mod sista

DISSIPATIVE SYSTEMS

Jan C. Willems, K.U. Leuven, Belgium

Introduction

Theme

Supply rate:

power, mass-flow rate,
rate of entropy production, information rate,
a quantity used to prove stability, robustness, ...

Theme

A system is dissipative if it absorbs supply, netto $=$ in - out
conservative if netto absorption is zero

Theme

A system is dissipative if it absorbs supply, netto
Dissipative \cong
rate of change in storage \leq supply rate

Theme

A system is dissipative if it absorbs supply, netto Dissipative \cong

rate of change in storage \leq supply rate

- Formalize !
- Given supply dynamics, what is the storage ?
- Does a storage function exist? Is it unique ?
- Characterize set of storage functions !

Dissipative systems

run as a red thread through my scientific life

I owe a lot to many co-workers

Thx!

Roger Brockett

Thx !

Arjan van der Schaft

Siep Weiland

Kiyotsugu Takaba

Harry Trentelman

Paula Rocha

Thx:

Shiva Shankar

Thx:

Harish Pillai

A bit of history

History \& Roots

(heat flow, temperature)

History \& Roots

(heat flow, temperature)

Rudolf Clausius

First and second law of thermodynamics

 are statements about dissipativity of open systems
(heat flow, temperature)
conservative w.r.t. ($\sum_{\text {terminals }}$ heat flows) - work

$$
\text { Storage }=\text { Internal Energy }
$$

dissipative w.r.t. $\sum_{\text {terminals }}-\frac{\text { heat flows }}{\text { temperatures }}$

Storage $=-$ Entropy

History \& Roots

"Thermodynamics is the only physical theory of a universal nature of which I am convinced that it will never be overthrown" Albert Einstein

W.H. Haddad, V. Chellaboina, \& S. Nersenov,

Thermodynamics: A Dynamical Systems Approach, 2006

History \& Roots

Dissipative w.r.t. VI (= power in)
$: \Leftrightarrow \quad \int_{-\infty}^{0} V\left(t^{\prime}\right) I\left(t^{\prime}\right) d t^{\prime} \geq 0 \quad$ for all $(V, I) \in \mathfrak{B}$

History \& Roots

Dissipative w.r.t. VI (= power in)

$$
: \Leftrightarrow \quad \int_{-\infty}^{0} V\left(t^{\prime}\right) I\left(t^{\prime}\right) d t^{\prime} \geq 0 \text { for all }(V, I) \in \mathfrak{B}
$$

Linear, time-inv. system, transfer function $G \in \mathbb{R}(\xi)$
$\Leftrightarrow G$ is positive real

$$
\text { [i.e. Real }(G(s)) \geq 0 \text { for } \operatorname{Real}(s)>0]
$$

History \& Roots

Dissipative $\Leftrightarrow G$ is positive real
$\Leftrightarrow G$ is realizable as impedance of a circuit with resistors, inductors, capacitors, and transformers

Otto Brune, 1931

History \& Roots

Otto Brune, 1931

Bott \& Duffin: transformers not needed (1949)

B.D.O. Anderson \& S. Vongpanitlerd, Network Analysis and Synthesis: A Modern Systems Theory Approach, 1973

Dissipative input/state/output systems

input/state/output systems

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u)
$$

Behavior $\mathfrak{B}=$ all sol'ns $(u, y, x): \mathbb{R} \rightarrow \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$.

input/state/output systems

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u)
$$

Consider

$$
s: \mathbb{U} \times \mathbb{Y} \rightarrow \mathbb{R}
$$

$\boldsymbol{V}: \mathbb{X} \rightarrow \mathbb{R}$
called the supply rate
called the storage function

input/state/output systems

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u)
$$

Consider

$$
\begin{aligned}
& s: \mathbb{U} \times \mathbb{Y} \rightarrow \mathbb{R} \\
& V: \mathbb{X} \rightarrow \mathbb{R}
\end{aligned}
$$

called the supply rate

 called the storage functiondissipative w.r.t. supply rate s and with storage V
$: \Leftrightarrow \frac{d}{d t} V(x(\cdot)) \leq s(u(\cdot), y(\cdot))$ for $(u, y, x) \in \mathfrak{B}$

This inequality is called the dissipation inequality

Dissipation inequality

Dissipation inequality

$s(\mathrm{u}, \mathrm{y})$ models
something like the power in
$V(\mathrm{x})$ the stored energy.
Dissipativity : \Leftrightarrow
rate of increase of energy \leq power delivered

Lyapunov functions

Special case: isolated systems $\frac{d}{d t} x=f(x) \sim s=0$
Dissipation inequality $\Leftrightarrow \frac{d}{d t} V(x(\cdot)) \leq 0$
$\sim V$ is a Lyapunov function

Lyapunov functions

Special case: isolated systems $\frac{d}{d t} x=f(x) \leadsto s=0$ $\begin{aligned} \text { Dissipation inequality } & \Leftrightarrow \frac{d}{d t} V(x(\cdot)) \leq 0 \\ & \leadsto V \text { is a Lyapunov function }\end{aligned}$

[^0]

Lyapunov functions

Special case: isolated systems $\frac{d}{d t} x=f(x) \leadsto s=0$ Dissipation inequality $\Leftrightarrow \frac{d}{d t} V(x(\cdot)) \leq 0$ $\sim V$ is a Lyapunov function

Lyapunov f'ns play a remarkably central role.
Dissipative systems:
generalize Lyapunov f'ns to open systems

Rich theory surrounding the construction of storage f 'ns, especially in the L inear- Q uadratic case system: linear; supply rate: quadratic LMIs, ARIneq, ARE, KYP, robust stability and control, semi-definite programming, ...

Numerous applications

ODEs

Dissipative $\mathbf{i} / \mathbf{s} / \mathrm{o}$ systems were covered very well in

"The Continuing Joy of Dissipation Inequalities"

December 14, 2006
Semi-plenary presentation CDC 2006, San Diego

Frank Allgöwer

ODEs

Dissipative $\mathbf{i} / \mathbf{s} / \mathrm{o}$ systems were covered very well in "The Continuing Joy of Dissipation Inequalities"

Today, I will concentrate on systems described by PDEs.

Partial differential equations

Results also interesting for ODEs !

Diffusion

PDEs: Examples

$$
\frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q
$$

independent variables: (t, x) time and space dependent variables: (T, q) temperature and heat

PDEs: Examples

Maxwell's equations for EM fields in free space

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B} \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E}
\end{aligned}
$$

independent variables: (t, x, y, z) time and space dependent variables: $(\vec{E}, \vec{B}, \vec{j}, \rho)$
electric field, magnetic field, current density, charge density

PDEs: Notation

$\mathbb{R}\left[\xi_{1}, \ldots, \xi_{n}\right]$: polynomials, n indet., real coeff. $\mathbb{R}\left[\xi_{1}, \ldots, \xi_{\mathrm{n}}\right]^{\bullet \times w}, \mathbb{R}\left[\xi_{1}, \ldots, \xi_{\mathrm{n}}\right]^{\bullet \times \bullet}$ matrices of \ldots

PDEs: Notation

$$
\boldsymbol{R} \in \mathbb{R}\left[\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{\mathrm{n}}\right]^{\bullet \times \mathrm{w}} \leadsto \boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0
$$

linear constant coefficient PDEs with
n independent variables, $x_{1}, \ldots, x_{\mathrm{n}}$
w dependent variables, $w_{1}, \ldots, w_{\text {w }}$
$\operatorname{rowdim}(R)=$ number of equations

PDEs: Notation

$\boldsymbol{R} \in \mathbb{R}\left[\xi_{1}, \ldots, \xi_{\mathrm{n}}\right]^{\bullet \times w} \leadsto \boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0$
Ex.: Diffusion eq'n $\quad \frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} \boldsymbol{T}+\boldsymbol{q}$
2 indep. variables, $(t, x), \mathrm{w}=2, w=(T, q), 1$ eq'n.

$$
R\left(\xi_{t}, \xi_{x}\right)=\left[\xi_{t}-\xi_{x}^{2} \mid-1\right]
$$

PDEs: Notation

$$
R \in \mathbb{R}\left[\xi_{1}, \ldots, \xi_{\mathrm{n}}\right]^{\bullet \times \mathbb{w}} \leadsto \boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

Example: Maxwell's eq'ns

4 independent variables, (t, x, y, z)
$\mathrm{w}=10, w=(\vec{E}, \vec{B}, \vec{j}, \rho)$
8 equations, $R 8 \times 10$, sparse

PDEs: Notation

$\boldsymbol{R} \in \mathbb{R}\left[\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{\mathrm{n}}\right]^{\bullet \times \mathrm{w}} \leadsto \boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0$
Behavior:
$\mathfrak{B}=\left\{\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0\right.\right\}$
Notation:
$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}, \quad \mathfrak{B}=\operatorname{kernel}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$

PDEs: Notation

$\boldsymbol{R} \in \mathbb{R}\left[\xi_{1}, \ldots, \xi_{\mathrm{n}}\right]^{\bullet \times w} \leadsto \boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0$

We cover only linear constant coefficient PDEs \mathfrak{C}^{∞}-solutions
infinite domain, no boundary conditions
'everything' valid for convex, open domain $\Omega \subseteq \mathbb{R}^{\mathrm{n}}$

Basic facts about \mathfrak{L}_{n}^{W}

Fact 1:

$\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \leftrightarrow \quad$ the submodules of $\mathbb{R}\left[\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{\mathrm{n}}\right]^{\mathrm{W}}$

```
Basic facts about }\mp@subsup{\mathfrak{L}}{n}{W
```


Fact 1:

$$
\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \leftrightarrow \quad \text { the submodules of } \mathbb{R}\left[\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{\mathrm{n}}\right]^{\mathrm{W}}
$$

Fact 2: Elimination theorem

$$
\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \text { is closed under projection }
$$

$\mathfrak{L}_{n}^{\text {T }}$: the basics

Describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations

Eliminate \vec{B} from Maxwell's equations \leadsto

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0, \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

Fact 1:

$$
\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \leftrightarrow \quad \text { the submodules of } \mathbb{R}\left[\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{\mathrm{n}}\right]^{\mathrm{W}}
$$

Fact 2: Elimination thm

$$
\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \text { is closed under projection }
$$

Fact 3:
$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ is controllable $\Leftrightarrow \boldsymbol{B}$ is an image

Controllability on nD systems

Controllability on nD systems

$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{W}$ controllable if and only if it has a repr.

$$
\begin{gathered}
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell \\
\mathfrak{B}=\operatorname{image}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
\end{gathered}
$$

Is an image a kernel ? Always ! \Leftarrow Elimination th'm
Is a kernel an image? Iff the kernel is controllable !

Controllability on nD systems

$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{W}$ controllable if and only if it has a repr.

$$
\begin{gathered}
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell \\
\mathfrak{B}=\text { image }\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
\end{gathered}
$$

But, for $\mathrm{n}>1$, this image representation may not be observable. Images may require hidden variables .

Are EM fields controllable?

The following eq'ns in the scalar potential ϕ :
$\mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}:$
$\mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ generate exactly the solutions to MEs:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi, \\
\vec{B} & =\nabla \times \vec{A}, \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi, \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi .
\end{aligned}
$$

Are EM fields controllable?

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A} \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Proves controllability. Not observable, cannot be ! controllability $\Leftrightarrow \exists$ potential!

Dissipative distributed systems

Notation

For simplicity of notation \& concreteness, $n=4$, independent var., t, time, and x, y, z, space.
$\nabla \cdot:=\left[\frac{\partial}{\partial x}\left|\frac{\partial}{\partial y}\right| \frac{\partial}{\partial z}\right] \quad$ 'divergence'
We henceforth consider only controllable linear differential systems $\in \mathfrak{L}_{4}^{\mathrm{W}}$

Dissipative distributed systems

Supply rate $\quad s=\boldsymbol{w}^{\top} \boldsymbol{S} \boldsymbol{w} \quad \boldsymbol{S}=\boldsymbol{S}^{\top} \in \mathbb{R}^{w \times w}$

supply rate:

$$
s(t, x, y, z)=w(t, x, y, z)^{\top} S w(t, x, y, z)
$$

Dissipative distributed systems

Definition: $\mathfrak{B} \in \mathfrak{L}_{4}^{W}$, controllable, is said to be

dissipative with respect to the supply rate $w^{\top} S w$ if

$$
\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} \boldsymbol{w}^{\top} S \boldsymbol{w} d x d y d z\right] d t \geq 0
$$

for $\boldsymbol{w} \in \mathfrak{B}$ of compact support, i.e. $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$.
$\mathfrak{D}:=\mathfrak{C}^{\infty}$ and 'compact support'.

Dissipative distributed systems

Idea: $\quad\left(w^{\top} S w\right)(x, y, z, t) \quad d x d y d z d t=$ 'energy' supplied in the space-cube
$[x, x+d x] \times[y, y+d y] \times[z, z+d z]$ during the time-interval $[t, t+d t]$.

Dissipativity $: \Leftrightarrow$

$$
\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}}\left(\boldsymbol{w}^{\top} S w\right)(x, y, z, t) d x d y d z\right] d t \geq 0
$$

A dissipative system absorbs net energy in compact support realizations.

Example: EM fields

Maxwell's eq'ns define a dissipative (in fact, a conservative) system w.r.t. $\quad-\vec{E} \cdot \vec{j}$

Indeed, if $\overrightarrow{\boldsymbol{E}}, \vec{j}$ are of compact support and

$$
\begin{aligned}
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0 \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 \\
\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}}-\vec{E} \cdot \vec{j} d x d y d z\right] d t & =0
\end{aligned}
$$

The storage and the flux

Local dissipation law

Dissipativity : \Leftrightarrow

$\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} \boldsymbol{w}^{\top} \boldsymbol{S} \boldsymbol{w} d x d y d z\right] d t \geq 0 \quad$ for $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$.

Local dissipation law

Dissipativity : \Leftrightarrow
$\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} \boldsymbol{w}^{\top} \boldsymbol{S} \boldsymbol{w} d x d y d z\right] d t \geq 0 \quad$ for $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$.
Can this be reinterpreted as:
As the system evolves over time and space, some of the supply, applied locally in time and space is some locally stored,
some redistributed over space, some locally dissipated?

Local dissipation law

!! Invent storage and flux, locally defined in time and space, such that in every spatial domain there holds:

Local dissipation law

!! Invent storage and flux, locally defined in time and space, such that in every spatial domain there holds:

$\frac{d}{d t}$ Storage + Spatial flux \leq Supply.

Supply = stored + radiated + dissipated.

MAIN RESULT (stated for $\mathrm{n}=4$)

Thm: $\mathfrak{B} \in \mathfrak{L}_{4}^{W}$, controllable.

Then $\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} \boldsymbol{w}^{\top} \boldsymbol{S} \boldsymbol{w} \boldsymbol{d} \boldsymbol{x} \boldsymbol{d} \boldsymbol{y} \boldsymbol{d} \boldsymbol{z}\right] d \boldsymbol{t} \geq \mathbf{0} \forall \boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$

$$
\mathbb{I}
$$

MAIN RESULT (stated for $\mathrm{n}=4$)

Thm: $\mathfrak{B} \in \mathfrak{L}_{4}^{W}$, controllable.

Then $\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} \boldsymbol{w}^{\top} \boldsymbol{S} \boldsymbol{w} \boldsymbol{d} \boldsymbol{x} \boldsymbol{d} \boldsymbol{y} \boldsymbol{d} \boldsymbol{z}\right] \boldsymbol{d} \boldsymbol{t} \geq \mathbf{0} \forall \boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$
I
\exists image repr. $w=M\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \ell$ of \mathfrak{B}, and functions (QDFs): a real valued S the storage, and a vector valued F the flux,

MAIN RESULT (stated for $\mathrm{n}=4$)

Then $\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} \boldsymbol{w}^{\top} \boldsymbol{S} \boldsymbol{w} \boldsymbol{d} \boldsymbol{x} \boldsymbol{d y d z}\right] d \boldsymbol{t} \geq 0 \forall \boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$
I
\exists image repr. $w=M\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \ell$ of \mathfrak{B}, and functions (QDFs): a real valued S the storage, and a vector valued F the flux, such that the local dissipation law

$$
\frac{\partial}{\partial t} \boldsymbol{S}(\ell)+\nabla \cdot \boldsymbol{F} \leq \boldsymbol{w}^{\top} \boldsymbol{S} \boldsymbol{w}
$$

holds for (w, ℓ) s.t. $w=M\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \ell$.

Hidden variables

The local law involves

possibly unobservable, - i.e., hidden!
 latent variables (the ℓ 's).

This gives physical notions as stored energy, entropy, etc., an enigmatic physical flavor.

Energy stored in EM fields

MEs are dissipative (in fact, conservative) with

 respect to $-\overrightarrow{\boldsymbol{E}} \cdot \vec{j}$, the rate of energy supplied.
Energy stored in EM fields

Introduce the stored energy density, S, and energy flux density (Poynting vector), \vec{F},

$$
\begin{aligned}
S(\vec{E}, \vec{B}) & :=\frac{\varepsilon_{0}}{2} \vec{E} \cdot \vec{E}+\frac{\varepsilon_{0} c^{2}}{2} \vec{B} \cdot \vec{B} \\
\vec{F}(\vec{E}, \vec{B}) & :=\varepsilon_{0} c^{2} \vec{E} \times \vec{B}
\end{aligned}
$$

Energy stored in EM fields

Introduce the stored energy density, S, and energy flux density (Poynting vector), \vec{F},

$$
\begin{aligned}
S(\vec{E}, \vec{B}) & :=\frac{\varepsilon_{0}}{2} \vec{E} \cdot \vec{E}+\frac{\varepsilon_{0} c^{2}}{2} \vec{B} \cdot \vec{B} \\
\vec{F}(\vec{E}, \vec{B}) & :=\varepsilon_{0} c^{2} \vec{E} \times \vec{B}
\end{aligned}
$$

Local conservation law for Maxwell's equations:

$$
\frac{\partial}{\partial t} S(\vec{E}, \vec{B})+\nabla \cdot \vec{F}(\vec{E}, \vec{B})=-\vec{E} \cdot \vec{j}
$$

Energy stored in EM fields

Local conservation law for Maxwell's equations:

$$
\frac{\partial}{\partial t} S(\vec{E}, \vec{B})+\nabla \cdot \vec{F}(\vec{E}, \vec{B})=-\vec{E} \cdot \vec{j}
$$

The storage and flux involve \vec{B}, unobservable from $\overrightarrow{\boldsymbol{E}}$ and \vec{j}.

The proof

The crux of the proof

Solve the 'factorization equation'

$$
\begin{aligned}
\boldsymbol{X}^{\top}\left(-\xi_{1}, \ldots,-\xi_{\mathrm{n}}\right) \boldsymbol{X}\left(\xi_{1}, \ldots,\right. & \left.\boldsymbol{\xi}_{\mathrm{n}}\right) \\
& =\boldsymbol{Y}\left(\xi_{1}, \ldots, \boldsymbol{\xi}_{\mathrm{n}}\right)
\end{aligned}
$$

with $Y \in \mathbb{R}^{\bullet \times \bullet}\left[\xi_{1}, \ldots, \xi_{\mathrm{n}}\right]$ given
X the unknown Solvable??

SOS

The factorization equation can be reduced to the following scalar problem

$\operatorname{Express} p\left(\xi_{1}, ., \boldsymbol{\xi}_{\mathrm{n}}\right) \in \mathbb{R}\left[\boldsymbol{\xi}_{1}, ., \boldsymbol{\xi}_{\mathrm{n}}\right]$ as a sum of squares

$$
p=x_{1}^{2}+x_{2}^{2}+\cdots+x_{\mathrm{m}}^{2}
$$

Necessary: $p\left(t_{1}, \ldots, t_{\mathrm{n}}\right) \geq 0$, for $\boldsymbol{t}_{\mathrm{k}}$'s $\in \mathbb{R}$. Also sufficient?

SOS

$\operatorname{Express} \boldsymbol{p}\left(\xi_{1}, ., \boldsymbol{\xi}_{\mathrm{n}}\right) \in \mathbb{R}\left[\xi_{1}, ., \boldsymbol{\xi}_{\mathrm{n}}\right]$ as a sum of squares

$$
p=x_{1}^{2}+x_{2}^{2}+\cdots+x_{\mathrm{m}}^{2}
$$

Necessary: $p\left(t_{1}, \ldots, t_{\mathrm{n}}\right) \geq 0$, for $\boldsymbol{t}_{\mathrm{k}}$'s $\in \mathbb{R}$. Also sufficient?

This is Hilbert's 17-th problem !
Not solvable over polynomials,
but solvable over rational functions.

Observe

The need to introduce rational functions
in the factorization equation and
an image representation of \mathfrak{B}
are the causes of the unavoidable presence
of (possibly unobservable, 'hidden') latent variables
in the local dissipation law.

Observe

The stored energy for a spatially distributed is NOT a function of the phenomenological variables \boldsymbol{w} and their partial derivatives, but it is a function of underlying unobservable variables !

Summary

```
Hightlights
```

- The theory of dissipative systems centers around the construction of the storage function
- global dissipation \Leftrightarrow local dissipation
time-wise and space-wise

Hightlights

- For $n>1$ involves, possibly, hidden variables (similar to \vec{B} in Maxwell's eq'ns)
Also relevant for Lyapunov functions for spatially distributed systems
- The proof \cong Hilbert's 17 -th problem

```
Hightlights
```

- Neither controllability nor observability are good assumptions for physical models

Hightlights

- Finite dimensional linear system theory: well developed, in systems and control. Linear constant coefficient PDEs: well developed, in mathematics
Very relevant physically. Fruitful problem area.

Details \& copies of frames are available from/at

Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you

[^0]: Aleksandr
 Mikhailovich Lyapunov

