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Theme

to—be—estimated variables estimation error
) i
5 - e
N\
y z estimates

observed
variables

Il Keep estimation error
small, zero, convergent to zero, ... !
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Theme

to—be—estimated

variables
/\
y y Z
OBSERVER
observed

variables estimates

o What is the model that relates the observed with
the to-be-estimated variables ?

o Find the observer/filter algorithm!
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Joint Work with

Maria Elena Valcher
Universita di Padova
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Joint Work with

Jochen Trumpf
Australian National University
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Message

Observers mean more

Controllers mean less



History



Wiener Filtering
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Modeling : Assume IS a stochastic process
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Wiener Filtering

to—be-estimated
variables

Z

y

observed
variables
Modeling : Assume Y| is a stochastic process
<

Henceforth time-setR, stationary processes, normal, zero mean

—-n. 7/



Wiener Filtering

Modeling : Assume Y| is a stochastic process
<
to—be—estimated variables estimation error

= =
Z . €
y = estimates
PLANT

observed
variables

Estimation criterion: E (|e(t)|?) ~- algorithms
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Wiener Filtering

Algorithms are easy to obtain if for the estimatez(t),
the observationsy(t’)
are availablefor all ¢’ € R.

Much much harder if the observationsy(t’)
are availableonly for ¢/ < ¢
~» non-anticipating filter
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Wiener Filtering

Algorithms are easy to obtain if for the estimatez(t),
the observationsy(t’)
are availablefor all ¢’ € R.

Much much harder if the observationsy(t’)
are availableonly for ¢/ < ¢
This is the problem Wiener solved in 1942,

In the yellow peril

~» non-anticipating filter , a.k.a. the Wiener filter
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Wiener Filtering
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The Wiener Filter

signal
Z

] N\
nOisg > y Y OBSERVERE—=
n estimates

observed = signal + noise

Signal L noise

Signal spectral densitysS., (s)
Noise white, intensityp?

Filters according to the signal-to-noise ratio.
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The Wiener Filter
Knowledge ofy(t) Vit € R ~»tf. fn.

1
s |1 —
Yyr— z 1|Sz(8)y
I

p2

Knowledge ofy(t) in past, Wiener filter ~» tf. fn.

) 1
y—z=|1-— [ S.(s) (7]
1 4 5
p2 |,
S, S, S,
. (23) _ [1 | (23) - (23)]
Pn Pn 14 Pn 1_

| ]+ poles & zeros in LHP ‘spectral factorization’
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The Kalman Filter

By taking another representation of the stochastic

process Y1, the optimal non-anticipating filter

<
becomes much easier to compute.

aZU_Am_I_nl,y—Cw_'_nZaz_Hm? white

This Is the representation used by Kalman (1960)
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The Kalman Filter

%w:Aw—l—Bw, y=Cx+n, z= Hx

w L n, both white, intensitiesI

23 =Az+XC' (y—C%), 2= H3a

Y suitable solution of the ARE
A+ XA —3C'CEX+BB' =0

Exactly the Wiener filter, but in a form that Is
recursive, algorithmic, generalizable

(finite time, time-varying, nonlinear) ..
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The Kalman Filter
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The Kalman Filter

The Kalman filter had a tremendous impact !

Now I now what
is the Jacobian for!

Mahalanobis distanee
under control with the
Extended Kalman
Filternt
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History

to—be-estimated
variables

Z

y

observed
variables
Modeling : Y iInput/output of a linear system
4
d U
—x = Ax + Bu, y = , z = Hzx.
dt Cx
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History

to—be—estimated variables estimation error
) E
- - e
N
y £ estimates
observed
variables
Uu
Plant: aw_Aa:—l—Bu, Yy = ol z=Hx
X

Observer: Ew = A+ Bu+L(Cx—-C2), 2= Hz

Error: e, =(A—LC)e,, e = He,

dt %
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History

State observeffirst proposed in 1963 by Luenberger.

Many variations (reduced order, dead-beat, ...)
Structure inspired by the ‘optimal’ Kalman filter.

No stochastic assumptions!
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Systems & Their Properties



Behaviors

system
variables

A dynamical systens ¥ = (T, W, 25)
TCR ‘time-set’
W ‘signal space’
B C W' ‘behavior
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Behaviors

system
variables

A dynamical systens ¥ = (T, W, 25)
TCR ‘time-set’
W ‘signal space’
B C W' ‘behavior
Considerw : T — W
w € B the model the trajectory w
w ¢ B the modelforbids the trajectory w
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Behaviors

system
variables
A dynamical systens ¥ = (T, W, 25)
TCR ‘time-set’ today, T = R
W 'signal space’ today,W — R"

B C W' ‘behavior  today, LTIDS
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Behaviors

A dynamical systens X = (T, W, 25)
TCR ‘time-set’ today, T = R
W 'signal space’ today,W — R"
B C W' ‘behavior  today, LTIDS

Linear time-invariant differential system (LTIDS):
B = all solutions of

where R € R [¢]*""
‘kernel representation (numerous other repr.)
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W 'signal space’ today,W — R"
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Linear time-invariant differential system (LTIDS):
B = all €>° (R, R")- solutions of
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Behaviors

A dynamical systens X = (T, W, 25)
TCR ‘time-set’ today, T = R
W 'signal space’ today,W — R"
B C W' ‘behavior  today, LTIDS

Linear time-invariant differential system (LTIDS):
B = all €>° (R, R")- solutions of

R()’UJ —|— R1%’UJ —|— —|— Rn%w =0
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Behaviors

A dynamical systens X = (T, W, 25)
TCR ‘time-set’ today, T = R
W 'signal space’ today,W — R"
B C W' ‘behavior  today, LTIDS

Linear time-invariant differential system (LTIDS):
B = all €>° (R, R")- solutions of

The behavior is all there iIs'!

Representations, properties (controllability,
observability, symmetries) in terms of behavior
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Behaviors

A dynamical systens X = (T, W, 25)
TCR ‘time-set’ today, T = R
W 'signal space’ today,W — R"
B C W' ‘behavior  today, LTIDS

Linear time-invariant differential system (LTIDS):
B = all €>° (R, R")- solutions of

The behavior is all there iIs'!

SYSID refers to behavior,
control = restricting behavior, ...
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Behaviors

A dynamical systens X = (T, W, 25)
TCR ‘time-set’ today, T = R
W 'signal space’ today,W — R"
B C W' ‘behavior  today, LTIDS

Linear time-invariant differential system (LTIDS):
B = all €>° (R, R")- solutions of

The behavior is all there iIs'!

Physical models specify the behavior!
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LTIDSS

£°: the LTIDSs. £° is closed under projection
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£°: the LTIDSs. £° is closed under projection

Ry () wi = Ry (%) ws

R,,R, € R[£]*"°.

LTIDSS

(%)
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LTIDSS

£°: the LTIDSs. £° is closed under projection
d _ d
Ry (G) w1 = Ry () wa (%)
R, R, € R[£]**°. Define

B = {w1 e EC™* (R, R.) | Jw-, such that(*)}
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LTIDSS

£°: the LTIDSs. £° is closed under projection

Ri(4)wn = Ry (4)ws  (#

R,, R, € R[£]*"°. Define

B = {w1 e EC™* (R, R.) | Jw-, such that(*)}

Thm: 98, € £° ~ R(£)w; =0

dt

3 algorithms

(Rl, Rz) —> R
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LTIDSS

£°: the LTIDSs. £° is closed under projection

F(£)w=0,F € R[¢]*

IS a consequence of

R(£)w=0,ReR[E] &

[R(4)w=0] = [F(%)w=0]
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LTIDSS

£°: the LTIDSs. £° is closed under projection

F(£)w=0,F € R[¢]*

IS a consequence of

R(£)w=0,ReR[E] &

[R(4)w=0] = [F(%)w=0]

Thm: Consequences F = F'R
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Controllable
Stabilizable
Autonomous
Stable
Observable

Detectable

System Properties
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> = (R, W, ) is controllable :<

undersired trajectory

System Properties

e
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time
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> = (R, W, ) is controllable :<

undersired trajectory

System Properties

e
yan

time
w,
%ired trajecton

controlled
transmo%

time

w

undesired past ﬂ/‘]
hd‘
0

Wy

__——

desired future

Behavioral controllability of a dynamical system
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System Properties

> = (R, W, ) is autonomous : &

[ wy, wy € B andw;(t) = we(t) fort < 0]
— [[wl(t) — wz(t) for ¢ 2 O]]

‘past implies future’

stable : & [w e B]| = [w(t) — 0ast — oo
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System Properties

R (%) w =20
defines a controllable system iff
rank (R (A)) is the same for allx € C

a stabilizable one ...\ € the closed RHP
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defines an autonomous system Iff
R (M) full column rank V but finite number A € C

3 kernel repr. with R square anddet(R) # O.

a stable one ..\ € the closed LHP

4 R ‘Hurwitz’

System Properties

R(%)w=0
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Properties Involving Relations Among Variables

observed
variables

H
...“

SYSTEM : w, to—be—deduced

variables
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Properties Involving Relations Among Variables

observed
variables

H
...“

SYSTEM : w, to—be—deduced

variables

ws IS observable fromws in ¥ = (T, W; X W5, B) :&

[ (wi,w}) , (wy,wf) € B]
//

= [w), = w,

Observed trajectory implies the to-be-deduced one
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Properties Involving Relations Among Variables

observed
variables

H
...“

SYSTEM : w, to—be—deduced

variables

ws is detectable fromws; in ¥ = (T, W; X W,,B) &

[ (w1, w3) 5 (w1, wy) € B]
= [w5(t) — wy (t) — 0ast — oo |

Observed trajectory implies the to-be-deduced one
asymptotically
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Tests for Observability and Detectability

Ry (4)wi = R, (£) ws
defines anobservable system Iff

R5 (A) has full columnrank VA € C

defines adetectable system iff
...V but finite number A € closed RHP
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Tests for Observability and Detectability

Ry () wn = s () w:
observable iff there are ‘consequences’
Wo = F (i) w1
~ R(g)wn =0, wy=F () w

3 algorithms ...
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Tests for Observability and Detectability

Ry (G) w1 = Ry (§) w

detectable iff there are ‘consequences’

H (&) wy = F (£) wy, with H ‘Hurwitz

~ R($)wi =0, H(%)w=F (%) w

3 algorithms ...
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System properties ought to hold beyond the state
space setting,

they ought to be representation independent
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What is an observer ?



Observers

to—be—estimated

variables
y Yy Z
-SYSTEI\/I 2
observed

variables estimates

Consider two LTIDS systems.
When is system 2 an observer for the plant?
Denote their behavior by

%plant and %
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Observers

to—be—estimated

variables
y Yy Z
-SYSTEI\/I 2
observed

variables estimates

Condition 1: System 2 simulates the plant, that is
%plant g %
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Observers

to—be—estimated variables estimation error

observed
variables

Condition 1: System 2 simulates the plant, that is

A

%plant g 5

Condition 2: Error behavior, B.,.or, IS @aUtONOMOUS
Beorror = {0}, exact observer
B .ror Nlpotent, dead-beat (discr. time)
B ..ror Stable, asymptotic observer

= =
Z . €
y z estimates
PLANT
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Observers

Condition 1: System 2 simulates the plant, that is
%plant g %

Condition 2: Error behavior, B.,.or, IS @aUtONOMOUS

These conditions imp

1. itis possible to fo

y that

lowz through v,

2. oncez(t') = 2(t')fort' € [T —e,T],e > 0,
there holdsz(t) = 2(t) fort > T.
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Observers

to—be—estimated variables estimation error

= -
Z . €
y z estimates
PLANT

observed
variables

Condition 1: System 2 simulates the plant, that is

A

%plant g B

Condition 2: Error behavior, B.,.or, IS @aUtONOMOUS

Condition 3: WLOG, add v is free (‘input)in 9B,
y is ‘processed’ inB
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Observers

Condition 1: System 2 simulates the plant, that is
%plant g %

Condition 2: Error behavior, B.,.or, IS @aUtONOMOUS

Condition 3: WLOG, add y is free (‘input)in 98,
y is ‘processed’ inB

These conditions are not independent.

1+ 3 (y Input) + 2 output = 2

controllability of plant+2 +3 =1

Assume contr. & 3. Then B .. € B < observer
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Observers

Condition 1: System 2 simulates the plant, that is

%plant g %

Condition 2: Error behavior, B.,.or, IS @aUtONOMOUS

Condition 3: WLOG, add y is free (‘input)in 98,

y is ‘processed’ inB

Theorem: An observer exists if and only if

{(z,y) € Boplant | y = 0} is autonomous

—n. 21/



Observers

Condition 1: System 2 simulates the plant, that is

%plant g %

Condition 2: Error behavior, B.,.or, IS @aUtONOMOUS

Condition 3: WLOG, add y is free (‘input)in 98,

y is ‘processed’ inB

Roughly, observer desigres finding a cover

SBplant g SAB
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Observer Design



Covers

Essential condition:
%plant g %

Easy to find a supsystem’ DO B, for a given
LTIDS 8. For example, from ‘kernel representation’

R(%)w=0

Then B’ DO B iff B’ has kernel representation

F () R (5)w =0

for someF € R [£]*™°.
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Covers

Plant:
Z(G5)z=Y (%) v

Observer therefore

F(H)Z(H2=F(HY (&)v

Error dynamics

F (%) Z () e=0

Observer conditions: F'Z square and non-singular.



Covers

Given Z,Y € R [£]*™°®, what can be achieved by
FecR[E* (Z,Y)— (FZ,FY) ?

Achievable error dynamics

F (%) Z () e=0

Can the observer be madesmoothing ?

F(3)Z(5)2=F ()Y (G)y

transfer function (FZ)~'(FY)

proper, strictly proper, high-frequency roll-off, ...
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Covers

?

F 7

taking into consideration roll-off of (FZ)~!'(FY)
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Assume that in t

Error Dynamics

ne plantz Is

ThenV r € R [€]

r=1
r Hurwitz

observable

., monic, 34 F' such that

det(FZ)=r

~~» exact observer

~» asymptotic observer

from y.

r(€) = €4 ~» dead-beat observer (discr.-time)

Combinable with proper, high-frequency roll-off,
provided degree(r) sufficiently large.
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Error Dynamics

Assumez Is|detectable from y. Then for any
r € R [&], monic, with a|given Hurwitz factor

(representing the unobservable modes) there exisis
such that

det(FZ)=r

r Hurwitz ~» asymptotic observer

Combinable with proper, high-frequency roll-off,
provided degree(r) sufficiently large.

—n. 24/



Example

Autonomous systemgz, y scalar:

R (%) =0

det (R) # 0.
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Example

Autonomous systemgz, y scalar:

R (4) ; =0

det (R) # 0. Observability = representation

Y(Hy=0,2=2(4)y

Y,Z € R[]

—n. 25/



Example

Observer:

() 2= [m () Z (5) +m (H) Y ()]

71 given, sufficiently high degree, roots arbitrary
arbitrary high roll-off by chosing 5
~» simple polynomial algebra.
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Example

Observer:

() 2= [m () Z (5) +m (H) Y ()]

71 given, sufficiently high degree, roots arbitrary
arbitrary high roll-off by chosing 5
~» simple polynomial algebra.

When plant is autonomous, the pole placement
combinable with arbitrary roll-off

—n. 25/



Duality with Control



Control in a Behavioral Setting

control
terminals

to—be—controlled
terminals

Controller

\

Controlled syste
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to—be—controlled
terminals

Control in a Behavioral Setting

control
terminals

Controller

Controlled system%

Behavior of to-be-controlled variables, before

controller is applied: B jant,

after: %controlled




Control in a Behavioral Setting

control
terminals

to—be—-controlled

terminals Controller
Controlled system%

Behavior of to-be-controlled variables, before
controller is applied: B jans, after: Beontrolled
ObViOUSW, %controlled g %plant
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Control in a Behavioral Setting

control
terminals

to—be—-controlled

terminals Controller
Controlled system%

Behavior of to-be-controlled variables, before
controller is applied: B jans, after: Beontrolled
ObViOUSW, %controlled g %plant

If w Is observable frome In the plant, then every
suchB .ontrolied IS IMplementable.

—n. 27/



Duality
Given Byant, LTIDS
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Duality
Given Byant, LTIDS

Control ~» find a subsystem
5 g %plant
that meets controller specs.

Given

‘Squaringup’ R to
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Duality
Given Byant, LTIDS

Control ~» find a subsystem
5 g %plant
that meets controller specs.

Observer~» find a supsystem
5 2 %plant
that meets observer specs.
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Duality
Given Byant, LTIDS

Control ~» find a subsystem
DS g %plant
that meets controller specs.

Observer~» find a supsystem
DS 2 %plant
that meets observer specs.

Controllers mean less Observers mean more
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Extensions

o Systems defined by rational (rather than
polynomial) ‘symbols’

o Least squares;H ., ...

» nD systems, PDEs

—n. 29/



Detalls & copies of frames are available from/at
Jan. W1l | ens@sat . kul euven. be
http://ww. esat. kul euven. be/ ~jw | | ens

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

—n. 30/



	�b {small Theme}
	�b {small Theme}
	�b {small Theme}
	�b {small Theme}

	�b {small Joint Work with}
	�b {small Joint Work with}

	�b {small Message}
	�b {small Wiener Filtering}
	�b {small Wiener Filtering}
	�b {small Wiener Filtering}
	�b {small Wiener Filtering}
	�b {small Wiener Filtering}
	�b {small Wiener Filtering}

	hone �b {small The Wiener Filter}
	hone �b {small The Wiener Filter}

	hone �b {small The Kalman Filter}
	hone �b {small The Kalman Filter}
	hone �b {small The Kalman Filter}
	hone �b {small The Kalman Filter}

	htwo �b {small History}
	htwo �b {small History}
	htwo �b {small History}
	�b {small Behaviors}
	�b {small Behaviors}
	�b {small Behaviors}
	�b {small Behaviors}
	�b {small Behaviors}
	�b {small Behaviors}
	�b {small Behaviors}
	�b {small Behaviors}
	�b {small Behaviors}

	�b {small LTIDSs}
	�b {small LTIDSs}
	�b {small LTIDSs}
	�b {small LTIDSs}
	�b {small LTIDSs}
	�b {small LTIDSs}

	�b {small System Properties}
	�b {small System Properties}
	�b {small System Properties}
	�b {small System Properties}
	�b {small System Properties}
	�b {small System Properties}

	�b {small Properties Involving Relations Among Variables }
	�b {small Properties Involving Relations Among Variables }
	�b {small Properties Involving Relations Among Variables }

	�b {small Tests for Observability and Detectability }
	�b {small Tests for Observability and Detectability }
	�b {small Tests for Observability and Detectability }

	�b {small Observers}
	�b {small Observers}
	�b {small Observers}
	�b {small Observers}
	�b {small Observers}
	�b {small Observers}
	�b {small Observers}
	�b {small Observers}

	�b {small Covers}
	�b {small Covers}
	�b {small Covers}
	�b {small Covers}

	�b {small Error Dynamics}
	�b {small Error Dynamics}

	�b {small Example}
	�b {small Example}
	�b {small Example}
	�b {small Example}

	�b {small Control in a Behavioral Setting}
	�b {small Control in a Behavioral Setting}
	�b {small Control in a Behavioral Setting}
	�b {small Control in a Behavioral Setting}

	�b {small Duality}
	�b {small Duality}
	�b {small Duality}
	�b {small Duality}

	�b {small Extensions}
	 

