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Introduction



Theme

supply

Supply rate:
power, mass-flow rate,
rate of entropy production, information rate,
a quantity used to prove stability, robustness, ...

—n. 3/



Theme

supply

A system is dissipative If it absorbs supply,
netto = in — out

conservative If netto absorption Iis zero
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Theme

A system is dissipative if it absorbs supply, netto

12

Dissipative

rate of change in storage < supply rate
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Theme

A system is dissipative if it absorbs supply, netto

12

Dissipative

rate of change in storage < supply rate

o Formalize!
» Given supply dynamics, what Is the storage ?
» Does a storage function exist? Is it unique ?

o Characterize set of storage functions!!
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Thx!

Dissipative systems
run as ared thread through my scientific life

| owe a lot to many co-workers
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Thx!

Roger Brockett
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Arjan van der Schatft

Thx!
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Siep Welland
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Kiyotsugu Takaba
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Harry Trentelman
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Paula Rocha

Thx!
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Thx!

Harish Pillal
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A bit of history



History & Roots

work
terminal

Thermodynamic
Engine
thermal

* \\terminals

work *

(heat flow, temperature)

—n. 7/



History & Roots

o

work
terminal

Thermodynamic
Engine
thermal

R Rudolf Clausius

(heat flow, temperature)

work T

First and second law of thermodynamics
are statements about dissipativity of open systems
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work History & Roots

terminal

Thermodynamic
Engine
thermal

1 \terminals

(heat flow, temperature)

work 1

conservative w.rt. (> heat flows) — work

terminals

Storage = Internal Energy

heat flows
terminals temperatures

dissipative w.rt. >

Storage = — Entropy
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History & Roots

“Thermodynamics is the only physical
theory of a universal nature of which

| am convinced that it will never

be overthrown” Albert Einstein

W.H. Haddad, V. Chellaboina, & S. Nersenov,

Thermodynamics: A Dynamical Systems Approa&@®906
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History & Roots

SYSTEM

Dissipative w.r.t. VI (= power In)

= ffoo V(t)I@)dt" >0 forall (V,I)ée€ B
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History & Roots

Dissipative w.r.t. VI (= power In)
< [ _V@)I®#)dt >0 forall (V,I) € B

Linear, time-inv. system, transfer function G € R(&)
< G Is positive real
[i.e. Real (G (s)) > 0 for Real(s) > O]
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History & Roots

Dissipative < G Is positive real

< G is realizable as impedance of a circuit with
resistors, inductors, capacitors, and transformers

Interconnected
RLCT’s

Otto Brune, 1931




History & Roots

Interconnected
RLCT's

Otto Brune, 1931

Bott & Duffin: transformers not needed (1949)

B.D.O. Anderson & S. Vongpanitlerd, Network Analysis and
Synthesis: A Modern Systems Theory Approad®73



Dissipative input/state/output systems



Input/state/output systems

Ul : - yl

u, . Y,
input SYSTEM e oOutput

um - _ up

—CE—f(ZB u), y=h(z,u)

Behavior 8 = allsol’'ns (u,y,z) : R — U X Y x X.
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Input/state/output systems
_w—f(w u), y=h(z,u).

Consider

s:UXY —R called the supply rate

V:X—=R called the storage function
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Input/state/output systems

%w:f(w,u), y=h(z,u).

Consider

s:UXY —R called the supply rate

V:X—=R called the storage function

dissipative w.r.t. supply rate s and with storageV

= GV (@) <s(u(),y())|for (u,y,2) €B

This inequality is called the dissipation inequality
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SYSTEM

Dissipation inequality

supply

SUPPLY

Al

YyyYY

STORAGE

DISSIPATION
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Dissipation inequality

SUPPLY

supply

s (u,y) models
something like thepower in
V (x) the stored energy.

DISSIPATION
Dissipativity :<
rate of increase of energy < power delivered
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Lyapunov functions

Special case: isolated system&x = f(z) ~ s = 0

Dissipation inequality <> |2 V (z (+)) < 0

~» V' Is a Lyapunov function
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Lyapunov functions

Special case: isolated system&x = f(z) ~ s = 0

Dissipation inequality < | £ V (z (+)) < 0

~» V' Is a Lyapunov function

Lyapunov A\V/
function

system
trajectory

y
Aleksandr @»
X

Mikhailovich Lyapunov
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Lyapunov functions

Special case: isolated system&x = f(z) ~ s = 0

Dissipation inequality <> |2 V (z (+)) < 0

~» V' Is a Lyapunov function

Lyapunov f’'ns play a remarkably central role.

Dissipative systems:
generalize Lyapunov f'ns to open systems
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Rich theory surrounding the construction of storage
f'ns, especially in the L inear- Q uadratic case
system: linear; supply rate: quadratic

~» LMIs, ARIneq, ARE, KYP,
robust stability and control,
semi-definite programming, ...

Numerous applications

1/S/o
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ODEs

Dissipative i/s/o systems were covered very well in

“The Continuing Joy of Dissipation Inequalities’

December 14, 2006
Semi-plenary presentation

CDC 2006, San Diego

Frank Allg ower
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ODEs

Dissipative i/s/o systems were covered very well in

“The Continuing Joy of Dissipation Inequalities’

Today, | will concentrate on systems described by PDE:
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Partial differential equations

Results also interesting for ODES !



PDEs: Examples

Diffusion
q(x,t)

)
7. |

: =]
T(x,1)

0] __ b?
ET — 8sz‘|‘q

independent variables:(t, ) time and space
dependent variables: (T, q) temperature and heat
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PDEs: Examples

Maxwell's equations for EM fields in free space

~ 1
V-E = —p,
€0
—> 8—»
VXE = ——B,
ot
V.-B = 0,
’V x B 1_._|_8_.
C = — —
50] Ot

independent variables:(t, x,y, z) time and space
dependent variables:(E, B, 7, p)

electric field, magnetic field, current density, charge dengy
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PDEs: Notation

. polynomials, n indet., real coeff.
VR[4, .. .,&]°"° matrices of ...
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PDEs: Notation

ReR[gl,“.’én]’XW,\» R(a?cla"' 932n>w:()

linear constant coefficient PDEs with
n Independent variablesxz4, ..., x,
w dependent variablesw,, . . . , w,
rowdim (R) = number of equations
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PDEs: Notation

R RG] o R (s ) w =0

Ex.: Diffusion eg’n S =2 T+gq
2 indep. variables,(t,z),w = 2, w = (T, q), 1 eq'n.

R(&,6:) = [&— &, — 1]
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PDEs: Notation

RERIEL, ... ] ~ R(agl,--- ,fgn)w:()

Example: Maxwell’'s eq’ns

4 independent variables(t, x, y, z)
w=10,w = (E, B, j, p)
8 equations,R8 X 10, sparse
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PDEs: Notation

RER[fl,...,gn]oxwm» R<3?cl’”' ,8zn)w:()

Behavior:

B = {w € €°(R*,RY) | R(a . 3)w:0}

0z’ ’ Oz,

Notation:
B c £ B = kernel (R( o .., 0 ))

0z’ ’ Oz,
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PDEs: Notation

RER[glw“agn]‘XWM R(ail’”' ’81)10:0

We cover only linear constant coefficient PDEs

¢>°-solutions

infinite domain, no boundary conditions
‘everything’ valid for convex, open domain2 C R*®
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Fact 1.

L

<>

Basic facts aboutf?

the submodules ofR [£4, ..., &]"
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Basic facts aboutf?

Fact 1.

£7 « the submodules ofR [£1,...,&)]"

Fact 22 Elimination theorem

£Y Is closed under projection
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£¥: the basics



£W

n

Describe(p, E, 7) in Maxwell's equations

Eliminate B from Maxwell's equations ~»

VE = —pP,

8 — —_—
—V-E+V-7 = o0,

€oat + J
82E"+ 2V XV X E + 0 = 0
En—— EnC — — .

0 5¢2 0 at’




Fact 1

£¥ « the submodules ofR [&4, ..., &)]"

Fact 2. Elimination thm

£¥ Is closed under projection

Fact 3;

B € L£7is controllable < B is an image
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Controllability on nD systems

time
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Controllability on nD systems

Controllability
.= Patchability

space

time
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Controllability on nD systems

B € £Y controllable if and only If it has a repr.

? Oxy

B = i mage (M (8%1,--- ,8‘;))
Is an image a kernel? Always !<= Elimination th'm
Is a kernel an image ?  Iff the kernel is controllable!
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Controllability on nD systems

B € £Y controllable if and only If it has a repr.

w:M(a . 8)6

Oxq’ ? Oxy

B = i mage (M(a%l,--- ) o ))
But, for n > 1, this image representation may not be
observable . Images may require hidden variables .
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Are EM fields controllable ?
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Are EM fields controllable ?

The following eg’ns in the scalar potential ¢ :
R x R3 — R and the vector potential A :
R x R® — R° generate exactly the solutions to MEs:

E = —ﬁj—vcp,
ot
B = VXA,
; — 608—241 — 8002V2J—|— €OC2V (V . j) —+ sOEVqS
ot? ot
p = —eoﬁv-j—e(,v%.
ot
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Are EM fields controllable ?

B = -2 A-vo,
ot
B = VXA,
; — 608—241 — EfOCZVZj—F €OCZV (V . JE) —|— 802V¢
ot? ot
P = —ESOEV . 14’ — €0V2§b.
ot

Proves controllability. Not observable, cannot be'!
controllability < 3 potential!
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Dissipative distributed systems
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Notation

For simplicity of notation & concreteness,n = 4,
iIndependent var., t,time, andx, y, z, space.

8 | 8|8 (A ,
V.= |5 | 9 | 5 ] divergence

We henceforth consider only
controllable linear differential systemse& £}
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Dissipative distributed systems

Supplyrate s=w'Sw S=8" & R

supply rate:

s(t,x,y,z) = w(t,z,y,2z) Sw(t,z,y,z)
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Dissipative distributed systems

Definition: B € £7, controllable, Is said to be

dissipativewith respect to the supply ratew " Sw | if

o [fosw Sw dzdydz] dt > 0

for w € B of compact support, .e.w € B N D.

? := ¢ and ‘compact support’.
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Dissipative distributed systems

ldea: (wTSw) (x,y,2, t) dedydz dt =
‘energy’ supplied in the space-cube

[z, + dz] X [y,y + dy] X [z, 2z + dz]
during the time-interval [t,t + dt].

Dissipativity :<

fo [fps (w"Sw) (w,y, 2, t) dedydz] dt >0

A dissipative systemabsorbsnet energy in compact
support realizations.
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Example: EM fields

Maxwell’'s eg’'ns define adissipative (in fact, a
conservative systemw.rt. —E-j

Indeed, if E,7 are of compact support and

0 . -
“VvV.-E+V.-] = o,

ant + J
82E+ 2V XV X E + 0 - 0
E0——= E0C —] = ]

0 912 0 ot”

o [ -7 dodyaz] @t —o.
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The storage and the flux



Local dissipation law

Dissipativity : <

fR [fR3 w' Sw dmdydz} dt >0 forw € BNI.
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Local dissipation law

Dissipativity : <

fR UR3 w' Sw d:z:dydz} dt >0 forw € BNI.

Can this be reinterpreted as:

As the system evolves over time and space,

some of thesupply, applied locally in time and space
IS some locallystored,

someredistributed over space,

some locallydissipated?
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Local dissipation law

Il Invent storage and flux locally defined in time and
space, such that in every spatial domain there holds:

SUPPLY

A

! FLUX
o

STORAGE

e e

ryyY

DISSIPATION
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Local dissipation law

Il Invent storage and flux locally defined in time and
space, such that in every spatial domain there holds:

. .
4 Storage + Spatial flux<< Supply.

Supply = stored + radiated + dissipated.
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MAIN RESULT (stated for n = 4)

Thm: 8 € £¥ controllable.

Then fR UR3 w' Sw d:z:dydz} dt > 0Vw e BND

r
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MAIN RESULT (stated for n = 4)

Thm: 8 € £¥ controllable.

Then fR UR3 w' Sw d:z:dydz} dt > 0Vw e BND

i)
Himagerepr.w:M(a 0~ 0 8)6 of B,

ot? 9x? Oy’ Oz
and functions (QDFs): a real valuedS' the storage,

and a vector valuedF’ the flux,
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MAIN RESULT (stated for n = 4)

Then [ |[zsw' Swdzdydz| dt > 0 Vw € BND

i

: _ o 9 9 9
dimage repr. w = M (at, 937 9y az) ¢ of 8,
and functions (QDFs): a real valuedS the storage,
and a vector valuedF' the flux, such that thelocal

dissipation law

%S(ﬁ)—I—V-FSwTSw

holds for (w, £) s.t. w = M (gt, 2 ;’y, gz) l.
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Hidden variables

The local law Involves
possibly unobservable, - i.e.hidden!

latent variables (the£’s).

This gives physical notions as stored energy, entropy,
etc., an enigmatic physical flavor.
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Energy stored in EM fields

MEs are dissipative (in fact, conservative) with
respectto — E - 7, the rate of energy supplied.
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Energy stored in EM fields

Introduce the stored energy density§, and
energy flux densityfPoynting vectoy, F,

S(E’,E)::-E-E: B.B,
2 2

F (E, E) .= ¢oc’E x B.
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Energy stored in EM fields

Introduce the stored energy densityy, and
energy flux densityPoynting vectoy, F,

S(E,E):z—E-EI B.B,
2 2

F (E, E) .= ¢oc’E x B.

Local conservation lawfor Maxwell’'s equations:

25 (E,B)+v.F(B,B)=—E-j.
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Energy stored in EM fields

Local conservation lawfor Maxwell’s equations:

25 (B,B)+v.F(B,B)=-E-j

The storage and flux involve B,
unobservablefrom E and j.

—n. 34/



The proof



The crux of the proof

Solve the ‘factorization equation’

XT (—61,---7_€n)X(€1w°°9£n)
=Y (&,...,&)

with Y € R***[&q,...,&,] given
X the unknown Solvable??
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SOS

The factorization equation can be reduced to the
following scalar problem

Expressp(&1, ., &) € Rl&q, ., €] @s a sum of squares
p:w%+w3—|—..._|_w§

Necessary.p(ti,...,t,) > 0, for t,'s € R.
Also sufficient?
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SOS

Expressp(&1,., &) € R[&q, ., &] @S a sum of squares
p:aj%—l—m§+...+w§

Necessary.p(ti,...,t,) > 0, for t,'s € R.
Also sufficient?

This is Hilbert’s 17-th problem !
Not solvable over polynomials,
but solvable over rational functions.
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Observe

The need to introducerational functions

In the factorization equation and

an image representationof 25

are the causes of the¢ unavoidable presence

of (possibly unobservable;hidden’) latent variables
In the local dissipation law.
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Observe

The stored energy for a spatially distributed is NOT a
function of the phenomenological variablesw and
their partial derivatives, but it is a function of
underlying unobservable variables'!
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Summary



Hightlights

» The theory of dissipative systems centers around
the construction of the storage function
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Hightlights

» (global dissipation <> local dissipation

time-wise and space-wise
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Hightlights

o Forn > 1 Involves, possibly, hidden variables
(similar to B in Maxwell's eq'ns)
Also relevant for Lyapunov functions for
spatially distributed systems
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Hightlights

o The proof = Hilbert’s 17-th problem

—n. 40/



Hightlights

» Neither controllability nor observability are good
assumptions for physical models
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Hightlights

o Finite dimensional linear system theory:
well developed, in systems and control.
Linear constant coefficient PDEs:
well developed, in mathematics
Very relevant physically. Fruitful problem area.
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Detalls & copies of frames are available from/at
Jan. W1l | ens@sat . kul euven. be
http://ww. esat. kul euven. be/ ~jw | | ens

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you
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