

A NEW LOOK
 AT OBSERVERS

Jan C. Willems, K.U. Leuven, Belgium

Introduction

THEME

THEME

THEME

!! Keep estimation error
small, zero, convergent to zero, etc. !!

THEME

- How to model the relation between the observed and the to-be-estimated variables?
- Find the observer/filter algorithm !

Joint work with Jochen Trumpf Australian National University

Observers mean more

Controllers mean less

Systems \& Their Properties

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$
W $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} \quad$ 'behavior'
'time-set'
'signal space’

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{array}{ll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time-set' } \\
\mathbb{W} & \text { 'signal space' } \\
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { 'behavior' }
\end{array}
$$

Consider $w: \mathbb{T} \rightarrow \mathbb{W}$
$\boldsymbol{w} \in \mathfrak{B}$ the model allows the trajectory \boldsymbol{w}
$\boldsymbol{w} \notin \mathfrak{B}$ the model forbids the trajectory \boldsymbol{w}

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$
\mathbb{W}
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$
'time-set'
'signal space' today $\mathbb{W}=\mathbb{R}^{w}$
'behavior' today LTIDS
today $\mathbb{T}=\mathbb{R}$

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{array}{lll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time-set' } & \text { today } \mathbb{T}=\mathbb{R} \\
\mathbb{W} & \text { 'signal space' } & \text { today } \mathbb{W}=\mathbb{R}^{W} \\
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { 'behavior' } & \text { today LTIDS }
\end{array}
$$

Linear time-invariant differential system (LTIDS):
$\mathfrak{B}=$ all solutions of

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=0
$$

where $\boldsymbol{R} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \text { w }}$

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$
\mathbb{W}
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$
'time-set'
'signal space' today $\mathbb{W}=\mathbb{R}^{w}$
'behavior' today LTIDS

Linear time-invariant differential system (LTIDS): $\mathfrak{B}=$ all $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$ - solutions of

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0
$$

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{array}{lll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time-set' } & \text { today } \mathbb{T}=\mathbb{R} \\
\mathbb{W} & \text { 'signal space' } & \text { today } \mathbb{W}=\mathbb{R}^{W} \\
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { 'behavior' } & \text { today LTIDS }
\end{array}
$$

Linear time-invariant differential system (LTIDS): $\mathfrak{B}=$ all $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ - solutions of

$$
\boldsymbol{R}_{0} \boldsymbol{w}+\boldsymbol{R}_{1} \frac{d}{d t} \boldsymbol{w}+\cdots+\boldsymbol{R}_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} \boldsymbol{w}=0
$$

Behaviors

A dynamical system is $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{array}{lll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time-set' } & \text { today } \mathbb{T}=\mathbb{R} \\
\mathbb{W} & \text { 'signal space' } & \text { today } \mathbb{W}=\mathbb{R}^{W} \\
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { 'behavior' } & \text { today LTIDS }
\end{array}
$$

Linear time-invariant differential system (LTIDS): $\mathfrak{B}=$ all $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$ - solutions of

$$
\boldsymbol{R}_{0} \boldsymbol{w}+\boldsymbol{R}_{1} \frac{d}{d t} \boldsymbol{w}+\cdots+\boldsymbol{R}_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d d^{\mathrm{n}}} \boldsymbol{w}=0
$$

The behavior is all there is !

Let \mathfrak{L}^{\bullet} denote the set LTIDSs.
\mathfrak{L}^{\bullet} is closed under projection

LTIDSs

Let \mathfrak{L}^{\bullet} denote the set LTIDSs.

$\mathfrak{L}^{\boldsymbol{\bullet}}$ is closed under projection

$$
\begin{equation*}
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) \boldsymbol{w}_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) \boldsymbol{w}_{2} \tag{*}
\end{equation*}
$$

$$
\boldsymbol{R}_{1}, \boldsymbol{R}_{\mathbf{2}} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \bullet}
$$

LTIDSs

Let \mathfrak{L}^{\bullet} denote the set LTIDSs.

\mathfrak{L}^{\bullet} is closed under projection

$$
\begin{equation*}
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) \boldsymbol{w}_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) \boldsymbol{w}_{2} \tag{*}
\end{equation*}
$$

$\boldsymbol{R}_{1}, \boldsymbol{R}_{2} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \bullet}$. Define

$$
\mathfrak{B}_{1}:=\left\{\boldsymbol{w}_{1} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right) \mid \exists \boldsymbol{w}_{2} \text { such that }(*)\right\}
$$

LTIDSs

Let \mathfrak{L}^{\bullet} denote the set LTIDSs.

\mathfrak{L}^{\bullet} is closed under projection

$$
\begin{equation*}
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) \boldsymbol{w}_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) \boldsymbol{w}_{2} \tag{*}
\end{equation*}
$$

$\boldsymbol{R}_{1}, \boldsymbol{R}_{2} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \bullet}$. Define

$$
\mathfrak{B}_{1}:=\left\{\boldsymbol{w}_{1} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right) \mid \exists \boldsymbol{w}_{2} \text { such that }(*)\right\}
$$

Then $\mathfrak{B}_{1} \in \mathfrak{L}^{\bullet} \quad \sim \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}$

LTIDSs

Let \mathfrak{L}^{\bullet} denote the set LTIDSs.

\mathfrak{L}^{\bullet} is closed under projection

$$
\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{w}=0, \boldsymbol{F} \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times \mathrm{w}}
$$

is a consequence of
$\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0, R \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times{ }_{w}}$ if

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0 \Rightarrow \boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}
$$

LTIDSs

Let $\mathfrak{L}^{\boldsymbol{\bullet}}$ denote the set LTIDSs.

\mathfrak{L}^{\bullet} is closed under projection

$$
\begin{aligned}
\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{w}=0, \boldsymbol{F} & \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times{ }_{w}} \\
& \text { is a consequence of }
\end{aligned}
$$

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0, \boldsymbol{R} \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}} \text { if }
$$

$$
R\left(\frac{d}{d t}\right) w=0 \Rightarrow F\left(\frac{d}{d t}\right) w=0
$$

Consequence $\Leftrightarrow \boldsymbol{F}=\boldsymbol{F}^{\prime} \boldsymbol{R}$

- Controllable
- Stabilizable
- Autonomous
- Stable

System Properties

$\Sigma=(\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is controllable $: \Leftrightarrow$

System Properties

$\Sigma=(\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is controllable $: \Leftrightarrow$

Behavioral controllability of a dynamical system

System Properties

$\Sigma=(\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is stabilizable $: \Leftrightarrow$

System Properties

$\Sigma=(\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is autonomous $: \Leftrightarrow$
$w_{1}, w_{2} \in \mathfrak{B}$ and $w_{1}(t)=w_{2}(t)$ for $t<0$

$$
\Rightarrow w_{1}(t)=w_{2}(t) \text { for } t \geq 0
$$

'past implies future'
stable $: \Leftrightarrow w \in \mathfrak{B} \Rightarrow w(t) \rightarrow \mathbf{0}$ as $\boldsymbol{t} \rightarrow \infty$

System Properties

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0
$$

defines a controllable system iff

$$
\operatorname{rank}(R(\lambda)) \text { is the same for all } \lambda \in \mathbb{C}
$$

a stabilizable one $\lambda \in$ the closed RHP

System Properties

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}
$$

defines an autonomous system iff
$\boldsymbol{R}(\boldsymbol{\lambda})$ full column rank \forall but finite number $\lambda \in \mathbb{C}$
a stable one ... $\lambda \in$ the closed LHP

Relations Among Variables

Relations Among Variables

w_{1} is observable from w_{2} in $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right): \Leftrightarrow$

$$
\begin{aligned}
&\left(w_{1}^{\prime}, w_{2}^{\prime}\right),\left(w_{1}^{\prime}, w_{2}^{\prime \prime}\right) \in \mathfrak{B} \text { and } w_{1}^{\prime}=w_{1}^{\prime \prime} \\
& \Rightarrow w_{2}^{\prime}=w_{2}^{\prime \prime}
\end{aligned}
$$

Observed trajectory implies the to-be-deduced one

Relations Among Variables

w_{1} is detectable from w_{2} in $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right): \Leftrightarrow$

$$
\begin{aligned}
\left(w_{1}^{\prime}, w_{2}^{\prime}\right) & ,\left(w_{1}^{\prime}, w_{2}^{\prime \prime}\right) \in \mathfrak{B} \text { and } w_{1}^{\prime}=w_{1}^{\prime \prime} \\
& \Rightarrow w_{2}^{\prime}(t)-w_{2}^{\prime \prime}(t) \rightarrow 0 \text { as } t \rightarrow \infty
\end{aligned}
$$

Observed trajectory implies the to-be-deduced one asymptotically

Relations Among Variables

$$
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) \boldsymbol{w}_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) \boldsymbol{w}_{2}
$$

defines an observable system iff

$\boldsymbol{R}_{2}(\boldsymbol{\lambda})$ has full column $\operatorname{rank} \forall \lambda \in \mathbb{C}$

defines a detectable system iff
$\ldots . \forall$ but finite number $\lambda \in$ closed RHP

Relations Among Variables

$$
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) \boldsymbol{w}_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) \boldsymbol{w}_{2}
$$

observable iff there are 'consequences'

$$
w_{2}=F\left(\frac{d}{d t}\right) w_{1}
$$

detectable iff there are 'consequences'

$$
H\left(\frac{d}{d t}\right) w_{2}=F\left(\frac{d}{d t}\right) w_{1}, \text { with } H \text { 'Hurwitz' }
$$

System properties hold beyond the state space setting,

they are representation independent

What is an observer?

Observers

Consider two LTIDS systems.
When is system 2 an observer for the plant?
Denote behaviors by
$\boldsymbol{\mathfrak { B }}_{\text {plant }}$ and $\hat{\mathfrak{B}}$

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Observers

Condition 1: System 2 simulates the plant, that is

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous. $\mathfrak{B}_{\text {error }}=\{0\}$, exact observer $\mathfrak{B}_{\text {error }}$ nilpotent, dead-beat observer $\mathfrak{B}_{\text {error }}$ stable, asymptotic observer

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous.

These conditions imply that

1. it is possible to follow \boldsymbol{z} through \boldsymbol{y},
2. once $z\left(t^{\prime}\right)=\hat{z}\left(t^{\prime}\right)$ for $t^{\prime} \in[T-\varepsilon, T], \varepsilon>0$,
there holds $z(t)=\hat{z}(t)$ for $t>T$.

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous.
Condition 3: WLOG, add y is free ('input') in $\hat{\mathfrak{B}}_{\text {plant }}$

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous.
Condition 3: WLOG, add y is free ('input') in $\hat{\mathfrak{B}}_{\text {plant }}$

These conditions are not independent.
$\mathbf{1 + 3} \Rightarrow \mathbf{2}$
controllability of plant $+2+3 \Rightarrow 1$

Observers

Condition 1: System 2 simulates the plant, that is

$$
\mathfrak{B}_{\text {plant }} \subseteq \hat{\mathfrak{B}}
$$

Condition 2: Error behavior, $\mathfrak{B}_{\text {error }}$, is autonomous.
Condition 3: WLOG, add y is free ('input') in $\hat{\mathfrak{B}}_{\text {plant }}$

Theorem: An observer exists if and only if

$$
\left\{(z, y) \in \mathfrak{B}_{\text {plant }} \mid \boldsymbol{y}=0\right\} \text { is autonomous }
$$

Covers

It is easy to find covers. For example, if \mathfrak{B} is given in 'kernel representation'

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0
$$

Then $\mathfrak{B}^{\prime} \supseteq \mathfrak{B}$ iff \mathfrak{B}^{\prime} has a kernel representation

$$
\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}
$$

for some $\boldsymbol{F} \in \mathbb{R}[\xi]^{\bullet \times \bullet}$.

Covers

Plant:

$$
Z\left(\frac{d}{d t}\right) z=Y\left(\frac{d}{d t}\right) y
$$

Observer therefore

$$
\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{Z}\left(\frac{d}{d t}\right) \hat{z}=\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{Y}\left(\frac{d}{d t}\right) \boldsymbol{y}
$$

Error dynamics

$$
F\left(\frac{d}{d t}\right) Z\left(\frac{d}{d t}\right) e=0
$$

Observer conditions require that $F Z$ is square.

Covers

Given $Z, Y \in \mathbb{R}[\xi]^{\bullet \times \bullet}$, what can be achieved by ‘squaring down' Z to $F Z$?

Achievable error dynamics?

$$
F\left(\frac{d}{d t}\right) Z\left(\frac{d}{d t}\right) e=0
$$

Can the observer be made smoothing ?

$$
F\left(\frac{d}{d t}\right) Z\left(\frac{d}{d t}\right) \hat{z}=F\left(\frac{d}{d t}\right) Y\left(\frac{d}{d t}\right) y
$$

$(F Z)^{-1}(F Y)$
proper, strictly proper, high-frequency roll-off,

Error Dynamics

Assume that in the plant z is observable from y. Then for any $r \in \mathbb{R}[\xi]$, monic, there exists F such that

$$
\operatorname{det}(F Z)=r
$$

$r=1 \sim$ exact observer
r Hurwitz \leadsto asymptotic observer
$r(\xi)=\xi^{\mathrm{n}} \leadsto$ dead-beat observer (discrete-time)

Combinable with proper, high-frequency roll-off, provided degree (r) sufficiently large.

Error Dynamics

Assume that in the plant z is detectable from \boldsymbol{y}. Then for any $r \in \mathbb{R}[\xi]$, monic, with a given Hurwitz factor (representing the unobservable modes) there exists F such that

$$
\operatorname{det}(F Z)=r
$$

r Hurwitz \sim asymptotic observer

Combinable with proper, high-frequency roll-off, provided degree (r) sufficiently large.

Example

Autonomous system, z, y scalar:

$$
\left[\begin{array}{ll}
Z\left(\frac{d}{d t}\right) & \left.\boldsymbol{Y}\left(\frac{d}{d t}\right)\right]
\end{array}\right]\left[\begin{array}{l}
z \\
y
\end{array}\right]=\mathbf{0}
$$

$\operatorname{det}\left(\left[\begin{array}{ll}Z & Y\end{array}\right]\right) \neq 0$.

Example

Autonomous system, z, y scalar:

$$
\left[\begin{array}{ll}
Z\left(\frac{d}{d t}\right) & Y\left(\frac{d}{d t}\right)
\end{array}\right]\left[\begin{array}{l}
z \\
y
\end{array}\right]=0
$$

$\operatorname{det}\left(\left[\begin{array}{ll}Z & \boldsymbol{Y}\end{array}\right]\right) \neq 0$.
Assume observability \Rightarrow representation

$$
Y\left(\frac{d}{d t}\right) \boldsymbol{y}=0, z=Z\left(\frac{d}{d t}\right) \boldsymbol{y}
$$

Example

$$
Y\left(\frac{d}{d t}\right) y=0, z=Z\left(\frac{d}{d t}\right) y
$$

Observer:

$$
\boldsymbol{\pi}_{1}\left(\frac{d}{d t}\right) \hat{\boldsymbol{z}}=\left[\boldsymbol{\pi}_{1}\left(\frac{d}{d t}\right) \boldsymbol{Z}\left(\frac{d}{d t}\right)+\boldsymbol{\pi}_{2}\left(\frac{d}{d t}\right) \boldsymbol{Y}\left(\frac{d}{d t}\right)\right] \boldsymbol{y}
$$

Design with roll-off is simple polynomial algebra.

Example

$$
Y\left(\frac{d}{d t}\right) y=0, z=Z\left(\frac{d}{d t}\right) y
$$

Observer:

$$
\boldsymbol{\pi}_{1}\left(\frac{d}{d t}\right) \hat{\boldsymbol{z}}=\left[\boldsymbol{\pi}_{1}\left(\frac{d}{d t}\right) \boldsymbol{Z}\left(\frac{d}{d t}\right)+\boldsymbol{\pi}_{2}\left(\frac{d}{d t}\right) \boldsymbol{Y}\left(\frac{d}{d t}\right)\right] \boldsymbol{y}
$$

Design with roll-off is simple polynomial algebra.

Example

$$
Y\left(\frac{d}{d t}\right) y=0, z=Z\left(\frac{d}{d t}\right) y
$$

Observer:

$$
\boldsymbol{\pi}_{1}\left(\frac{d}{d t}\right) \hat{\boldsymbol{z}}=\left[\boldsymbol{\pi}_{1}\left(\frac{d}{d t}\right) \boldsymbol{Z}\left(\frac{d}{d t}\right)+\boldsymbol{\pi}_{2}\left(\frac{d}{d t}\right) \boldsymbol{Y}\left(\frac{d}{d t}\right)\right] \boldsymbol{y}
$$

Design with roll-off is simple polynomial algebra.

Details \& copies of frames are available from/at

Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you

