfrak{L}^{\bullet} is closed under projection

$$
\begin{equation*}
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) \boldsymbol{w}_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) \boldsymbol{w}_{2} \tag{*}
\end{equation*}
$$

$\boldsymbol{R}_{1}, \boldsymbol{R}_{2} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \bullet}$. Define

$$
\mathfrak{B}_{1}:=\left\{\boldsymbol{w}_{1} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right) \mid \exists \boldsymbol{w}_{2} \text { such that }(*)\right\}
$$

LTIDSs

$\mathfrak{L}^{\bullet}:$ the LTIDSs. \mathfrak{L}^{\bullet} is closed under projection

$$
\begin{equation*}
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) \boldsymbol{w}_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) \boldsymbol{w}_{2} \tag{*}
\end{equation*}
$$

$R_{1}, R_{2} \in \mathbb{R}[\xi]^{\bullet \times \bullet}$. Define
$\mathfrak{B}_{1}:=\left\{\boldsymbol{w}_{1} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right) \mid \exists \boldsymbol{w}_{2}\right.$ such that $\left.(*)\right\}$
Thm: $\mathfrak{B}_{1} \in \mathfrak{L}^{\bullet} \quad \sim R\left(\frac{d}{d t}\right) w_{1}=0$
\exists algorithms

$$
\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right) \mapsto \boldsymbol{R}
$$

LTIDSs

$\mathfrak{L}^{\bullet}:$ the LTIDSs. \mathfrak{L}^{\bullet} is closed under projection

$$
\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{w}=0, \boldsymbol{F} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \mathrm{w}}
$$

is a consequence of

$\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0, \boldsymbol{R} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times{ }_{w}} \quad: \Leftrightarrow$

$$
\llbracket \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0 \rrbracket \Rightarrow \llbracket \boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{w}=0 \rrbracket
$$

LTIDSs

$\mathfrak{L}^{\bullet}:$ the LTIDSs. \mathfrak{L}^{\bullet} is closed under projection
$\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{w}=0, \boldsymbol{F} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \mathrm{w}}$
is a consequence of
$\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0, \boldsymbol{R} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times{ }_{w}} \quad: \Leftrightarrow$

$$
\llbracket \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0 \rrbracket \Rightarrow \llbracket \boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{w}=0 \rrbracket
$$

Thm: Consequence $\Leftrightarrow F=F^{\prime} R$

- Controllable
- Stabilizable
- Autonomous
- Stable
- Observable
- Detectable

System Properties

$\Sigma=(\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is controllable $: \Leftrightarrow$

System Properties

$\Sigma=(\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is controllable $: \Leftrightarrow$

Behavioral controllability of a dynamical system

System Properties

$\Sigma=(\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is autonomous $: \Leftrightarrow$

$$
\begin{aligned}
& \llbracket w_{1}, w_{2} \in \mathfrak{B} \text { and } w_{1}(t)=w_{2}(t) \text { for } t<0 \rrbracket \\
& \quad \Rightarrow \llbracket w_{1}(t)=w_{2}(t) \text { for } t \geq 0 \rrbracket
\end{aligned}
$$

'past implies future'
stable $: \Leftrightarrow \llbracket w \in \mathfrak{B} \rrbracket \Rightarrow \llbracket w(t) \rightarrow 0$ as $t \rightarrow \infty \rrbracket$

System Properties

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0
$$

defines a controllable system iff

$$
\operatorname{rank}(R(\lambda)) \text { is the same for all } \lambda \in \mathbb{C}
$$

a stabilizable one $\lambda \in$ the closed RHP

System Properties

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}
$$

defines an autonomous system iff
$\boldsymbol{R}(\boldsymbol{\lambda})$ full column rank \forall but finite number $\lambda \in \mathbb{C}$
\exists kernel repr. with R square and $\operatorname{det}(R) \neq 0$.
a stable one ... $\boldsymbol{\lambda} \in$ the closed LHP
$\exists \boldsymbol{R}$ 'Hurwitz’

Properties Involving Relations Among Variables

observed
variables

to-be-deduced variables

Properties Involving Relations Among Variables

w_{1} is observable from w_{2} in $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right): \Leftrightarrow$

$$
\begin{aligned}
\llbracket\left(w_{1}, w_{2}^{\prime}\right),\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B} \rrbracket & \\
& \Rightarrow \llbracket w_{2}^{\prime}=w_{2}^{\prime \prime} \rrbracket
\end{aligned}
$$

Observed trajectory implies the to-be-deduced one

Properties Involving Relations Among Variables

w_{1} is detectable from w_{2} in $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right): \Leftrightarrow$

$$
\begin{aligned}
& \llbracket\left(w_{1}, w_{2}^{\prime}\right),\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B} \rrbracket \\
& \quad \Rightarrow \llbracket w_{2}^{\prime}(t)-w_{2}^{\prime \prime}(t) \rightarrow 0 \text { as } t \rightarrow \infty \rrbracket
\end{aligned}
$$

Observed trajectory implies the to-be-deduced one asymptotically

Tests for Observability and Detectability

$$
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) \boldsymbol{w}_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) \boldsymbol{w}_{2}
$$

defines an observable system iff

$R_{2}(\lambda)$ has full column rank $\forall \lambda \in \mathbb{C}$

defines a detectable system iff
... \forall but finite number $\boldsymbol{\lambda} \in$ closed RHP

Tests for Observability and Detectability

$$
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) w_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) w_{2}
$$

observable iff there are 'consequences'

$$
\begin{aligned}
w_{2} & =F\left(\frac{d}{d t}\right) w_{1} \\
\leadsto \quad R\left(\frac{d}{d t}\right) w_{1} & =0, \quad w_{2}=F\left(\frac{d}{d t}\right) w_{1}
\end{aligned}
$$

\exists algorithms ...

Tests for Observability and Detectability

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}
$$

detectable iff there are 'consequences'

$$
\begin{gathered}
H\left(\frac{d}{d t}\right) w_{2}=F\left(\frac{d}{d t}\right) w_{1}, \text { with } H \text { 'Hurwitz' } \\
\leadsto \quad R\left(\frac{d}{d t}\right) w_{1}=0, \quad H\left(\frac{d}{d t}\right) w_{2}=F\left(\frac{d}{d t}\right) w_{1}
\end{gathered}
$$

\exists algorithms ...

System properties ought to hold beyond the state space setting,

they ought to be representation independent

What is an observer?

Observers

to-be-estimated variables

Consider two LTIDS systems.
When is system 2 an observer for the plant?
Denote their behavior by
$\mathfrak{B}_{\text {plant }}$ and $\hat{\mathfrak{B}}$

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Observers

Condition 1: System 2 simulates the plant, that is $\boldsymbol{\mathfrak { B }}_{\text {plant }} \subseteq \hat{\mathfrak{B}}$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous $\mathfrak{B}_{\text {error }}=\{0\}$, exact observer $\mathfrak{B}_{\text {error }}$ nilpotent, dead-beat (discr. time) $\mathfrak{B}_{\text {error }}$ stable, asymptotic observer

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous

These conditions imply that

1. it is possible to follow \boldsymbol{z} through \boldsymbol{y},
2. once $z\left(t^{\prime}\right)=\hat{z}\left(t^{\prime}\right)$ for $t^{\prime} \in[T-\varepsilon, T], \varepsilon>0$,
there holds $z(t)=\hat{z}(t)$ for $t>T$.

Observers

Condition 1: System 2 simulates the plant, that is $\boldsymbol{\mathfrak { B }}_{\text {plant }} \subseteq \hat{\mathfrak{\mathfrak { B }}}$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous
Condition 3: WLOG, add y is free ('input') in $\hat{\mathfrak{B}}$, y is 'processed' in $\hat{\mathfrak{B}}$

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous
Condition 3: WLOG, add y is free ('input') in $\hat{\mathfrak{B}}$, y is 'processed' in $\hat{\mathfrak{B}}$

These conditions are not independent.
$1+3$ (y input $)+\hat{z}$ output $\Rightarrow 2$
controllability of plant $+2+3 \Rightarrow 1$
Assume contr. \& 3. Then $\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}} \Leftrightarrow$ observer

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous
Condition 3: WLOG, add y is free ('input') in $\hat{\mathfrak{B}}$, y is 'processed' in $\hat{\mathfrak{B}}$

Theorem: An observer exists if and only if

$$
\left\{(z, y) \in \mathfrak{B}_{\text {plant }} \mid \boldsymbol{y}=0\right\} \text { is autonomous }
$$

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous
Condition 3: WLOG, add y is free ('input') in $\hat{\mathfrak{B}}$, y is 'processed' in $\hat{\mathfrak{B}}$

Roughly, observer design \cong finding a cover

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Observer Design

Covers

Essential condition:

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Easy to find a supsystem, $\mathfrak{B}^{\prime} \supseteq \mathfrak{B}$, for a given LTIDS \mathfrak{B}. For example, from 'kernel representation'

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}
$$

Then $\mathfrak{B}^{\prime} \supseteq \mathfrak{B}$ iff \mathfrak{B}^{\prime} has kernel representation

$$
\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0
$$

for some $F \in \mathbb{R}[\xi]^{\bullet \bullet \bullet}$.

Covers

Plant:

$$
Z\left(\frac{d}{d t}\right) z=Y\left(\frac{d}{d t}\right) y
$$

Observer therefore

$$
F\left(\frac{d}{d t}\right) \boldsymbol{Z}\left(\frac{d}{d t}\right) \hat{z}=F\left(\frac{d}{d t}\right) \boldsymbol{Y}\left(\frac{d}{d t}\right) \boldsymbol{y}
$$

Error dynamics

$$
F\left(\frac{d}{d t}\right) Z\left(\frac{d}{d t}\right) e=0
$$

Observer conditions: $F \boldsymbol{Z}$ square and non-singular.

Covers

Given $Z, Y \in \mathbb{R}[\xi]^{\bullet \times \bullet}$, what can be achieved by $F \in \mathbb{R}[\xi]^{\bullet \times \bullet}(Z, Y) \mapsto(F Z, F Y)$?

Achievable error dynamics

$$
F\left(\frac{d}{d t}\right) Z\left(\frac{d}{d t}\right) e=0
$$

Can the observer be made smoothing ?

$$
F\left(\frac{d}{d t}\right) Z\left(\frac{d}{d t}\right) \hat{z}=\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{Y}\left(\frac{d}{d t}\right) y
$$

transfer function $(F Z)^{-1}(F Y)$ proper, strictly proper, high-frequency roll-off, ...

taking into consideration roll-off of $(F Z)^{-1}(F Y)$

Error Dynamics

Assume that in the plant z is observable from y. Then $\forall r \in \mathbb{R}[\xi]$, monic, $\exists \boldsymbol{F}$ such that

$$
\operatorname{det}(F Z)=r
$$

$r=1 \quad \sim$ exact observer
r Hurwitz \leadsto asymptotic observer
$r(\xi)=\xi^{d} \sim$ dead-beat observer (discr.-time)

Combinable with proper, high-frequency roll-off, provided degree (r) sufficiently large.

Error Dynamics

Assume z is detectable from y. Then for any
$r \in \mathbb{R}[\xi]$, monic, with a given Hurwitz factor
(representing the unobservable modes) there exists F such that

$$
\operatorname{det}(F Z)=r
$$

r Hurwitz \leadsto asymptotic observer

Combinable with proper, high-frequency roll-off, provided degree (r) sufficiently large.

Example

Autonomous system, z, y scalar:

$$
\boldsymbol{R}\left(\frac{d}{d t}\right)\left[\begin{array}{l}
z \\
y
\end{array}\right]=0
$$

$\operatorname{det}(R) \neq 0$.

Example

Autonomous system, z, y scalar:

$$
\boldsymbol{R}\left(\frac{d}{d t}\right)\left[\begin{array}{l}
z \\
y
\end{array}\right]=0
$$

$\operatorname{det}(R) \neq 0$. Observability \Rightarrow representation

$$
\boldsymbol{Y}\left(\frac{d}{d t}\right) y=0, z=Z\left(\frac{d}{d t}\right) y
$$

$\boldsymbol{Y}, \boldsymbol{Z} \in \mathbb{R}[\boldsymbol{\xi}]$

Example

$$
Y\left(\frac{d}{d t}\right) y=0, z=Z\left(\frac{d}{d t}\right) y
$$

Observer:

$$
\boldsymbol{\pi}_{1}\left(\frac{d}{d t}\right) \hat{z}=\left[\pi_{1}\left(\frac{d}{d t}\right) \boldsymbol{Z}\left(\frac{d}{d t}\right)+\pi_{2}\left(\frac{d}{d t}\right) \boldsymbol{Y}\left(\frac{d}{d t}\right)\right] \boldsymbol{y}
$$

π_{1} given, sufficiently high degree, roots arbitrary arbitrary high roll-off by chosing π_{2}
$~$ simple polynomial algebra.

Example

$$
Y\left(\frac{d}{d t}\right) y=0, z=Z\left(\frac{d}{d t}\right) y
$$

Observer:

$$
\boldsymbol{\pi}_{1}\left(\frac{d}{d t}\right) \hat{z}=\left[\pi_{1}\left(\frac{d}{d t}\right) \boldsymbol{Z}\left(\frac{d}{d t}\right)+\pi_{2}\left(\frac{d}{d t}\right) \boldsymbol{Y}\left(\frac{d}{d t}\right)\right] \boldsymbol{y}
$$

π_{1} given, sufficiently high degree, roots arbitrary arbitrary high roll-off by chosing π_{2} $~$ simple polynomial algebra.

When plant is autonomous, the pole placement combinable with arbitrary roll-off

Duality with Control

Control in a Behavioral Setting

Control in a Behavioral Setting

Behavior of to-be-controlled variables, before
controller is applied: $\mathfrak{B}_{\text {plant }}, \quad$ after: $\mathfrak{B}_{\text {controlled }}$

Control in a Behavioral Setting

Behavior of to-be-controlled variables, before controller is applied: $\mathfrak{B}_{\text {plant }}, \quad$ after: $\mathfrak{B}_{\text {controlled }}$ Obviously,

$\boldsymbol{\mathfrak { B }}_{\text {controlled }} \subseteq \mathfrak{B}_{\text {plant }}$

Control in a Behavioral Setting

Behavior of to-be-controlled variables, before controller is applied: $\mathfrak{B}_{\text {plant }}, \quad$ after: $\mathfrak{B}_{\text {controlled }}$ Obviously, $\boldsymbol{\mathfrak { B }}_{\text {controlled }} \subseteq \boldsymbol{\mathfrak { B }}_{\text {plant }}$

If \boldsymbol{w} is observable from \boldsymbol{c} in the plant, then every such $\mathfrak{B}_{\text {controlled }}$ is implementable.

Duality

Given $\mathfrak{B}_{\text {plant }}$, LTIDS

Duality

Given $\mathfrak{B}_{\text {plant }}$, LTIDS

Control \sim find a subsystem

$$
\mathfrak{B} \subseteq \mathfrak{B}_{\text {plant }}
$$

that meets controller specs.

Given

$$
\begin{aligned}
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w} & =0 \\
C\left(\frac{d}{d t}\right) \boldsymbol{w} & =0
\end{aligned}
$$

'Squaring up' $\quad R \quad$ to $\quad\left[\begin{array}{l}R \\ C\end{array}\right]$

Duality

Given $\mathfrak{B}_{\text {plant }}$, LTIDS

Control \sim find a subsystem

$\mathfrak{B} \subseteq \mathfrak{B}_{\text {plant }}$

that meets controller specs.

Observer \leadsto find a supsystem
$\mathfrak{B} \supseteq \mathfrak{B}_{\text {plant }}$
that meets observer specs.

Duality

Given $\mathfrak{B}_{\text {plant }}$, LTIDS

Control \sim find a subsystem

$$
\mathfrak{B} \subseteq \mathfrak{B}_{\text {plant }}
$$

that meets controller specs.

Observer \leadsto find a supsystem

$$
\mathfrak{B} \supseteq \mathfrak{B}_{\text {plant }}
$$

that meets observer specs.

Extensions

- Systems defined by rational (rather than polynomial) 'symbols'
- Least squares, $\mathcal{H}_{\infty}, \ldots$
- nD systems , PDEs

Details \& copies of frames are available from/at

Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you

