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Dissipative systems
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Open systems

‘Open’ systemsare an appropriate starting point for the
study of dynamics. For example,

inputs . /O SYSTEM

s outputs

~»  the dynamical system

S: x=f(xu), y=h(xu).

ueU=R"y eY =RP,x € X =R" Input, output, state.

Behavior %8 = allsol'ns (u,y,z) : R — U X Y x X.
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Dissipative dynamical systems

Llet s:U XY — R beafunction, called thesupply rate

> Is said to be | dissipative w.r.t. the supply rate s

V:X—->R,

called the storage function such that

4y (z () < s(u),y())
V (u(-),y(),z()) € B.

If

=
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Dissipation inequality

% V() <s(u(),y())
V (u(),y(),x(:)) € B.

This inequality is called the dissipation inequality.

Equivalent to

VE (x,u) := VV (%) - f (x,u) < s (x, h (x, 1))
forall (u,x) € U x X.

If equality holds: ‘conservative’ system.
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Dissipation inequality

SUPPLY
— i
supply pr
Yyy'y
DISSIPATION

s (u, y) models something like thegpower delivered to the
system when the input value ia1 and output value isx.

V (x) then models the internallystored energy.
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Dissipation inequality

Special case‘closed’ system:s = 0 then

dissipativity < V' is a Lyapunov function.

Dissipativity is the natural generalization to open systers of
Lyapunov theory.
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Dissipation inequality

Special case‘closed’ system:s = 0 then

dissipativity < V' is a Lyapunov function.

Dissipativity is the natural generalization to open systers of
Lyapunov theory.

Stability for closedsystems~ Dissipativity for opensystems.
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The construction of storage functions

Basic question:

Given (a representation of )X, the dynamics,
and givens, the supply rate,
IS the system dissipative w.r.ts, I.e.
does there exist storage functionV such that
the dissipation inequality holds?
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The construction of storage functions

Basic question:

Given (a representation of )X, the dynamics,
and givens, the supply rate,
IS the system dissipative w.r.ts, I.e.
does there exist storage functionV such that
the dissipation inequality holds?

SYSTEM |

supply

Monitor power in, known dynamics, what is the stored energy?
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The construction of storage functions

The construction of storage f'ns is very well understood,
particularly for finite dimensional linear systems and
gquadratic supply rates.
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The construction of storage functions

The construction of storage f'ns is very well understood,
particularly for finite dimensional linear systems and
gquadratic supply rates.

Leads to the KYP-lemma, LMI's , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapuov

functions, H~, and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic reaation
theory.
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The construction of storage functions

The construction of storage f'ns is very well understood,
particularly for finite dimensional linear systems and
gquadratic supply rates.

Leads to the KYP-lemma, LMI's , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapuov

functions, H~, and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic reaation
theory.

The construction of storage functions
IS the question which we shall discuss today
for systems described byPDE’s.

—n. 10/



PDE's



Examples

Heat diffusion in a bar

7 |

x >
T(x,1)
~» the PDE
2T —= o° T + q
ot ox2~

(x € R, position,t € R, time), (2-D system)
describes the evolution of theemperature T' (x, t)
and the heatq (x, T") supplied to / radiated away.
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Maxwell's equations

Examples

<
o]

Y
4 5
&

ON
Y
X
w]]
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Examples

Maxwell's equations

— 1
V-E = —p,
€0
0 =
VXE = ——
ot
V-B = 0,
2
c°VXB = — —
603+8t

T =R X R3 (time and spacel» n =4 (4-D system),

w = (Ea B,j, P) _ _
(electric field, magnetic field, current density, charge e&nsity),
W =PR3 x R3 xR x R,~ w =10,

B — set of solutions to these PDE’s.

Note: 10 variables, 8 equations!= 3 free variables.
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PDE’s: polynomial matrix notation

Consider, for example, the PDE:

32

0,

wy (T1, T2) + w1 (1, x2) + —w2 (1, T2)

oxs5

O3
wz (T1,T2) + w1 (1, x2) +
ors

8331
84

4
ox]

w2 (5131, 2132)
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PDE’s: polynomial matrix notation

Consider, for example, the PDE:

0?2 O
wiy (1, T2) + —— W1 (1, 22) + — w2 (x1,22) = O
oxs5 0x1
93 o4
wa (1, x2) + a—a;gwl (x1,x2) + 8—21;411102 (x1,22) = O
I}
Notation:
9 5 wr 1+e2 &
61(_>—7 €2H—7w: ’ R(£17€2): 2
Oxy Ox2 w2 3 1+ &f
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Linear differential distributed systems

T = R", the set of independent variables,

typically n = 4: time and space,
W = RV, the set of dependent variables,
B — the solutions of a linear constant coefficient PDE.
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Linear differential distributed systems

T = R", the set of independent variables,

typically n = 4: time and space,
W = RV, the set of dependent variables,
B — the solutions of a linear constant coefficient PDE.

Let R € R**V[&q,--- , &, and consider

R(p2, g2 )w=0. (%

Define the associated behavior

B = {w € € (R*,R") | (*) holds }.

Notation for n-D linear shift-invariant differential systems:

(R*,R",B) € £, or’B c L£v.

—n. 14/



Elimination theorem

Theorem:

If the behavior of (wy,...,wx, wxyr1,...,wy)
obeys a constant coefficient linear PDE,
then so does the behavior ofwi, . . . , wy)!
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Elimination theorem

Theorem:
If the behavior of (wy,...,wx, wxyr1,...,wy)
obeys a constant coefficient linear PDE,
then so does the behavior ofwi, . . . , wy)!

Which PDE’s describe(p, E, 7) in Maxwell’s equations ?

Eliminate B from Maxwell’s equations ~-»

— 1
V-E = — P
€0
V. BE+v.j 0
€_ ) L] :
08'[: J ’
€O@E+€OCVXVXE+E‘7 == 0.
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Image representation

R(a%ww%)w=0

s called akernel representationof the associated € £7.
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Image representation

R(a%,...,a%)wzo

s called akernel representationof the associated € £7.
Another representation: image representation

_ o 0
w =M (8_:131’”. ,a—wn)e
— : . 0 o W
Elimination thm = im (M (a—m,--- . 37)) SV

Do all behaviors of linear constant coefficient PDE’s admit a
Image representation???
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Image representation

0 0 _
R(a—m»“‘»a—%)w—o

s called akernel representationof the associated € £7.
Another representation: image representation

_ o 0
w =M (8_:131’”. ,a—wn)e
— : . 0 o W
Elimination thm = im (M (a—m,--- . 37)) SV

Do all behaviors of linear constant coefficient PDE’s admit a
Image representation???

B c £¥ admits an image representation iff it is‘controllable’.
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Controllability

Def’n in pictures:
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Controllability

Def’n in pictures:

w ‘patches’ wq, wo € *B.

d weBV VYV wi,ws € B:. Controllability : < ‘patchability’.
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Controllability

Theorem: The following are equivalent:

1. B € £7 iscontrollable

2. B admits animage representation
3. ...
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Controllability

Theorem: The following are equivalent:

1. B € £7 iscontrollable

2. B admits animage representation
3. ...

Image representation leads to an effective numerical tesof
controllability, also for PDE’s.
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Are Maxwell’'s equations controllable ?
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Are Maxwell’'s equations controllable ?

The following equations
in the scalar potential ¢ : R x R® — R and

the vector potential A : R x R3 — R3
generate exactly the solutions to Maxwell's equations:

o
|

]
I

8 -
" A-vV
o1 b,

V X A,
9% - 22 A 2 1 o
eO@A—eoc V<A + ggc V(VA) +€0§V¢,
o

—e0—V - A — eoV320.
€0 5t eoV o

Proves control

ability. lllustrates the interesting connection

controllability < 3 potential!
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Observability

Observabilityof the image representation

awl ? ? awn

w=M ( _ S )E
Is defined as: £ can be deduced fromw,

e, M (i oo, 2 )should be injective.
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Observability

Observabilityof the image representation

w:M(a . a)e

Oy’ ) > Oxq
IS defined as: £ can be deduced fromw,

e, M (i oo, 2 )should be injective.

Not all controllable systems admit anobservableim. repr’n.
Forn = 1, they do. Forn > 1, exceptionally so.

The latent variable £ in an im. repr'n may be ‘hidden’.

Example: Maxwell's equations do not allow a potential
representation with an observablepotential.
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Dissipative distributed systems
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Notation

Multi-index notation:

= (X15+e.5%n) s k= (k1y...5kn) £ = (l1,...,€,),
52(617’” 7€n)7C:(Clv'”acn)an:(7717”'9771&)7

da _ (_0 B d~ _ [ o* okn
dm_ 3$1,...’8$n Qdmk_ awkl,o..,—awrlfn ’

dxr = dxidxs...dx,,

R(%)fwzo for R(a%l"“vaaxn)w:o’
w:M(%)e for w:M(aglv'”vain)Ev

etc.
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Notation

Vei=2 1+...4. 0

"= Oz Oxy °

For simplicity of notation, and for concreteness, we oftendke
n = 4, Independent variablesg, time, and x, y, z, space.

v.i=2 4 a% + 2, ‘spatial flux’
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QDF's

The quadratic map acting onw : R* — R¥ and its
derivatives, defined by

Z dk T o dﬁ
H - P
W kol \ dack W B\ dat W

IS calledquadratic differential form(QDF) on € (R*, R¥).
P ¢ € RV WLOG: &y = @Zk.
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QDF's

The quadratic map acting onw : R* — R¥ and its
derivatives, defined by

Z dk T o dﬁ
H - P
W kol \ dack W B\ dat W

IS calledquadratic differential form(QDF) on € (R*, R¥).
P ¢ € RV WLOG: &y = @Zk.

Introduce the 2n-variable polynomial matrix &
®(¢,m) =) Pkt
kL

Denote the QDF axQ 4. QDF’s are parametrized by R [{, n] .
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Dissipative distributed systems

We henceforth consider onlycontrollable linear differential
systemsand QDF’s for supply rates.
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Dissipative distributed systems

We henceforth consider onlycontrollable linear differential
systemsand QDF’s for supply rates.

Definition: 2B € £7, controllable, is said to be

dissipativewith respect to the supply rate Qg4
(a QDF) if

fRn Qq) (w) dx Z 0

for all w € B of compact support, i.e., forallw € B N D.

® := € and ‘compact support’.
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Dissipative distributed systems

Assumen — 4.
Independent variablesz, y, z;t : space and time.

ldea: Qs (w) (x,y, 2;t) daedydz dt :

‘energy’ supplied to the system
In the space-cubgx, x + dx| X |y,y + dy| X [z, z + dz]
during the time-interval [¢,t + dt|.

Dissipativity :<

fR [fRs Qs (w) (mayvza t) dmdydz} dt > 0] Vw € BNI.

A dissipative systemabsorbsnet energy.
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Example: EM fields

Maxwell's eg’ns define adissipative (in fact, a conservative
system w.r.t. the QDF —E - j

Indeed, if E,j are of compact support and satisfy

€Oﬁv.ﬁ .j = 0,
ot
9 . . .
€O@E—|—€OCVXVXE+§] = O,

then
Jio [fos—E - dwdydz| dt=0.
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The storage and the flux



Local dissipation law

Dissipativity :<

Je |Jrs Qa (w) dzdydz] dt >0

forall w € B ND.
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Dissipativity : <

Jr LJps Qe (w)

Can this be reinter

Local dissipation law

dwdydz} dt >0 forall weBnND.

oreted as

As the system evo
stored, some local
space?

vesome of the energy supplied is locally

y dissipated, and some redistributed ev
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Local dissipation law

Il Invent storage and flux locally defined in time and space,
such that in every spatial domain there holds:

SUPPLY

. |
4 Storage + Spatial flux< Supply.
WM

2
STORAGE

FLUX

vy

DISSIPATION

Supply = partly stored + partly radiated + partly dissipated.



MAIN RESULT (stated for n = 4)

Thm: n=4:x,y, z;t : Space/time; B € £%, controllable.

Then [ |[ps Qs (w) dedydz| dt >0 forall w € BND

i
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MAIN RESULT (stated for n = 4)

Thm: n=4:x,y, z;t : Space/time; B € £%, controllable.

Then [ |[ps Qs (w) dedydz| dt >0 forall w € BND

i

Janim. repr. w = M (88:13’ aay, 2, gt) ¢ of B,
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MAIN RESULT (stated for n = 4)

Thm: n=4:x,y, z;t : Space/time; B € £%, controllable.

Then [ |[ps Qs (w) dedydz| dt >0 forall w € BND
i)
J an im. repr. w:M(a 0 0 3)2 of B, and

Ox’ 0y’ 0z’ Ot
QDF's S, the storageand F, F;, F., the flux,
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MAIN RESULT (stated for n = 4)

Thm: n=4:x,y, z;t : Space/time; B € £%, controllable.

Then [ |[ps Qs (w) dedydz| dt >0 forall w € BND
()

Janim. repr. w = M (88:13’ aay, 9, gt) ¢ of B, and

QDF's S, the storageand F, F;, F., the flux,

such that thelocal dissipation law

515 () + 55 Fu (0) + 52 Fy (£) + 55 F: (£) < Qa (w)

holds for all (w, £) that satisfy w = M (2%, 42, 4z, ;) &
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Hidden variables

The local law involves
possibly unobservable, - I.e.hidden!
latent variables (the £’s).

This gives physical notions as stored energy, entropy, et@n
enigmatic physical flavor.
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Energy stored in EM fields

Maxwell's equations are dissipative (in fact, conservatig)
with respectto — E - j, the rate of energy supplied.
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Energy stored in EM fields

Maxwell's equations are dissipative (in fact, conservatig)
with respectto — E - j, the rate of energy supplied.

Introduce the stored energy density§, and
the energy flux densitythe Poynting vectoy, F,

E - E - > B - B,
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Energy stored in EM fields

Maxwell's equations are dissipative (in fact, conservatig)
with respectto — E - j, the rate of energy supplied.

Introduce the stored energy density§, and
the energy flux densitythe Poynting vectoy, F,

2

E-E+——B-B,

S (E‘ E) .

F (E’, E) := eoc’E x B.

Local conservation lawfor Maxwell’'s equations:

25(6,8)+v.-F(B,B)=-E-j.
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Energy stored in EM fields

Maxwell's equations are dissipative (in fact, conservatig)
with respectto — E - j, the rate of energy supplied.

Introduce the stored energy density§, and
the energy flux densitythe Poynting vectoy, F,

2

E-E+——B-B,

S (E‘ E) .

F (E’, E) := eoc’E x B.

Local conservation lawfor Maxwell’'s equations:

25(6,8)+v.-F(B,B)=-E-j.

Involves B, unobservablefrom E andj.
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The proof



Outline of the proof

Using controllability and image representationswe may
assume, WLOG:®B = €°° (R*, RY)

To be shown

Global dissipation: <

Qs (w) >0forall we®
Rn

)

FT: V-:-Qu(w) <Q¢(w) forall w e &>

<: Local dissipation
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Qs (w) >0forall we®
Rn

§ (Parseval)

$ (—tw,tw) > 0forall w € R®
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/ Qs (w) >0forall we®
Rn

§ (Parseval)

$ (—tw,tw) > 0forall w € R®

§ | (Factorization equation)

I D: ®(—¢€6)=D"(—¢) D ()
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/ Qs (w) >0forall we®
Rn

§ (Parseval)

$ (—tw,tw) > 0forall w € R®

§ | (Factorization equation)

I D: ®(—¢€6)=D"(—¢) D ()
$ (easy)

&+n)" ¥ (n)=@(mn) — DT ()D(n)
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/ Qs (w) >0forall we®
Rn

§ (Parseval)

$ (—tw,tw) > 0forall w € R®

§ | (Factorization equation)

I D: ®(—¢€6)=D"(—¢) D ()
T (easy)
I3T: (C+n) T =®(¢n) —D' () D(@x)

$ (clearly)
FW¥: V-.-Qu(w) <Qs (w) forall w e &€
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Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation: <

Qs (w) >0forall we®
Rn

)
FW¥: V-.-Qu(w) <Qs (w) forall w e &€

<: Local dissipation
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Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation: <

Qs (w) >0forall we®
Rn

)
FW¥: V-.-Qu(w) <Qs (w) forall w e &€

<: Local dissipation

However, ... this argument is valid only forn = 1...
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The factorization equation (FE)



The factorization equation

Consider

X' (=€) X (&)=Y (¢ (FE)

with Y € R®***[£] given, and X the unknown. Solvable??
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The factorization equation

Consider
X' (=8 X (&) =Y (¢ (FE)

with Y € R®***[£] given, and X the unknown. Solvable??

1€

X' ()X (&)=Y

with Y € R***[£] given, and X the unknown.

Under what conditions onY does there exist a solutionX ?
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The factorization equation

Consider
X' (=8 X (&) =Y (¢ (FE)

with Y € R®***[£] given, and X the unknown. Solvable??

1€

X' ()X (&)=Y

with Y € R***[£] given, and X the unknown.

Under what conditions onY does there exist a solutionX ?

Scalar case write the real polynomial Y as a sum of squares

Y:a:%—l—wg—l—---—l—wﬁ.
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X' (X (&)=Y (& (FE)

Y is a given polynomial matrix; X is the unknown.

For n =1 andY € R [£], solvable (with X € R2?[¢]) iff

Y (a) >0 forall o € R.
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X' (X (&)=Y (& (FE)

Y is a given polynomial matrix; X is the unknown.
For n =1 andY € R [£], solvable (with X € R2?[¢]) iff
Y (a) >0 forall o € R.

For n =1 andY € R**°®[¢], itis well-known (but
non-trivial) that (FE) is solvable (with X & R®*® [¢] !) iff

Y(a)=Y'"'(a) >0 forall a € R.
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X' (X (&)=Y (& (FE)

Y is a given polynomial matrix; X is the unknown.

For n =1 andY € R**°[¢], itis well-known (but
non-trivial) that (FE) is solvable (with X & R®*® [¢] !) iff

Y(a)=Y' (a)>0 forall a €R.
For n > 1 and under the symmetry and positivity condition
Y(a)=Y' (o) >0 forall a € R",

this equation can neverthelessin general not be solved over
the polynomial matrices,for X € R®**°®[£],
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X' (X (&)=Y (& (FE)

Y is a given polynomial matrix; X is the unknown.

For n =1 andY € R**°[¢], itis well-known (but
non-trivial) that (FE) is solvable (with X & R®*® [¢] !) iff

Y(a)=Y' (a)>0 forall a €R.
For n > 1 and under the symmetry and positivity condition
Y(a)=Y' (o) >0 forall a € R",

this equation can neverthelessin general not be solved over
the polynomial matrices,for X € R®**°®[£],

but It can be solved over thematrices of rational functions,
e, for X € R**°® (&).
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Hilbert's 17-th problem

This factorizability is a consequence ofHilbert’s 17-th pbm!

Il Solve p =pf+p5+---+p2 pgiven
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Hilbert's 17-th problem

This factorizability is a consequence ofHilbert’s 17-th pbm!

Il Solve p =pf+p5+---+p2 pgiven

A polynomial D€ R[gla Tt gn]a with p (ala cec Ofn) Z 0
forall (a1,...,a,) € R can in generalnot be expressed as a
SOS of polynomials, with the p;’'s € R[&q, - -, &].
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Hilbert's 17-th problem

This factorizability is a consequence ofHilbert’s 17-th pbm!

Il Solve p =pf+p5+---+p2 pgiven

A polynomial p € R[éla T €n]9 with p (ala c e Ofn) Z 0
forall (a1,...,a,) € R can in generalnot be expressed as a
SOS of polynomials, with the p;’'s € R[&q,-- - , &].

But a rational function (and hence a polynomial)

RS R(sla"' 7€n)7With p(a17°°°aan) > 0, for all
(a1,...,04) € R?, can be expressed as a SOS of (= 27)
rational functions, with the p;'s € R (&1, ,&n).
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Outline of the proof

= solvabillity of the factorization eg’n

¢ (—itw,tw) > 0forall w € R*

i

(Factorization equation)

I D: ®(—¢(€)=D" (—¢)D ()

over the|rational functions |i.e., with D a matrix with

elements inR (&1,++- , &) -
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Outline of the proof

= solvabillity of the factorization eg’n

over the

elements inR (&1,++- , &) -

¢ (—itw,tw) > 0forall w € R*

§ | (Factorization equation)

I D: ®(—¢(€)=D" (—¢)D ()

rational functions

l.e., with D a matrix with

The need to introducerational functions in (FE) and an image
representationof 2B (to reduce the pbm to€>°) are the causes
of the unavoidable presence of (possibly unobservable, i.e.,
‘hidden’) latent variables in the local dissipation law.
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Uniqueness
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Unigueness

Non-uniqueness of the storage function stems from 3 sources
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Unigueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of théatent variable £ in various
(non-observable) image representations dB.

2. of D in the factorization equation

¢ (_57 €) =D' (_6) D (6)

3. (inthe casen > 1) of the solution ¥ of

&+n)" ¥ (n)=®(n) — DT () D (n)
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Unigueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of théatent variable £ in various
(non-observable) image representations dB.

2. of D in the factorization equation

¢ (_57 €) =D' (_6) D (6)

3. (inthe casen > 1) of the solution ¥ of

&+n)" ¥ (n)=®(n) — DT () D (n)

For conservative systemsp (—&, &) = 0, whenceD = 0,
but, whenn > 1, the third source of nhon-unigueness remains.
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Unigueness

The non-uniqueness is very real, even for EM fields.
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Unigueness

The non-uniqueness is very real, even for EM fields. Cifr.

The ambiguity of the field energy

... There are, In fact, an infinite number of different podsilities
for u [the Internal energy] and S [the flux] ... It is sometimes
claimed that this problem can be resolved using the theory of
gravitation ... as yet nobody has done such a delicate
experiment ... So we will follow the rest of the world - bessgle
we believe that ifour choice] is probably perfectly right.

The Feynman Lectures on Physics,
Volume Il, page 27-6.
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SUMMARY

#® The theory of dissipative systems centers around the
construction of the storage function
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SUMMARY

#® The theory of dissipative systems centers around the
construction of the storage function

# |global dissipation< 3 local dissipation law
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SUMMARY

#® The theory of dissipative systems centers around the
construction of the storage function

# |global dissipation< 3 local dissipation law

# |nvolvespossibly hiddenlatent variables

(e.g. B in Maxwell’'s eq’'ns)
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9

SUMMARY

The theory of dissipative systems centers around the
construction of the storage function

global dissipation<- 3 local dissipation law

Involves possibly hiddenlatent variables

(e.g. B in Maxwell’'s eq’'ns)

The proof = Hilbert’s 17-th problem
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L

SUMMARY

The theory of dissipative systems centers around the
construction of the storage function

global dissipation<- 3 local dissipation law

Involves possibly hiddenlatent variables
(e.g. B in Maxwell’'s eq’'ns)
The proof = Hilbert’s 17-th problem

Neither controllability nor observability are good generic
system theoretic assumptions for physical models

FDLS: very well developed, in systems and control.
Linear constant coeff. PDE’s: well developed, in math.
Very relevant physically.

Fruitful problem area.
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Details & copies of the lecture frames are available from/at

Jan. Wl | ens@sat . kul euven. be

http://ww. esat. kul euven. be/ ~jw | | ens

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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