

A NEW LOOK AT OBSERVERS

Jan C. Willems, K.U. Leuven, Belgium

Seminar, Southampton

November 22, 2007

Introduction

!! Keep estimation error

small, zero, convergent to zero, ... !!

- What is the model that relates the observed with the to-be-estimated variables ?
- **•** Find the observer/filter algorithm !

Joint Work with

Maria Elena Valcher Università di Padova

Joint Work with

Jochen Trumpf Australian National University

Observers mean more

Controllers mean less

History

Henceforth time-set \mathbb{R} , stationary processes, normal, zero mean

Estimation criterion: $\mathbb{E}\left(|e(t)|^2\right) \rightsquigarrow$ algorithms

Algorithms are easy to obtain if for the estimate $\hat{z}(t)$, the observations y(t')

are available for all $t' \in \mathbb{R}$.

Much much harder if the observations y(t')are available only for $t' \leq t$

 \rightarrow **non-anticipating filter**

Algorithms are easy to obtain if for the estimate $\hat{z}(t)$, the observations y(t')

are available for all $t' \in \mathbb{R}$.

Much much harder if the observations y(t')are available only for $t' \leq t$

This is the problem Wiener solved in 1942, in the yellow peril

 \rightarrow non-anticipating filter , a.k.a. the Wiener filter

observed = signal + noise

Signal \perp noise Signal spectral density $S_z(s)$ Noise white, intensity ρ_n^2

Filters according to the signal-to-noise ratio.

The Wiener Filter

Knowledge of $y(t) \ \forall t \in \mathbb{R} \quad \leadsto$ tf. fn.

$$y\mapsto \hat{z}=egin{bmatrix}1-rac{1}{V}\ rac{S_{m{z}}(s)}{1+rac{P_n^2}{
ho_n^2}}\end{bmatrix}y$$

Knowledge of y(t) in past, Wiener filter \rightsquigarrow tf. fn.

$$y\mapsto \hat{z}=egin{array}{c} 1-rac{1}{\left[1+rac{S_z(s)}{
ho_n^2}
ight]_+}y$$

$$1 + rac{S_{m{z}}(s)}{
ho_n^2} = \left[1 + rac{S_{m{z}}(s)}{
ho_n^2}
ight]_+ \left[1 + rac{S_{m{z}}(s)}{
ho_n^2}
ight]_-$$

[]₊ poles & zeros in LHP 'spectral factorization'

By taking another representation of the stochastic process $\begin{bmatrix} y \\ z \end{bmatrix}$, the optimal non-anticipating filter becomes much easier to compute.

$$rac{d}{dt}x=Ax+n_1,y=Cx+n_2,z=Hx,egin{bmatrix}n_1\n_2\end{bmatrix}$$
 white

This is the representation used by Kalman (1960)

$$\frac{d}{dt}x = Ax + Bw, \ y = Cx + n, \ z = Hx$$

 $w\perp n, \ {
m both \ white, \ intensities \ } I$

$$rac{d}{dt}\hat{x} = A\hat{x} + \Sigma C^{ op}\left(y - C\hat{x}
ight), \;\; \hat{z} = H\hat{x}$$

 Σ suitable solution of the ARE

$$A\Sigma + \Sigma A^\top - \Sigma C^\top C\Sigma + BB^\top = 0$$

Exactly the Wiener filter, but in a form that is *recursive, algorithmic, generalizable* (finite time, time-varying, nonlinear) ...

The Kalman filter had a tremendous impact !

Observer: $\frac{d}{dt}\hat{x} = A\hat{x} + Bu + L(Cx - C\hat{x}), \ \hat{z} = H\hat{x}$

Error:

$$\frac{d}{dt}e_x = (A - LC)e_x, \ e = He_x$$

State observer, first proposed in 1963 by Luenberger.

Many variations (reduced order, dead-beat, ...) Structure inspired by the 'optimal' Kalman filter.

No stochastic assumptions !

Systems & Their Properties

- A *dynamical system* is $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$
 - $\mathbb{T} \subseteq \mathbb{R}$ 'time-set'
 - W 'signal space'
 - $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ 'behavior'

- A *dynamical system* is $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$
 - $\mathbb{T} \subseteq \mathbb{R}$ 'time-set'
 - W 'signal space'
 - $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ 'behavior'

Consider $w:\mathbb{T} \to \mathbb{W}$

 $w \in \mathfrak{B}$ the model allows the trajectory w $w \notin \mathfrak{B}$ the model forbids the trajectory w

A *dynamical system* is $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

- $\mathbb{T} \subseteq \mathbb{R}$ 'time-set'today, $\mathbb{T} = \mathbb{R}$ \mathbb{W} 'signal space'today, $\mathbb{W} = \mathbb{R}^{\mathbb{W}}$
- $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ 'behavior' today, LTIDS

Linear time-invariant differential system(LTIDS): $\mathfrak{B} = all$ solutions of

$$R\left(rac{d}{dt}
ight)w=0$$

where $R \in \mathbb{R}\left[\xi
ight]^{ullet imes w}$

'kernel representation' (numerous other repr.)

A *dynamical system* is $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

- $\mathbb{T} \subseteq \mathbb{R}$ 'time-set'today, $\mathbb{T} = \mathbb{R}$ \mathbb{W} 'signal space'today, $\mathbb{W} = \mathbb{R}^{\mathbb{W}}$
- $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ 'behavior' today, LTIDS

Linear time-invariant differential system (LTIDS): $\mathfrak{B} = \operatorname{all} \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ - solutions of

$$R\left(rac{d}{dt}
ight)w=0$$

A *dynamical system* is $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

- $\mathbb{T} \subseteq \mathbb{R}$ 'time-set'today, $\mathbb{T} = \mathbb{R}$ \mathbb{W} 'signal space'today, $\mathbb{W} = \mathbb{R}^{\mathbb{W}}$
- $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ 'behavior' today, LTIDS

Linear time-invariant differential system (LTIDS): $\mathfrak{B} = \operatorname{all} \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ - solutions of

$$R_0w+R_1rac{d}{dt}w+\cdots+R_{ ext{n}}rac{d^{ ext{n}}}{dt^{ ext{n}}}w=0$$

A *dynamical system* is $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

- $\mathbb{T} \subseteq \mathbb{R}$ 'time-set'today, $\mathbb{T} = \mathbb{R}$ \mathbb{W} 'signal space'today, $\mathbb{W} = \mathbb{R}^{\mathbb{W}}$
- $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ 'behavior' today, LTIDS

Linear time-invariant differential system (LTIDS): $\mathfrak{B} = \operatorname{all} \mathfrak{C}^{\infty} (\mathbb{R}, \mathbb{R}^{w})$ - solutions of

The behavior is all there is !

Representations, properties (controllability, observability, symmetries) in terms of behavior

A *dynamical system* is $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

- $\mathbb{T} \subseteq \mathbb{R}$ 'time-set'today, $\mathbb{T} = \mathbb{R}$ \mathbb{W} 'signal space'today, $\mathbb{W} = \mathbb{R}^{\mathbb{W}}$
- $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ 'behavior' today, LTIDS

Linear time-invariant differential system (LTIDS): $\mathfrak{B} = \operatorname{all} \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ - solutions of

The behavior is all there is !

SYSID refers to behavior, control = restricting behavior, ...

A *dynamical system* is $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

- $\mathbb{T} \subseteq \mathbb{R}$ 'time-set'today, $\mathbb{T} = \mathbb{R}$ \mathbb{W} 'signal space'today, $\mathbb{W} = \mathbb{R}^{\mathbb{W}}$
- $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ 'behavior' today, LTIDS

Linear time-invariant differential system (LTIDS): $\mathfrak{B} = \operatorname{all} \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ - solutions of

The behavior is all there is !

Physical models specify the behavior !

\mathfrak{L}^{\bullet} : the LTIDSs. \mathfrak{L}^{\bullet} is **closed under projection**

$$R_1\left(rac{d}{dt}
ight)w_1=R_2\left(rac{d}{dt}
ight)w_2$$
 (*)

 $R_1,R_2\in \mathbb{R}\left[\xi
ight]^{ullet imesullet}.$

$$R_1\left(rac{d}{dt}
ight)w_1=R_2\left(rac{d}{dt}
ight)w_2$$
 (*)

 $R_1,R_2\in \mathbb{R}\left[\xi
ight]^{ullet imesullet}$. Define

 $\mathfrak{B}_1 := \{w_1 \in \mathfrak{C}^\infty\left(\mathbb{R}, \mathbb{R}^ullet
ight) \mid \exists w_2 ext{ such that } (*)\}$

$$R_1\left(rac{d}{dt}
ight)w_1=R_2\left(rac{d}{dt}
ight)w_2$$
 (*)

 $R_1,R_2\in \mathbb{R}\left[\xi
ight]^{ullet imesullet}$. Define

 $\mathfrak{B}_1:=\{w_1\in\mathfrak{C}^\infty\left(\mathbb{R},\mathbb{R}^ullet
ight)\mid \exists w_2 ext{ such that } (*)\}$

Thm: $\mathfrak{B}_1 \in \mathfrak{L}^ullet$ $\rightsquigarrow R\left(rac{d}{dt}\right) w_1 = 0$

$$\exists ext{ algorithms } (R_1,R_2)\mapsto R$$

$$F\left(\frac{d}{dt}\right)w = 0, F \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$$

is a consequence of
$$R\left(\frac{d}{dt}\right)w = 0, R \in \mathbb{R}\left[\xi\right]^{\bullet \times w} :\Leftrightarrow$$
$$\left[\left[R\left(\frac{d}{dt}\right)w = 0\right]\right] \Rightarrow \left[\left[F\left(\frac{d}{dt}\right)w = 0\right]\right]$$

$$F\left(\frac{d}{dt}\right)w = 0, F \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$$

is a consequence of
$$R\left(\frac{d}{dt}\right)w = 0, R \in \mathbb{R}\left[\xi\right]^{\bullet \times w} :\Leftrightarrow$$

$$\left[R\left(\frac{d}{dt}\right)w = 0\right] \Rightarrow \left[F\left(\frac{d}{dt}\right)w = 0\right]$$

Thm: Consequence $\Leftrightarrow F = F'R$

- **•** Controllable
- Stabilizable
- Autonomous
- Stable
- Observable
- Detectable

 $\Sigma = (\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is **controllable** : \Leftrightarrow

 $\Sigma = (\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is **controllable** : \Leftrightarrow

Behavioral controllability of a dynamical system

 $\Sigma = (\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is autonomous : \Leftrightarrow

$$\llbracket w_1, w_2 \in \mathfrak{B} ext{ and } w_1(t) = w_2(t) ext{ for } t < 0
ight
ceil$$

 $\Rightarrow \llbracket w_1(t) = w_2(t) ext{ for } t \geq 0
ight
ceil$

'past implies future'

stable : $\Leftrightarrow \ \llbracket w \in \mathfrak{B} \rrbracket \Rightarrow \llbracket w(t) \to 0 \text{ as } t \to \infty \rrbracket$

$$R\left(rac{d}{dt}
ight)w=0$$

defines a controllable system iff

$\operatorname{rank}\left(R\left(\lambda ight) ight)$ is the same for all $\lambda\in\mathbb{C}$

a stabilizable one $\lambda \in$ the closed RHP

$$R\left(rac{d}{dt}
ight)w=0$$

defines an autonomous system iff

 $R\left(\lambda
ight)$ full column rank orall but finite number $\lambda\in\mathbb{C}$

 \exists kernel repr. with R square and $\det(R) \neq 0$.

a stable one ... $\lambda \in$ the closed LHP

 $\exists R$ 'Hurwitz'

 $w_1 ext{ is observable from } w_2 ext{ in } \Sigma = (\mathbb{T}, \mathbb{W}_1 imes \mathbb{W}_2, \mathfrak{B}) : \Leftrightarrow$

Observed trajectory implies the to-be-deduced one

 Properties Involving Relations Among Variables

 observed variables
 w1
 SYSTEM
 w2
 to-be-deduced variables

 w_1 is detectable from w_2 in $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B})$: \Leftrightarrow

$$\llbracket \left(w_1, w_2'
ight), \left(w_1, w_2''
ight) \in \mathfrak{B}
ight] \ \Rightarrow \llbracket w_2'(t) - w_2''(t)
ightarrow 0 ext{ as } t
ightarrow \infty
bracket$$

Observed trajectory implies the to-be-deduced one asymptotically

Tests for Observability and Detectability

$$R_1\left(rac{d}{dt}
ight)w_1=R_2\left(rac{d}{dt}
ight)w_2$$

defines an **observable** system iff

$R_{2}\left(\lambda ight)$ has full column rank $orall \,\lambda\in\mathbb{C}$

defines a detectable system iff $...\forall$ but finite number $\lambda \in \text{closed RHP}$

Tests for Observability and Detectability

$$R_1\left(rac{d}{dt}
ight)w_1=R_2\left(rac{d}{dt}
ight)w_2$$

observable iff there are 'consequences'

$$w_2 = F\left(rac{d}{dt}
ight) w_1 \
ightarrow R\left(rac{d}{dt}
ight) w_1 = 0, \,\, w_2 = F\left(rac{d}{dt}
ight) w_1$$

∃ algorithms ...

Tests for Observability and Detectability

$$R_1\left(rac{d}{dt}
ight)w_1=R_2\left(rac{d}{dt}
ight)w_2$$

detectable iff there are 'consequences'

$$H\left(\frac{d}{dt}\right)w_2 = F\left(\frac{d}{dt}\right)w_1$$
, with H 'Hurwitz' $\rightsquigarrow R\left(\frac{d}{dt}\right)w_1 = 0, H\left(\frac{d}{dt}\right)w_2 = F\left(\frac{d}{dt}\right)w_1$
 \exists algorithms ...

System properties ought to hold beyond the state space setting,

they ought to be representation independent

What is an observer?

Consider two LTIDS systems.

When is system 2 an observer for the plant? Denote their behavior by

$$\mathfrak{B}_{ ext{plant}}$$
 and $\hat{\mathfrak{B}}$

$$\mathfrak{B}_{ ext{plant}} \subseteq \hat{\mathfrak{B}}$$

<u>Condition 2</u>: Error behavior, \mathfrak{B}_{error}, is autonomous $\mathfrak{B}_{error} = \{0\}$, exact observer \mathfrak{B}_{error} nilpotent, dead-beat (discr. time)

 \mathfrak{B}_{error} stable, asymptotic observer

<u>Condition 2</u>: Error behavior, \mathfrak{B}_{error} , is **autonomous**

These conditions imply that

- 1. it is possible to follow z through y,
- 2. once $z(t') = \hat{z}(t')$ for $t' \in [T \varepsilon, T], \varepsilon > 0$, there holds $z(t) = \hat{z}(t)$ for t > T.

<u>Condition 2</u>: Error behavior, \mathfrak{B}_{error} , is **autonomous**

<u>Condition 3</u>: WLOG, add y is free ('input') in $\hat{\mathfrak{B}}$, y is 'processed' in $\hat{\mathfrak{B}}$

<u>Condition 2</u>: Error behavior, \mathfrak{B}_{error} , is **autonomous**

<u>Condition 3</u>: WLOG, add y is free ('input') in $\hat{\mathfrak{B}}$, y is 'processed' in $\hat{\mathfrak{B}}$

These conditions are not independent. $1 + 3 (y \text{ input}) + \hat{z} \text{ output} \Rightarrow 2$ controllability of plant $+ 2 + 3 \Rightarrow 1$ Assume contr. & 3. Then $\mathfrak{B}_{\text{plant}} \subseteq \hat{\mathfrak{B}} \Leftrightarrow \text{observer}$

<u>Condition 2</u>: Error behavior, \mathfrak{B}_{error} , is **autonomous**

Condition 3: WLOG, add y isfree('input') in $\hat{\mathfrak{B}}$,y is 'processed' in $\hat{\mathfrak{B}}$

Theorem: An observer exists if and only if

 $\{(z,y)\in\mathfrak{B}_{\mathrm{plant}}\mid y=0\}$ is autonomous

<u>Condition 2</u>: Error behavior, \mathfrak{B}_{error} , is **autonomous**

Condition 3: WLOG, add y isfree('input') in $\hat{\mathfrak{B}}$,y is 'processed' in $\hat{\mathfrak{B}}$

Roughly, observer design \cong finding a cover

$$\mathfrak{B}_{\mathrm{plant}} \subseteq \hat{\mathfrak{B}}$$

Observer Design

Essential condition:

$$\mathfrak{B}_{\mathrm{plant}} \subseteq \hat{\mathfrak{B}}$$

Easy to find a supsystem, $\mathfrak{B}' \supseteq \mathfrak{B}$, for a given LTIDS \mathfrak{B} . For example, from 'kernel representation'

$$R\left(rac{d}{dt}
ight)w=0$$

Then $\mathfrak{B}' \supseteq \mathfrak{B}$ iff \mathfrak{B}' has kernel representation

$$F\left(rac{d}{dt}
ight)R\left(rac{d}{dt}
ight)w=0$$

for some $F \in \mathbb{R} [\xi]^{\bullet \times \bullet}$.

Plant:

$$Z\left(rac{d}{dt}
ight)oldsymbol{z} = Y\left(rac{d}{dt}
ight)oldsymbol{y}$$

Observer therefore

$$oldsymbol{F}\left(rac{d}{dt}
ight)oldsymbol{Z}\left(rac{d}{dt}
ight)\hat{oldsymbol{z}}=oldsymbol{F}\left(rac{d}{dt}
ight)oldsymbol{Y}\left(rac{d}{dt}
ight)oldsymbol{y}$$

Error dynamics

$$F\left(rac{d}{dt}
ight)Z\left(rac{d}{dt}
ight)e=0$$

Observer conditions: FZ square and non-singular.

Given $Z, Y \in \mathbb{R} [\xi]^{\bullet \times \bullet}$, what can be achieved by $F \in \mathbb{R} [\xi]^{\bullet \times \bullet} \quad (Z, Y) \mapsto (FZ, FY)$?

Achievable error dynamics

$$F\left(rac{d}{dt}
ight)Z\left(rac{d}{dt}
ight)e=0$$

Can the observer be made **smoothing**?

$$F\left(rac{d}{dt}
ight)Z\left(rac{d}{dt}
ight)\hat{oldsymbol{z}}=F\left(rac{d}{dt}
ight)Y\left(rac{d}{dt}
ight)y$$

transfer function $(FZ)^{-1}(FY)$ proper, strictly proper, high-frequency roll-off, ...

taking into consideration roll-off of $(FZ)^{-1}(FY)$

Assume that in the plant z is observable from y. Then $\forall r \in \mathbb{R} [\xi]$, monic, $\exists F$ such that

$$\det(FZ) = r$$

- r=1 \longrightarrow exact observer
- r Hurwitz \rightarrow asymptotic observer
- $r(\xi) = \xi^d \quad \rightsquigarrow$ dead-beat observer (discr.-time)

Combinable with proper, high-frequency roll-off, provided degree(r) sufficiently large. **Error Dynamics**

Assume z is detectable from y. Then for any $r \in \mathbb{R} [\xi]$, monic, with a given Hurwitz factor (representing the unobservable modes) there exists F such that

$$\det(FZ) = r$$

r Hurwitz \rightsquigarrow asymptotic observer

Combinable with proper, high-frequency roll-off, provided degree(r) sufficiently large.

Autonomous system, z, y scalar:

$$R\left(rac{d}{dt}
ight)egin{bmatrix}oldsymbol{z}\oldsymbol{y}\end{bmatrix}=0$$

 $\det(R) \neq 0.$

Autonomous system, z, y scalar:

$$oldsymbol{R}\left(rac{d}{dt}
ight)egin{bmatrix}oldsymbol{z}\oldsymbol{y}\end{bmatrix}=oldsymbol{0}$$

det $(R) \neq 0$. Observability \Rightarrow representation $Y\left(\frac{d}{dt}\right)y = 0, z = Z\left(\frac{d}{dt}\right)y$

 $Y,Z\in \mathbb{R}\left[\mathbf{\xi}
ight]$

$$Y\left(rac{d}{dt}
ight)y=0, z=Z\left(rac{d}{dt}
ight)y$$

Observer:

$\pi_1\left(rac{d}{dt} ight) \hat{oldsymbol{z}} = \left[\pi_1\left(rac{d}{dt} ight)oldsymbol{Z}\left(rac{d}{dt} ight) + \pi_2\left(rac{d}{dt} ight)oldsymbol{Y}\left(rac{d}{dt} ight) ight]oldsymbol{y}$

 π_1 given, sufficiently high degree, roots arbitrary arbitrary high roll-off by chosing π_2 \rightarrow simple polynomial algebra.

$$Y\left(rac{d}{dt}
ight)y=0, z=Z\left(rac{d}{dt}
ight)y$$

Observer:

$\pi_1\left(rac{d}{dt} ight)\hat{z}=\left[\pi_1\left(rac{d}{dt} ight)Z\left(rac{d}{dt} ight)+\pi_2\left(rac{d}{dt} ight)Y\left(rac{d}{dt} ight) ight]y$

 π_1 given, sufficiently high degree, roots arbitrary arbitrary high roll-off by chosing π_2

 \rightsquigarrow simple polynomial algebra.

When plant is autonomous, the pole placement combinable with arbitrary roll-off

Duality with Control

Control in a Behavioral Setting

Control in a Behavioral Setting control W terminals to-be-controlled terminals Plant Controller С **Controlled system**

Behavior of to-be-controlled variables, before controller is applied: \mathfrak{B}_{plant} , after: $\mathfrak{B}_{controlled}$

Control in a Behavioral Setting control W terminals to-be-controlled terminals Plant Controller С **Controlled system**

Behavior of to-be-controlled variables, beforecontroller is applied: \mathfrak{B}_{plant} , after: $\mathfrak{B}_{controlled}$ Obviously, $\mathfrak{B}_{controlled} \subseteq \mathfrak{B}_{plant}$

Control in a Behavioral Setting control W terminals to-be-controlled terminals Plant Controller С **Controlled system**

Behavior of to-be-controlled variables, beforecontroller is applied: \mathfrak{B}_{plant} , after: $\mathfrak{B}_{controlled}$ Obviously, $\mathfrak{B}_{controlled} \subseteq \mathfrak{B}_{plant}$

If w is observable from c in the plant, then every such $\mathfrak{B}_{controlled}$ is implementable.

Control \rightsquigarrow find a subsystem

$$\mathfrak{B}\subseteq\mathfrak{B}_{\mathrm{plant}}$$

that meets controller specs.

Given

$$R\left(rac{d}{dt}
ight)w=0$$

 $C\left(rac{d}{dt}
ight)w=0$
'Squaring up' R to $\begin{bmatrix} R\\ C \end{bmatrix}$

Control \rightsquigarrow find a subsystem

$$\mathfrak{B}\subseteq\mathfrak{B}_{\mathrm{plant}}$$

that meets controller specs.

Observer \rightsquigarrow **find a supsystem**

$$\mathfrak{B} \supseteq \mathfrak{B}_{\mathrm{plant}}$$

that meets observer specs.

Control \rightsquigarrow find a subsystem

$$\mathfrak{B}\subseteq\mathfrak{B}_{\mathrm{plant}}$$

that meets controller specs.

Observer \rightsquigarrow **find a supsystem**

$$\mathfrak{B} \supseteq \mathfrak{B}_{\mathrm{plant}}$$

that meets observer specs.

Controllers mean less, Observers mean more

- Systems defined by rational (rather than polynomial) 'symbols'
- Least squares, \mathcal{H}_{∞} , ...
- **nD systems**, PDEs

Details & copies of frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems

