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» How to model the relation between the observed
and theto-be-estimated variables ?

o Find the observer/filter algorithm!
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Joint work with Jochen Trumpf
Australian National University
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Message

Observers mean more

Controllers mean less



Systems & Their Properties
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A dynamical systemis X = (T, W, 23)
TCR ‘time-set’
W ‘signal space’
B C W' ‘behavior
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Behaviors

system
variables

A dynamical systemis X = (T, W, 28)
TCR ‘time-set’
W ‘signal space’
B C W' ‘behavior
Considerw : T — W
w € B the model the trajectory w
w ¢ B the modelforbids the trajectory w
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A dynamical systemis ¥ = (T, W, 28)
TCR ‘time-set’ today T =R
W 'signal space’ todayW —= R¥
B C WL ‘behavior  today LTIDS

Linear time-invariant differential system (LTIDS):
B = all solutions of

where R € R [¢]*™"
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Behaviors

A dynamical systemis ¥ = (T, W, 28)
TCR ‘time-set’ today T =R
W 'signal space’ todayW —= R¥
B C WL ‘behavior  today LTIDS

Linear time-invariant differential system (LTIDS):
B = all €>° (R, R")- solutions of

R()’UJ —I— R1%’UJ —|— —|— Rn%w =0

The behavior is all there is'!
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LTIDSS

Let £° denote the set LTIDSS.

£° 1s closed under projection
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LTIDSS

Let £° denote the set LTIDSS.

£° 1s closed under projection
Ry () wn =R ($)ws  (¥)
R, R, € R[£]*"°. Define

B, := {w; € €° (R,R*) | Jw, such that (x)}
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LTIDSS

Let £° denote the set LTIDSS.

£° 1s closed under projection
Ry (f)wi =R (B ws ()
R, R, € R[£]**°. Define
B, := {w; € €° (R, R®) | Jws such that (x)}

Then B, € £° ~ R(L)w =0



LTIDSS

Let £° denote the set LTIDSSs.
£° Is closed under projection

F(£)w=0,F € R[¢]*

IS a consequence of

R(£)w=0,R € R[] if

R(i)w:O = F(%)w

dt

=0
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LTIDSS

Let £° denote the set LTIDSSs.
£° Is closed under projection

F(£)w=0,F € R[¢]*

IS a consequence of
R(£)w=0,R € R[] if

R(C‘llt)w_O = F( )w_O

Consequence= F = F'R

—n. 8
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Stabilizable
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Stable

System Properties
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System Properties

> = (R, W, ) is controllable :<

undersired trajectory

e
yan

time
wy
%redtrajectory
chnterI_Ied/
ransition
undesired past \//W W
w, . time
.
0 w /102
/ desired future

Behavioral controllability of a dynamical system
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System Properties

> = (R, W,B) is stabilizable :<
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System Properties

> = (R, W, ) is autonomous : &

w1, wy € B and wq(t) = wq(t) fort <0
— wl(t) — wz(t) for ¢ Z 0

‘past implies future’

stable : w € B = w(t) — 0ast — oo

—n. 9



System Properties

R(%)w=0

defines a controllable system iff

rank (R (A)) is the same for allx € C

a stabilizable one ...\ € the closed RHP
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System Properties

R(%)w=0

defines an autonomous system Iff

R (M) full column rank V but finite number A € C

a stable one ..\ € the closed LHP
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Relations Among Variables

observed
variables

H
...“

SYSTEM : w, to—be—deduced

variables

ws IS observable fromws in ¥ = (T, W; X W5, B) :&

(1, w}) , (], wf) € B and w) = w]

’r

Observed trajectory implies the to-be-deduced one
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Relations Among Variables

observed
variables

H
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SYSTEM : w, to—be—deduced

variables

ws is detectable fromws; in ¥ = (T, W; X W,,B) &

(1w, w}) , (1], wf) € B and w; = wy]

= w,(t) — w, (t) — 0ast — oo

Observed trajectory implies the to-be-deduced one
asymptotically

—n. 10fr.



Relations Among Variables

observed
variables

H
...“

SYSTEM : w, to—be—deduced

variables

Ry (4)wi = Ry (£) ws
defines anobservable system Iff

R> (A) has full columnrank VA € C

defines adetectable system iff
...V but finite number A € closed RHP
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Relations Among Variables

observed
variables

° to—be—deduced
SYSTEM c W variables

H
...“

Ry (G) w1 = Ry (§) w

observable iff there are ‘consequences’

Wo = F(c?t) w1

detectable iff there are ‘consequences’

H (&) wy = F (£) wq, with H ‘Hurwitz

—n. 10r.



System properties hold beyond the state space
setting,

they are representation independent
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What is an observer ?



Observers

to—be—estimated

variables
y Yy Z
-SYSTEI\/I 2
observed

variables estimates

Consider two LTIDS systems.
When is system 2 an observer for the plant?
Denote behaviors by

%plant and %
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Observers

to—be—estimated

variables
y Yy Z
-SYSTEI\/I 2
observed

variables estimates

Condition 1: System 2 simulates the plant, that is

%plant g %
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Observers

Condition 1: System 2 simulates the plant, that is

A

%plant g 5

to—be—estimated variables estimation error

E

B =
y z W estimat
PLANT

observed
variables

e

€S

Condition 2: Error behavior, B.,ror, IS @UtONOMOUS.

Beorror = {0}, exact observer
B..ror NIlpotent, dead-beat observer
B..ror Stable, asymptotic observer
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Observers

Condition 1: System 2 simulates the plant, that is

%plant g %

Condition 2: Error behavior, B0, IS aUtONOMOUS.

These conditions imp

1. itis possible to fo

y that

lowz through v,

2. oncez(t') = 2(t')fort' € [T —e,T],e > 0,
there holdsz(t) = 2(t) fort > T.
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Condition 1: System 2 simulates the plant, that is

%plant g %

Condition 2: Error behavior, B0, IS aUtONOMOUS.

Condition 3: WLOG, add y is free (‘input’) in B jant
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Observers

Condition 1: System 2 simulates the plant, that is

%plant g %

Condition 2: Error behavior, B0, IS aUtONOMOUS.

Condition 3: WLOG, add y is free (‘input’) in B jant

These conditions are not independent.
1+3=2
controllability of plant+2 +3 =1
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Observers

Condition 1: System 2 simulates the plant, that is

%plant g %

Condition 2: Error behavior, B0, IS aUtONOMOUS.

Condition 3: WLOG, add y is free (‘input’) in B jant

Theorem: An observer exists if and only if

{(z,Y) € Boplant | y = 0} is autonomous

—n. 13r.



Covers

It Is easy to find covers. For example, it8 is given in
‘kernel representation’

R(%)fw:()

Then B’ DO B iff B’ has a kernel representation

F () R (5)w=0

for some F' € R [¢]*"°.

—n. 147



Covers

Plant:

Z (&) z=Y (&) v

Observer therefore

F (%) Z (%) 2

|

>
~—
S
~—

h<
~—
e
~—
<

Error dynamics

F (%) Z () e=0

Observer conditions require that F'Z is square.



Covers

Given Z,Y € R [£]*™°®, what can be achieved by
‘'squaring down’ Z to F'Z ?

Achievable error dynamics?

F (%) Z () e=0

Can the observer be madesmoothing ?

F(3)Z (5 2=F(HY (&)v

(FZ)~'(FY)
proper, strictly proper, high-frequency roll-off,

—n. 147



Error Dynamics

Assume that in the plantz Is observable fromy.
Then for any » € R [£&], monic, there existsF' such
that

det(FZ) =r
r = 1 ~» exact observer

r Hurwitz ~» asymptotic observer
r(§) = &* ~ dead-beat observer (discrete-time)

Combinable with proper, high-frequency roll-off,
provided degree(r) sufficiently large.

—n. 157



Assume that in t

Error Dynamics

ne plantz Is detectable fromy. Then

forany » € R [£], monic, with a given Hurwitz factor
(representing the unobservable modes) there exisi®

such that

det(FZ)=r

r Hurwitz ~» asymptotic observer

Combinable with proper, high-frequency roll-off,
provided degree(r) sufficiently large.

—n. 157



Example

Autonomous systemgz, y scalar:
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Example

Autonomous systemgz, y scalar:

det ([z YD £ 0.

Assume observability=- representation

Y (#)y=02=2(3)y

—n. 167



Example

Observer:

() 2= [m () Z (5) +m (H) Y ()] v

Design with roll-off is simple polynomial algebra.
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() 2= [m () Z (5) +m (H) Y ()] v

Design with roll-off is simple polynomial algebra.



Detalls & copies of frames are available from/at
Jan. W1l | ens@sat . kul euven. be
http://ww. esat. kul euven. be/ ~jw | | ens
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