

DISSIPATIVE SYSTEMS

Jan C. Willems, K.U. Leuven, Belgium

ECC 2007, Kos, Greece

July, 2007

– p. 1/4

Introduction

Supply rate:

power, mass-flow rate,

rate of entropy production, information rate, a quantity used to prove stability, robustness, ...

A system is dissipative if it absorbs supply, netto = in - out

conservative if netto absorption is zero

A system is **dissipative** if it absorbs supply, netto

Dissipative \cong

rate of change in storage \leq supply rate

A system is **dissipative** if it absorbs supply, netto

Dissipative \cong

rate of change in storage \leq supply rate

- **•** Formalize !
- Given supply dynamics, what is the storage ?
- **Does a storage function exist ? Is it unique ?**
- Characterize set of storage functions !

Dissipative systems run as a red thread through my scientific life

I owe a lot to many co-workers

Roger Brockett

Arjan van der Schaft

Siep Weiland

Kiyotsugu Takaba

Harry Trentelman

Paula Rocha

Shiva Shankar

Harish Pillai

A bit of history

Rudolf Clausius

First and second law of thermodynamics

are statements about dissipativity of open systems

History & Roots

"Thermodynamics is the only physical theory of a universal nature of which I am convinced that it will never be overthrown" Albert Einstein

W.H. Haddad, V. Chellaboina, & S. Nersenov, *Thermodynamics: A Dynamical Systems Approach*, 2006 **History & Roots**

Dissipative w.r.t. *VI* (= power in)

$:\Leftrightarrow \int_{-\infty}^{0} V(t')I(t') dt' \ge 0 \text{ for all } (V,I) \in \mathfrak{B}$

Dissipative w.r.t. *VI* (= power in)

$$:\Leftrightarrow \int_{-\infty}^{0} V(t')I(t') dt' \ge 0$$
 for all $(V, I) \in \mathfrak{B}$

Linear, time-inv. system, transfer function $G \in \mathbb{R}(\xi)$ $\Leftrightarrow G$ is positive real

[i.e. Real $(G\left(s
ight)) \geq 0$ for Real(s) > 0]

History & Roots

Dissipative \Leftrightarrow G is positive real

 \Leftrightarrow G is realizable as impedance of a circuit with resistors, inductors, capacitors, and transformers

History & Roots

Bott & Duffin: transformers not needed (1949) B.D.O. Anderson & S. Vongpanitlerd, *Network Analysis and Synthesis: A Modern Systems Theory Approach*, 1973

Dissipative input/state/output systems

$$rac{d}{dt}\,x=f\left(x,u
ight),\quad y=h\left(x,u
ight)$$

Behavior $\mathfrak{B} =$ all sol'ns $(u, y, x) : \mathbb{R} \to \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$.

input/state/output systems

$$\frac{d}{dt}x = f(x,u), \quad y = h(x,u).$$

Consider

$$s: \mathbb{U} \times \mathbb{Y} \to \mathbb{R}$$
called the supply rate $V: \mathbb{X} \to \mathbb{R}$ called the storage function

input/state/output systems

$$\frac{d}{dt}x = f(x,u), \quad y = h(x,u).$$

Consider

$$s: \mathbb{U} \times \mathbb{Y} \to \mathbb{R}$$
called the supply rate $V: \mathbb{X} \to \mathbb{R}$ called the storage function

dissipative w.r.t. supply rate *s* and with storage *V*

$$\Leftrightarrow \frac{d}{dt} V\left(x\left(\cdot\right)\right) \leq s\left(u\left(\cdot\right), y\left(\cdot\right)\right) \text{ for } (u, y, x) \in \mathfrak{B}$$

This inequality is called the **dissipation inequality**

Lyapunov functions

Special case: isolated systems $rac{d}{dt}x = f(x) \rightsquigarrow s = 0$

Dissipation inequality $\Leftrightarrow \frac{d}{dt} V(x(\cdot)) \leq 0$

 $\rightsquigarrow V$ is a Lyapunov function

Lyapunov functions

Special case: isolated systems $rac{d}{dt}x = f(x) \rightsquigarrow s = 0$

Dissipation inequality $\Leftrightarrow \frac{d}{dt} V(x(\cdot)) \leq 0$

 $\rightsquigarrow V$ is a Lyapunov function

Aleksandr Mikhailovich Lyapunov

Lyapunov functions

Special case: isolated systems $\frac{d}{dt}x = f(x) \rightsquigarrow s = 0$ Dissipation inequality $\Leftrightarrow \frac{d}{dt}V(x(\cdot)) \leq 0$ $\sim V$ is a Lyapunov function

Lyapunov f'ns play a remarkably central role. Dissipative systems: generalize Lyapunov f'ns to open systems

Rich theory surrounding the construction of storage f'ns, especially in the Linear-Quadratic case system: linear; supply rate: quadratic

→ LMIs, ARIneq, ARE, KYP,
 robust stability and control,
 semi-definite programming, ...

Numerous applications

Dissipative i/s/o systems were covered very well in *"The Continuing Joy of Dissipation Inequalities"*

December 14, 2006 Semi-plenary presentation CDC 2006, San Diego

Frank Allgöwer

Dissipative i/s/o systems were covered very well in *"The Continuing Joy of Dissipation Inequalities"*

Today, I will concentrate on systems described by PDEs.
Partial differential equations

Results also interesting for ODEs !

$$\frac{\partial}{\partial t}T = \frac{\partial^2}{\partial x^2}T + q$$

independent variables: (t, x) time and space dependent variables: (T, q) temperature and heat **PDEs: Examples**

Maxwell's equations for EM fields in free space

$$egin{aligned}
abla \cdot ec{B} &=& rac{1}{arepsilon_0}
ho \,, \
abla imes ec{B} &=& -rac{\partial}{\partial t} ec{B} \,, \
abla imes ec{B} &=& 0 \,, \ c^2
abla imes ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E} \,. \end{aligned}$$

independent variables: (t, x, y, z) time and space dependent variables: $(\vec{E}, \vec{B}, \vec{j}, \rho)$

electric field, magnetic field, current density, charge density

 $\mathbb{R} [\xi_1, \dots, \xi_n]: \text{ polynomials, n indet., real coeff.}$ $\mathbb{R} [\xi_1, \dots, \xi_n]^{\bullet \times w}, \mathbb{R} [\xi_1, \dots, \xi_n]^{\bullet \times \bullet} \text{ matrices of } \dots$

$$R\in \mathbb{R}\left[\xi_{1},\ldots,\xi_{ ext{n}}
ight] ^{ullet imes imes imes}
ightarrow egin{aligned} R\left(rac{\partial}{\partial x_{1}},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight) w=0 \end{aligned}$$

linear constant coefficient PDEs with n independent variables, x_1, \ldots, x_n w dependent variables, w_1, \ldots, w_w rowdim(R) = number of equations

$$R\in \mathbb{R}\left[\xi_{1},\ldots,\xi_{ ext{n}}
ight] ^{ullet imes imes imes}
ightarrow egin{array}{c} R\left(rac{\partial}{\partial x_{1}},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight) w=0 \end{array}$$

Ex.: Diffusion eq'n $\frac{\partial}{\partial t}T = \frac{\partial^2}{\partial x^2}T + q$ 2 indep. variables, (t, x), w = 2, w = (T, q), 1 eq'n.

$$R(\xi_t,\xi_x)=[\,\xi_t-\xi_x^2\,|\,-1\,]$$

$$R\in \mathbb{R}\left[\xi_{1},\ldots,\xi_{ ext{n}}
ight] ^{ullet imes imes imes}
ightarrow rac{\partial}{\partial x_{1}},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight) w=0$$

Example: Maxwell's eq'ns

- 4 independent variables, (t, x, y, z)w = 10, $w = (\vec{E}, \vec{B}, \vec{j}, \rho)$
- 8 equations, $R8 \times 10$, sparse

$$R\in \mathbb{R}\left[\xi_{1},\ldots,\xi_{ ext{n}}
ight] ^{ullet imes imes imes}
ightarrow rac{\partial}{\partial x_{1}},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight) w=0$$

Behavior:

$$\mathfrak{B} = \{ w \in \mathfrak{C}^\infty(\mathbb{R}^{\mathrm{n}},\mathbb{R}^{\mathrm{w}}) \; \mid \; R\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}
ight) w = 0 \}$$

Notation:

$$\mathfrak{B}\in\mathfrak{L}_{\mathrm{n}}^{\scriptscriptstyle{\mathrm{W}}},\ \mathfrak{B}=\mathrm{kernel}\left(R\left(rac{\partial}{\partial x_{1}},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}
ight)
ight)$$

$$R\in \mathbb{R}\left[\xi_{1},\ldots,\xi_{ ext{n}}
ight] ^{ullet imes imes imes}
ightarrow egin{array}{c} R\left(rac{\partial}{\partial x_{1}},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight) w=0 \end{array}$$

We cover only linear constant coefficient PDEs \mathfrak{C}^{∞} -solutions infinite domain, no boundary conditions 'everything' valid for convex, open domain $\Omega \subseteq \mathbb{R}^n$ Basic facts about $\mathfrak{L}_n^{\scriptscriptstyle W}$

Fact 1:

Basic facts about $\mathfrak{L}_n^{\tt w}$

Fact 1:

$$\mathfrak{L}_{n}^{\mathtt{w}} \leftrightarrow$$
 the submodules of $\mathbb{R}\left[\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{n}\right]^{\mathtt{w}}$

Fact 2: Elimination theorem

 \mathfrak{L}_n^w is closed under projection

Describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations

Eliminate \vec{B} from Maxwell's equations \sim

Fact 1:

$$\mathfrak{L}_{n}^{\mathtt{w}} \leftrightarrow$$
 the submodules of $\mathbb{R}\left[\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{n}\right]^{\mathtt{w}}$

Fact 2: Elimination thm

$$\mathfrak{L}_n^w$$
 is closed under projection

Fact 3:

 $\mathfrak{B}\in\mathfrak{L}_n^{\scriptscriptstyle W} \text{ is controllable } \Leftrightarrow\mathfrak{B} \text{ is an image}$

Controllability on nD systems

Controllability on nD systems

 $\mathfrak{B}\in\mathfrak{L}_n^{\scriptscriptstyle W}$ controllable if and only if it has a repr.

$$oldsymbol{w} = M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}}
ight)oldsymbol{\ell}$$

$$\mathfrak{B} = ext{image}\left(M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n}
ight)
ight)$$

Is an image a kernel? Always! ⇐ Elimination th'm Is a kernel an image? Iff the kernel is controllable! **Controllability on nD systems**

 $\mathfrak{B}\in\mathfrak{L}_n^{\scriptscriptstyle W}$ controllable if and only if it has a repr.

$$oldsymbol{w} = M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}
ight)oldsymbol{\ell}$$

$$\mathfrak{B} = ext{image}\left(M\left(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n}
ight)
ight)$$

But, for n > 1, this image representation may not be **observable**. Images may require **hidden variables**.

Are EM fields controllable ?

Are EM fields controllable ?

The following eq'ns in the *scalar potential* ϕ : $\mathbb{R} \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ and the *vector potential* \vec{A} : $\mathbb{R} \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ generate exactly the solutions to MEs:

$$egin{aligned} ec{m{B}} &=& -rac{\partial}{\partial t}ec{A} -
abla \phi, \ ec{m{B}} &=&
abla imes ec{A}, \ ec{m{j}} &=&
abla imes ec{A}, \ ec{m{j}} &=& arepsilon_0 rac{\partial^2}{\partial t^2}ec{A} - arepsilon_0 c^2
abla^2 ec{m{A}} + arepsilon_0 c^2
abla \left(
abla \cdot ec{m{A}}
ight) + arepsilon_0 rac{\partial}{\partial t}
abla \phi, \ ec{
ho} &=& -arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{m{A}} - arepsilon_0
abla^2 \phi. \end{aligned}$$

Are EM fields controllable ?

$$egin{aligned} ec{m{B}} &=& -rac{\partial}{\partial t}ec{A} -
abla \phi, \ ec{m{B}} &=&
abla imes ec{A}, \ ec{m{j}} &=&
abla imes ec{A}, \ ec{m{j}} &=& arepsilon_0 rac{\partial^2}{\partial t^2}ec{A} - arepsilon_0 c^2
abla^2 ec{A} + arepsilon_0 c^2
abla \left(
abla \cdot ec{m{A}}
ight) + arepsilon_0 rac{\partial}{\partial t}
abla \phi, \ ec{
ho} &=& -arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{A} - arepsilon_0
abla^2 \phi. \end{aligned}$$

Proves controllability. Not observable, cannot be !

controllability $\Leftrightarrow \exists$ **potential**!

Notation

For simplicity of notation & concreteness, n = 4, independent var., t, time, and x, y, z, space.

$$\nabla \cdot := \left[\frac{\partial}{\partial x} \mid \frac{\partial}{\partial y} \mid \frac{\partial}{\partial z} \right]$$
 'divergence'

We henceforth consider only $ext{controllable}$ linear differential systems $\in \mathfrak{L}_4^{\scriptscriptstyle extsf{W}}$

Supply rate $s = w^{\top}Sw$ $S = S^{\top} \in \mathbb{R}^{w \times w}$

supply rate:

$$s(t,x,y,z) = w(t,x,y,z)^ op S \ w(t,x,y,z)$$

<u>Definition</u>: $\mathfrak{B} \in \mathfrak{L}_4^{\scriptscriptstyle W}$, controllable, is said to be

dissipative with respect to the supply rate $w^{ op}Sw$ if

$$\int_{\mathbb{R}} ~ \left[\int_{\mathbb{R}^3} w^ op S w ~ dx dy dz
ight] ~ dt \geq 0$$

for $w \in \mathfrak{B}$ of compact support, i.e. $w \in \mathfrak{B} \cap \mathfrak{D}$.

$\mathfrak{D} := \mathfrak{C}^{\infty}$ and 'compact support'.

Idea:
$$(w^{\top}Sw)(x, y, z, t) dxdydz dt =$$

'energy' supplied in the space-cube $[x, x + dx] \times [y, y + dy] \times [z, z + dz]$ during the time interval [t, t + dt]

during the time-interval [t, t + dt].

Dissipativity :⇔

$$\int_{\mathbb{R}} \ \left[\int_{\mathbb{R}^3} \left(w^ op S w
ight) (x,y,z,\,t) \ dxdydz
ight] \ dt \geq 0$$

A dissipative system absorbs net energy in compact support realizations.

Example: EM fields

Maxwell's eq'ns define a dissipative (in fact, a conservative) system w.r.t. $-\vec{E}\cdot\vec{j}$

Indeed, if \vec{E}, \vec{j} are of compact support and

$$arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{m{E}} \,+\,
abla \cdot ec{m{j}} \,=\, 0,
onumber \ arepsilon_0 rac{\partial^2}{\partial t^2} ec{m{E}} \,+\, arepsilon_0 c^2
abla imes
abla imes
abla imes ec{m{E}} \,+\, rac{\partial}{\partial t} ec{m{j}} \,=\, 0,$$

$$\int_{\mathbb{R}} \left[\int_{\mathbb{R}^3} -ec{E} \cdot ec{j} \, dx dy dz
ight] \, dt = 0 \, .$$

The storage and the flux

Local dissipation law

Dissipativity :⇔

$\int_{\mathbb{R}} \left[\int_{\mathbb{R}^3} w^ op S w \, dx dy dz ight] \, dt \geq 0$

for $w \in \mathfrak{B} \cap \mathfrak{D}$.

Dissipativity :⇔

$$\int_{\mathbb{R}} \left[\int_{\mathbb{R}^3} w^\top S w \, dx dy dz \right] \, dt \geq 0 \quad \text{ for } w \in \mathfrak{B} \cap \mathfrak{D}.$$

Can this be reinterpreted as:

As the system evolves over time and space, some of the *supply*, applied locally in time and space is some locally stored, some redistributed over space, some locally dissipated ? Local dissipation law

!! Invent storage and flux, locally defined in time and space, such that in every spatial domain there holds:

!! Invent storage and flux, locally defined in time and space, such that in every spatial domain there holds:

$$\frac{d}{dt}$$
 Storage + Spatial flux \leq Supply.

Supply = stored + radiated + dissipated.

MAIN RESULT (stated for n = 4)

<u>Thm</u>: $\mathfrak{B} \in \mathfrak{L}_{4}^{\mathsf{w}}$, controllable.

Then $\int_{\mathbb{R}} \left[\int_{\mathbb{R}^3} w^\top Sw \, dx dy dz \right] \, dt \ge 0 \, \forall \, w \in \mathfrak{B} \cap \mathfrak{D}$

1

MAIN RESULT (stated for n = 4)

<u>Thm</u>: $\mathfrak{B} \in \mathfrak{L}_{4}^{\mathsf{w}}$, controllable.

Then $\int_{\mathbb{R}} \left[\int_{\mathbb{R}^3} w^\top S w \, dx dy dz \right] \, dt \geq 0 \, \forall \, w \in \mathfrak{B} \cap \mathfrak{D}$

 $\exists \text{ image repr. } \boldsymbol{w} = M\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \boldsymbol{\ell} \text{ of } \mathfrak{B},$ and functions (QDFs): a real valued \boldsymbol{S} the *storage*, and a vector valued \boldsymbol{F} the *flux*, **MAIN RESULT** (stated for n = 4)

Then $\int_{\mathbb{R}} \left[\int_{\mathbb{R}^3} w^\top S w \, dx dy dz \right] \, dt \geq 0 \, \forall \, w \in \mathfrak{B} \cap \mathfrak{D}$

 $\exists \text{ image repr. } \boldsymbol{w} = M\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \boldsymbol{\ell} \text{ of } \mathfrak{B},$ and functions (QDFs): a real valued \boldsymbol{S} the *storage*, and a vector valued \boldsymbol{F} the *flux*, such that the *local dissipation law*

$$rac{\partial}{\partial t}S\left(oldsymbol{\ell}
ight)+
abla\cdot F\leq w^{ op}Sw$$

holds for (w, ℓ) s.t. $w = M\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \ell$.

Hidden variables

The local law involves possibly unobservable, - i.e., hidden! latent variables (the *l*'s).

This gives physical notions as stored energy, entropy, etc., an enigmatic physical flavor.
MEs are dissipative (in fact, conservative) with respect to $-\vec{E}\cdot\vec{j}$, the rate of energy supplied.

Introduce the stored energy density, S, and energy flux density (Poynting vector), \vec{F} ,

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta & \ eta & \ eta & \ \end{pmatrix} &:= rac{arepsilon_0}{2} ec{m{E}} \cdot ec{m{E}} + rac{arepsilon_0 c^2}{2} ec{m{B}} \cdot ec{m{B}}, \ ec{m{F}} & \ eta & \ eta$$

Introduce the stored energy density, S, and energy flux density (Poynting vector), \vec{F} ,

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta & eta &$$

0

Local conservation law for Maxwell's equations:

$$rac{\partial}{\partial t} oldsymbol{S} \left(ec{oldsymbol{E}}, ec{oldsymbol{B}}
ight) +
abla \cdot ec{oldsymbol{F}} \left(ec{oldsymbol{E}}, ec{oldsymbol{B}}
ight) = -ec{oldsymbol{E}} \cdot ec{oldsymbol{j}}.$$

Local conservation law for Maxwell's equations:

$$\overline{rac{\partial}{\partial t}S\left(ec{E},ec{B}
ight)}+
abla\cdotec{F}\left(ec{E},ec{B}
ight)=-ec{E}\cdotec{j}.$$

The storage and flux involve \vec{B} , unobservable from \vec{E} and \vec{j} .

The proof

The crux of the proof

Solve the 'factorization equation'

$$X^{\top}(-\xi_1,\ldots,-\xi_n) X (\xi_1,\ldots,\xi_n)$$
$$= Y (\xi_1,\ldots,\xi_n)$$
with $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi_1,\ldots,\xi_n]$ given
X the unknown Solvable??

The factorization equation can be reduced to the following scalar problem

Express $p(\xi_1,.,\xi_{ ext{n}}) \in \mathbb{R}[\xi_1,.,\xi_{ ext{n}}]$ as a sum of squares

$$p = x_1^2 + x_2^2 + \dots + x_m^2$$

Necessary: $p(t_1, \ldots, t_n) \ge 0$, for t_k 's $\in \mathbb{R}$. Also sufficient?

Express $p(\xi_1,.,\xi_{ ext{n}}) \in \mathbb{R}[\xi_1,.,\xi_{ ext{n}}]$ as a sum of squares

$$p=x_1^2+x_2^2+\cdots+x_m^2$$

- Necessary: $p(t_1, \ldots, t_n) \ge 0$, for t_k 's $\in \mathbb{R}$. Also sufficient?
- This is Hilbert's 17-th problem ! Not solvable over polynomials, but solvable over rational functions.

Observe

The need to introduce rational functions in the factorization equation and an image representation of B are the causes of the unavoidable presence of (possibly unobservable, 'hidden') latent variables in the local dissipation law.

The stored energy for a spatially distributed is NOT a function of the phenomenological variables w and their partial derivatives, but it is a function of underlying unobservable variables !

Summary

 The theory of dissipative systems centers around the construction of the storage function

● global dissipation ⇔ local dissipation

time-wise and space-wise

For n > 1 involves, possibly, hidden variables

 (similar to B in Maxwell's eq'ns)

 Also relevant for Lyapunov functions for

 spatially distributed systems

• The proof \cong Hilbert's 17-th problem

 Neither controllability nor observability are good assumptions for physical models

 Finite dimensional linear system theory: well developed, in systems and control.
 Linear constant coefficient PDEs: well developed, in mathematics
 Very relevant physically. Fruitful problem area.

Details & copies of frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems

