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How to model the relation between the observed

and the to-be-estimated variables ?

Find the observer/filter algorithm !
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Message

Observers mean more

Controllers mean less
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Systems & Their Properties
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A dynamical system is Σ = (T, W, B)

T ⊆ R ‘time-set’

W ‘signal space’

B ⊆ W
T ‘behavior’
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SYSTEM

A dynamical system is Σ = (T, W, B)

T ⊆ R ‘time-set’

W ‘signal space’

B ⊆ W
T ‘behavior’

Considerw : T → W

w ∈ B the modelallows the trajectory w

w /∈ B the modelforbids the trajectory w
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Linear time-invariant differential system (LTIDS):

B = all solutions of
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(
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whereR ∈ R [ξ]•×w
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Behaviors

A dynamical system is Σ = (T, W, B)

T ⊆ R ‘time-set’ today T = R

W ‘signal space’ todayW = R
w

B ⊆ W
T ‘behavior’ today LTIDS

Linear time-invariant differential system (LTIDS):

B = all C
∞ (R, R

w)- solutions of

R0w + R1
d
dt

w + · · · + Rn

dn

dtn
w = 0

The behavior is all there is !
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R1, R2 ∈ R [ξ]•×•.
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Let L
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w = 0, F ∈ R [ξ]•×w

is a consequence of

R
(

d
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)

w = 0, R ∈ R [ξ]•×w if

R
(

d
dt

)

w = 0 ⇒ F
(

d
dt

)

w = 0

Consequence⇔ F = F ′R
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System Properties

Σ = (R, W, B) is controllable :⇔
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W
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w
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transition 
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W
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0 t’

Behavioral controllability of a dynamical system   

time
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System Properties

Σ = (R, W, B) is stabilizable :⇔

w’

w
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System Properties

Σ = (R, W, B) is autonomous :⇔

w1, w2 ∈ B and w1(t) = w2(t) for t < 0

⇒ w1(t) = w2(t) for t ≥ 0

‘past implies future’

stable :⇔ w ∈ B ⇒ w(t) → 0 ast → ∞
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System Properties

R
(

d
dt

)

w = 0

defines a controllable system iff

rank (R (λ)) is the same for allλ ∈ C

a stabilizable one ....λ ∈ the closed RHP
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System Properties

R
(

d
dt

)

w = 0

defines an autonomous system iff

R (λ) full column rank ∀ but finite number λ ∈ C

a stable one ...λ ∈ the closed LHP
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Relations Among Variables

observed w2
to−be−deduced            SYSTEMw1variables variables

w1 is observable fromw2 in Σ = (T, W1 × W2, B) :⇔

(

w′
1
, w′

2

)

,
(

w′
1
, w′′

2

)

∈ B and w′
1

= w′′
1

⇒ w′
2

= w′′
2

Observed trajectory implies the to-be-deduced one
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Relations Among Variables

observed w2
to−be−deduced            SYSTEMw1variables variables

w1 is detectable fromw2 in Σ = (T, W1 × W2, B) :⇔
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2
(t) → 0 ast → ∞

Observed trajectory implies the to-be-deduced one

asymptotically
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to−be−deduced            SYSTEMw1variables variables
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(

d
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)

w1 = R2

(

d
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)

w2

defines anobservable system iff

R2 (λ) has full column rank ∀ λ ∈ C

defines adetectable system iff

...∀ but finite number λ ∈ closed RHP
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Relations Among Variables

observed w2
to−be−deduced            SYSTEMw1variables variables

R1

(

d
dt

)

w1 = R2

(

d
dt

)

w2

observable iff there are ‘consequences’

w2 = F
(

d
dt

)

w1

detectable iff there are ‘consequences’

H
(

d
dt

)

w2 = F
(

d
dt

)

w1, with H ‘Hurwitz’
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System properties hold beyond the state space

setting,

they are representation independent
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What is an observer ?
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Consider two LTIDS systems.

When is system 2 an observer for the plant?

Denote behaviors by

Bplant and B̂
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Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂
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Observers

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

estimation error

e
y

z

estimates

to−be−estimated variables

−+

SYSTEM 2

ẑ

PLANT

variables
observed 

Condition 2: Error behavior, Berror, is autonomous.

Berror = {0}, exact observer

Berror nilpotent, dead-beat observer

Berror stable, asymptotic observer
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Observers

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous.

These conditions imply that

1. it is possible to followz through y,

2. oncez(t′) = ẑ(t′) for t′ ∈ [T − ε, T ], ε > 0,

there holdsz(t) = ẑ(t) for t > T .
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Observers

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous.

Condition 3: WLOG, add y is free (‘input’) in B̂plant
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Observers

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous.

Condition 3: WLOG, add y is free (‘input’) in B̂plant

These conditions are not independent.

1 + 3⇒ 2

controllability of plant + 2 + 3 ⇒ 1
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Observers

Condition 1: System 2 simulates the plant, that is

Bplant ⊆ B̂

Condition 2: Error behavior, Berror, is autonomous.

Condition 3: WLOG, add y is free (‘input’) in B̂plant

Theorem: An observer exists if and only if

{(z, y) ∈ Bplant | y = 0} is autonomous
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Covers

It is easy to find covers. For example, ifB is given in

‘kernel representation’

R
(

d
dt

)

w = 0

Then B
′ ⊇ B iff B

′ has a kernel representation

F
(

d
dt

)

R
(

d
dt

)

w = 0

for someF ∈ R [ξ]•×•.
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Covers

Plant:
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y

Observer therefore
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(

d
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(
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y

Error dynamics

F
(

d
dt

)

Z
(

d
dt

)

e = 0

Observer conditions require thatFZ is square.
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Covers

Given Z, Y ∈ R [ξ]•×•, what can be achieved by

‘squaring down’ Z to FZ ?

Achievable error dynamics?

F
(

d
dt

)

Z
(

d
dt

)

e = 0

Can the observer be madesmoothing ?

F
(

d
dt

)

Z
(

d
dt

)

ẑ = F
(

d
dt

)

Y
(

d
dt

)

y

(FZ)−1(FY )

proper, strictly proper, high-frequency roll-off,

...
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Error Dynamics

Assume that in the plantz is observable fromy.

Then for any r ∈ R [ξ], monic, there existsF such

that

det(FZ) = r

r = 1 ; exact observer

r Hurwitz ; asymptotic observer

r(ξ) = ξn ; dead-beat observer (discrete-time)

Combinable with proper, high-frequency roll-off,

provided degree(r) sufficiently large.
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Error Dynamics

Assume that in the plantz is detectable fromy. Then

for any r ∈ R [ξ], monic, with a given Hurwitz factor

(representing the unobservable modes) there existsF

such that

det(FZ) = r

r Hurwitz ; asymptotic observer

Combinable with proper, high-frequency roll-off,

provided degree(r) sufficiently large.
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Example

Autonomous system,z, y scalar:

[

Z
(

d
dt

)

Y
(

d
dt

)

]





z

y



 = 0

det
([

Z Y
])

6= 0.
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(
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)

]





z
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 = 0

det
([

Z Y
])

6= 0.

Assume observability⇒ representation

Y
(

d
dt

)

y = 0, z = Z
(

d
dt

)

y
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Example
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y

Design with roll-off is simple polynomial algebra.
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Details & copies of frames are available from/at
Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/∼jwillems

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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