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Introduction
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Theme

supply
SYSTEM

Supply rate:

power, mass-flow rate,

rate of entropy production, information rate,

a quantity used to prove stability, robustness, ...
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Theme

supply
SYSTEM

A system is dissipative if it absorbs supply,

netto = in − out

conservative if netto absorption is zero
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Theme

A system is dissipative if it absorbs supply, netto

Dissipative ∼=

rate of change in storage≤ supply rate
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Theme

A system is dissipative if it absorbs supply, netto

Dissipative ∼=

rate of change in storage≤ supply rate

Formalize !

Given supply dynamics, what is thestorage ?

Does a storage function exist ? Is it unique ?

Characterize set of storage functions !
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Thx !

Dissipative systems

run as a red thread through my scientific life

I owe a lot to many co-workers
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Thx !

Roger Brockett
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Thx !

Arjan van der Schaft
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Thx !

Siep Weiland
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Thx !

Kiyotsugu Takaba
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Thx !

Harry Trentelman
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Thx !

Paula Rocha
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Thx !

Shiva Shankar
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Thx !

Harish Pillai
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A bit of history
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History & Roots

terminal
work

terminals
thermal

work

(heat flow, temperature)

Engine
Thermodynamic
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History & Roots

terminal
work

terminals
thermal

work

(heat flow, temperature)

Engine
Thermodynamic

Rudolf Clausius

First and second law of thermodynamics

are statements about dissipativity of open systems
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History & Roots
terminal
work

terminals
thermal

work

(heat flow, temperature)

Engine
Thermodynamic

conservative w.r.t. (
∑

terminals heat flows) − work

Storage = Internal Energy

dissipative w.r.t.
∑

terminals
− heat flows

temperatures

Storage = − Entropy
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History & Roots

“Thermodynamics is the only physical

theory of a universal nature of which

I am convinced that it will never

be overthrown” Albert Einstein

W.H. Haddad, V. Chellaboina, & S. Nersenov,
Thermodynamics: A Dynamical Systems Approach, 2006
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History & Roots

V
−

+
SYSTEM

I

Dissipative w.r.t. V I (= power in)

:⇔
∫

0

−∞ V (t′)I(t′) dt′ ≥ 0 for all (V, I) ∈ B
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History & Roots

Dissipative w.r.t. V I (= power in)

:⇔
∫

0

−∞ V (t′)I(t′) dt′ ≥ 0 for all (V, I) ∈ B

Linear, time-inv. system, transfer functionG ∈ R(ξ)

⇔ G is positive real

[i.e. Real (G (s)) ≥ 0 for Real(s) > 0]
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History & Roots

Dissipative ⇔ G is positive real

⇔ G is realizable as impedance of a circuit with

resistors, inductors, capacitors, and transformers

Otto Brune, 1931

V

+
I

−

Interconnected
RLCT’s
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History & Roots

Otto Brune, 1931

I
+

V

−

Interconnected
RLCT’s

+

Bott & Duffin: transformers not needed (1949)

B.D.O. Anderson & S. Vongpanitlerd,Network Analysis and

Synthesis: A Modern Systems Theory Approach, 1973
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Dissipative input/state/output systems
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input/state/output systems

u1
u2

u

1
y

um

y
2

p

input SYSTEM output

d
dt

x = f (x, u) , y = h (x, u)

Behavior B = all sol’ns (u, y, x) : R → U × Y × X.
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input/state/output systems

d
dt

x = f (x, u) , y = h (x, u) .

Consider

s : U × Y → R called the supply rate

V : X → R called the storage function
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input/state/output systems

d
dt

x = f (x, u) , y = h (x, u) .

Consider

s : U × Y → R called the supply rate

V : X → R called the storage function

dissipativew.r.t. supply rate s and with storageV

:⇔ d
dt

V (x (·)) ≤ s (u (·) , y (·)) for (u, y, x) ∈ B

This inequality is called the dissipation inequality
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Dissipation inequality

supply
SYSTEM

DISSIPATION

SUPPLY

STORAGE
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Dissipation inequality

supply
SYSTEM

DISSIPATION

SUPPLY

STORAGE

s (u, y) models

something like thepower in

V (x) the stored energy.

Dissipativity :⇔

rate of increase of energy ≤ power delivered
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Lyapunov functions

Special case: isolated systemsd
dt

x = f(x) ; s = 0

Dissipation inequality ⇔ d
dt

V (x (·)) ≤ 0

; V is a Lyapunov function
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Lyapunov functions

Special case: isolated systemsd
dt

x = f(x) ; s = 0

Dissipation inequality ⇔ d
dt

V (x (·)) ≤ 0

; V is a Lyapunov function

Aleksandr
Mikhailovich Lyapunov

Lyapunov

trajectory
system

function
V

X
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Lyapunov functions

Special case: isolated systemsd
dt

x = f(x) ; s = 0

Dissipation inequality ⇔ d
dt

V (x (·)) ≤ 0

; V is a Lyapunov function

Lyapunov f’ns play a remarkably central role.

Dissipative systems:

generalize Lyapunov f’ns to open systems

– p. 12/41



i/s/o

Rich theory surrounding the construction of storage

f’ns, especially in the L inear- Q uadratic case

system: linear; supply rate: quadratic

; LMIs , ARIneq, ARE, KYP,

robust stability and control,

semi-definite programming, ...

Numerous applications
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ODEs

Dissipative i/s/o systems were covered very well in

“The Continuing Joy of Dissipation Inequalities”

December 14, 2006

Semi-plenary presentation

CDC 2006, San Diego

Frank Allg öwer
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ODEs

Dissipative i/s/o systems were covered very well in

“The Continuing Joy of Dissipation Inequalities”

Today, I will concentrate on systems described by PDEs.

– p. 14/41



Partial differential equations

Results also interesting for ODEs !
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PDEs: Examples
Diffusion

x

��
��
����

��

��
��������������
��������������
��������������
��������������

q(x,t)

T(x,t)

��

∂
∂t

T = ∂2

∂x2
T + q

independent variables:(t, x) time and space

dependent variables: (T, q) temperature and heat
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PDEs: Examples

Maxwell’s equations for EM fields in free space

∇ · ~E =
1

ε0

ρ ,

∇ × ~E = −
∂

∂t
~B,

∇ · ~B = 0 ,

c2∇ × ~B =
1

ε0

~j +
∂

∂t
~E.

independent variables:(t, x, y, z) time and space

dependent variables:(~E, ~B,~j, ρ)

electric field, magnetic field, current density, charge density
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PDEs: Notation

R [ξ1, . . . , ξn]: polynomials, n indet., real coeff.

R [ξ1, . . . , ξn]
•×w

, R [ξ1, . . . , ξn]
•×• matrices of ...
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PDEs: Notation

R ∈ R [ξ1, . . . , ξn]
•×w

; R
(

∂
∂x1

, · · · , ∂
∂xn

)

w = 0

linear constant coefficient PDEs with

n independent variables,x1, . . . , xn

w dependent variables,w1, . . . , ww

rowdim(R) = number of equations
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PDEs: Notation

R ∈ R [ξ1, . . . , ξn]
•×w

; R
(

∂
∂x1

, · · · , ∂
∂xn

)

w = 0

Ex.: Diffusion eq’n ∂
∂t

T = ∂2

∂x2
T + q

2 indep. variables,(t, x), w = 2, w = (T, q), 1 eq’n.

R(ξt, ξx) = [ ξt − ξ2

x | − 1 ]
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PDEs: Notation

R ∈ R [ξ1, . . . , ξn]
•×w

; R
(

∂
∂x1

, · · · , ∂
∂xn

)

w = 0

Example: Maxwell’s eq’ns

4 independent variables,(t, x, y, z)

w = 10, w = (~E, ~B,~j, ρ)

8 equations,R8 × 10, sparse
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PDEs: Notation

R ∈ R [ξ1, . . . , ξn]
•×w

; R
(

∂
∂x1

, · · · , ∂
∂xn

)

w = 0

Behavior:

B = {w ∈ C
∞(Rn, R

w) | R
(

∂
∂x1

, · · · , ∂
∂xn

)

w = 0}

Notation:

B ∈ L
w

n
, B = kernel

(

R
(

∂
∂x1

, · · · , ∂
∂xn

))
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PDEs: Notation

R ∈ R [ξ1, . . . , ξn]
•×w

; R
(

∂
∂x1

, · · · , ∂
∂xn

)

w = 0

We cover only linear constant coefficient PDEs

C
∞-solutions

infinite domain, no boundary conditions

‘everything’ valid for convex, open domainΩ ⊆ R
n
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Basic facts aboutLw

n

Fact 1:

L
w

n
↔ the submodules ofR [ξ1, . . . , ξn]

w
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Basic facts aboutLw

n

Fact 1:

L
w

n
↔ the submodules ofR [ξ1, . . . , ξn]

w

Fact 2: Elimination theorem

L
w

n
is closed under projection

– p. 18/41



L
w

n
: the basics
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L
w

n

Describe(ρ, ~E,~j) in Maxwell’s equations

Eliminate ~B from Maxwell’s equations ;

∇ · ~E =
1

ε0

ρ ,

ε0

∂

∂t
∇ · ~E + ∇ ·~j = 0,

ε0

∂2

∂t2
~E + ε0c

2∇ × ∇ × ~E +
∂

∂t
~j = 0.
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L
w

n

Fact 1:

L
w

n
↔ the submodules ofR [ξ1, . . . , ξn]

w

Fact 2: Elimination thm

L
w

n
is closed under projection

Fact 3:

B ∈ L
w

n
is controllable ⇔ B is an image
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Controllability on nD systems

O

w2w1

1

W

space time2O
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Controllability on nD systems

O

w2w1

1

W

space time2O

w

1w 2w

O1 2space O

W

time

Controllability

:= Patchability
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Controllability on nD systems

B ∈ L
w

n
controllable if and only if it has a repr.

w = M
(

∂
∂x1

, · · · , ∂
∂xn

)

ℓ

B = image
(

M
(

∂
∂x1

, · · · , ∂
∂xn

))

Is an image a kernel ? Always !⇐ Elimination th’m

Is a kernel an image ? Iff the kernel is controllable !
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Controllability on nD systems

B ∈ L
w

n
controllable if and only if it has a repr.

w = M
(

∂
∂x1

, · · · , ∂
∂xn

)

ℓ

B = image
(

M
(

∂
∂x1

, · · · , ∂
∂xn

))

But, for n > 1, this image representation may not be

observable . Images may requirehidden variables .
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Are EM fields controllable ?
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Are EM fields controllable ?

The following eq’ns in thescalar potential φ :

R × R
3 → R and thevector potential ~A :

R × R
3 → R

3 generate exactly the solutions to MEs:

~E = −
∂

∂t
~A − ∇φ,

~B = ∇ × ~A,

~j = ε0

∂2

∂t2
~A − ε0c

2∇2 ~A + ε0c
2∇

(

∇ · ~A
)

+ ε0

∂

∂t
∇φ,

ρ = −ε0

∂

∂t
∇ · ~A − ε0∇

2φ.
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Are EM fields controllable ?

~E = −
∂

∂t
~A − ∇φ,

~B = ∇ × ~A,

~j = ε0

∂2

∂t2
~A − ε0c

2∇2 ~A + ε0c
2∇

(

∇ · ~A
)

+ ε0

∂

∂t
∇φ,

ρ = −ε0

∂

∂t
∇ · ~A − ε0∇

2φ.

Proves controllability. Not observable, cannot be !

controllability ⇔ ∃ potential!
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Dissipative distributed systems
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Notation

For simplicity of notation & concreteness,n = 4,

independent var., t, time, andx, y, z, space.

∇· := [ ∂
∂x

| ∂
∂y

| ∂
∂z

] ‘divergence’

We henceforth consider only

controllable linear differential systems∈ L
w

4

– p. 25/41



Dissipative distributed systems

Supply rate s = w⊤Sw S = S⊤ ∈ R
w×w

supply rate:

s(t, x, y, z) = w(t, x, y, z)⊤ S w(t, x, y, z)
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Dissipative distributed systems

Definition: B ∈ L
w

4
, controllable, is said to be

dissipativewith respect to the supply ratew⊤Sw if

∫

R

[∫

R3 w⊤Sw dxdydz
]

dt ≥ 0

for w ∈ B of compact support, i.e.w ∈ B ∩ D.

D := C
∞ and ‘compact support’.
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Dissipative distributed systems

Idea:
(

w⊤Sw
)

(x, y, z, t) dxdydz dt =

‘energy’ supplied in the space-cube

[x, x + dx] × [y, y + dy] × [z, z + dz]

during the time-interval [t, t + dt].

Dissipativity :⇔

∫

R

[∫

R3

(

w⊤Sw
)

(x, y, z, t) dxdydz
]

dt ≥ 0

A dissipative systemabsorbsnet energy in compact

support realizations.

– p. 27/41



Example: EM fields

Maxwell’s eq’ns define adissipative(in fact, a

conservative) system w.r.t. −~E ·~j

Indeed, if ~E,~j are of compact support and

ε0

∂

∂t
∇ · ~E + ∇ ·~j = 0,

ε0

∂2

∂t2
~E + ε0c

2∇ × ∇ × ~E +
∂

∂t
~j = 0,

∫

R

[

∫

R3 −~E ·~j dxdydz
]

dt = 0 .
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The storage and the flux
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Local dissipation law

Dissipativity :⇔

∫

R

[∫

R3 w⊤Sw dxdydz
]

dt ≥ 0 for w ∈ B∩D.
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Local dissipation law

Dissipativity :⇔

∫

R

[∫

R3 w⊤Sw dxdydz
]

dt ≥ 0 for w ∈ B∩D.

Can this be reinterpreted as:

As the system evolves over time and space,

some of thesupply, applied locally in time and space

is some locallystored,

someredistributed over space,

some locallydissipated?
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Local dissipation law

!! Invent storage and flux, locally defined in time and

space, such that in every spatial domain there holds:

SUPPLY

DISSIPATION

FLUX

STORAGE
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Local dissipation law

!! Invent storage and flux, locally defined in time and

space, such that in every spatial domain there holds:

d
dt

Storage + Spatial flux≤ Supply.

Supply = stored+ radiated + dissipated.
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MAIN RESULT (stated for n = 4)

Thm: B ∈ L
w

4
, controllable.

Then
∫

R

[∫

R3 w⊤Sw dxdydz
]

dt ≥ 0 ∀ w ∈ B∩D

m
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MAIN RESULT (stated for n = 4)

Thm: B ∈ L
w

4
, controllable.

Then
∫

R

[∫

R3 w⊤Sw dxdydz
]

dt ≥ 0 ∀ w ∈ B∩D

m

∃ image repr. w = M
(

∂
∂t

, ∂
∂x

, ∂
∂y

, ∂
∂z

)

ℓ of B,

and functions (QDFs): a real valuedS the storage,

and a vector valuedF the flux,
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MAIN RESULT (stated for n = 4)

Then
∫

R

[∫

R3 w⊤Sw dxdydz
]

dt ≥ 0 ∀ w ∈ B∩D

m

∃ image repr. w = M
(

∂
∂t

, ∂
∂x

, ∂
∂y

, ∂
∂z

)

ℓ of B,

and functions (QDFs): a real valuedS the storage,

and a vector valuedF the flux, such that the local

dissipation law

∂
∂t

S (ℓ) + ∇ · F ≤ w⊤Sw

holds for (w, ℓ) s.t. w = M
(

∂
∂t

, ∂
∂x

, ∂
∂y

, ∂
∂z

)

ℓ.
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Hidden variables

The local law involves

possibly unobservable, - i.e.,hidden!

latent variables (theℓ’s).

This gives physical notions as stored energy, entropy,

etc., an enigmatic physical flavor.

– p. 33/41



Energy stored in EM fields

MEs are dissipative (in fact, conservative) with

respect to − ~E ·~j, the rate of energy supplied.

– p. 34/41



Energy stored in EM fields

Introduce the stored energy density,S, and

energy flux density(Poynting vector), ~F ,

S
(

~E, ~B
)

:=
ε0

2
~E · ~E +

ε0c
2

2
~B · ~B,

~F
(

~E, ~B
)

:= ε0c
2 ~E × ~B.
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Energy stored in EM fields

Introduce the stored energy density,S, and

energy flux density(Poynting vector), ~F ,

S
(

~E, ~B
)

:=
ε0

2
~E · ~E +

ε0c
2

2
~B · ~B,

~F
(

~E, ~B
)

:= ε0c
2 ~E × ~B.

Local conservation lawfor Maxwell’s equations:

∂
∂t

S
(

~E, ~B
)

+ ∇ · ~F
(

~E, ~B
)

= −~E ·~j.
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Energy stored in EM fields

Local conservation lawfor Maxwell’s equations:

∂
∂t

S
(

~E, ~B
)

+ ∇ · ~F
(

~E, ~B
)

= −~E ·~j.

The storage and flux involve ~B,

unobservablefrom ~E and~j.
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The proof
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The crux of the proof

Solve the ‘factorization equation’

X⊤ (−ξ1, . . . , −ξn) X (ξ1, . . . , ξn)

= Y (ξ1, . . . , ξn)

with Y ∈ R
•×•[ξ1, . . . , ξn] given

X the unknown Solvable??
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SOS

The factorization equation can be reduced to the

following scalar problem

Expressp(ξ1, ., ξn) ∈ R[ξ1, ., ξn] as a sum of squares

p = x2

1
+ x2

2
+ · · · + x2

m

Necessary:p(t1, . . . , tn) ≥ 0, for tk’s ∈ R.

Also sufficient?
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SOS

Expressp(ξ1, ., ξn) ∈ R[ξ1, ., ξn] as a sum of squares

p = x2

1
+ x2

2
+ · · · + x2

m

Necessary:p(t1, . . . , tn) ≥ 0, for tk’s ∈ R.

Also sufficient?

This is Hilbert’s 17-th problem !

Not solvable over polynomials,

but solvable over rational functions.
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Observe

The need to introducerational functions

in the factorization equation and

an image representationof B

are the causes of theunavoidable presence

of (possibly unobservable,‘hidden’ ) latent variables

in the local dissipation law.
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Observe

The stored energy for a spatially distributed is NOT a

function of the phenomenological variablesw and

their partial derivatives, but it is a function of

underlying unobservable variables !
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Summary
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Hightlights

The theory of dissipative systems centers around

the construction of the storage function
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Hightlights

global dissipation⇔ local dissipation

time-wise and space-wise
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Hightlights

For n > 1 involves, possibly,hidden variables

(similar to ~B in Maxwell’s eq’ns)

Also relevant for Lyapunov functions for

spatially distributed systems
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Hightlights

The proof ∼= Hilbert’s 17-th problem
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Hightlights

Neither controllability nor observability are good

assumptions for physical models
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Hightlights

Finite dimensional linear system theory:

well developed, in systems and control.

Linear constant coefficient PDEs:

well developed, in mathematics

Very relevant physically. Fruitful problem area.
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Details & copies of frames are available from/at
Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/∼jwillems

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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