

CONTROLLABILITY \& OBSERVABILITY in a

NEW PERSPECTIVE

Jan C. Willems
K.U. Leuven, Belgium

Motivation

Open and Connected

In system theory, we are accustomed to view a dynamical system as an input/output map

Open and Connected

In system theory, we are accustomed to view a dynamical system as an input/output map
and an interconnection as a output-to-input assignment .

Open and Connected

In system theory, we are accustomed to view a dynamical system as an input/output map
and an interconnection as a output-to-input assignment .

Is this appropriate for modeling physical systems?
If not, how should we proceed instead?

Example

Example

Subsystems 1 and 3:

Example

Subsystems 1 and 3:

Subsystem 2:

Example

Interconnection laws:

$$
p=p^{\prime}, \quad f+f^{\prime}=0
$$

$$
\begin{align*}
A_{1} \frac{d}{d t} h_{1} & =f_{1}+f_{1}^{\prime} \\
B_{1} f_{1} & =\left\{\begin{aligned}
\sqrt{\left|p_{1}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}-p_{0} \geq \rho h_{1} \\
-\sqrt{\left|p_{1}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}-p_{0} \leq \rho h_{1}
\end{aligned}\right. \tag{1}\\
C f_{1}^{\prime} & =\left\{\begin{aligned}
\sqrt{\left|p_{1}^{\prime}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}^{\prime}-p_{0} \geq \rho h_{1} \\
-\sqrt{\left|p_{1}^{\prime}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}^{\prime}-p_{0} \leq \rho h_{1}
\end{aligned}\right. \\
f_{2} & =-f_{2}^{\prime}, \quad p_{2}-p_{2}^{\prime}=\alpha f_{2} \tag{2}
\end{align*}
$$

$$
A_{3} \frac{d}{d t} h_{3}=f_{3}+f_{3}^{\prime}
$$

$$
\begin{gather*}
C f_{3}=\left\{\begin{aligned}
\sqrt{\left|p_{3}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}-p_{0} \geq \rho h_{3}, \\
-\sqrt{\left|p_{3}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}-p_{0} \leq \rho h_{3}
\end{aligned}\right. \tag{3}\\
C_{3} f_{3}^{\prime}=\left\{\begin{aligned}
\sqrt{\left|p_{3}^{\prime}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}^{\prime}-p_{0} \geq \rho h_{3} \\
-\sqrt{\left|p_{3}^{\prime}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}^{\prime}-p_{0} \leq \rho h_{3}
\end{aligned}\right.
\end{gather*}
$$

$$
\begin{equation*}
p_{1}^{\prime}=p_{2}, f_{1}^{\prime}+f_{2}=0, p_{2}^{\prime}=p_{3}, f_{2}^{\prime}+f_{3}=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
p_{\text {left }}=p_{1}, \quad f_{\text {left }}=f_{1}, p_{\text {right }}=p_{3}^{\prime}, \quad f_{\text {right }}=f_{3}^{\prime} \tag{5}
\end{equation*}
$$

Conclusion

- Unclear input/output structure for terminal variables
- Many variables, indivisibly, at the same terminal
- Interconnection = variable sharing

Conclusion

- Unclear input/output structure for terminal variables
- Many variables, indivisibly, at the same terminal
- Interconnection = variable sharing
"Block diagrams unsuitable for serious physical modeling
- the control/physics barrier"
"Behavior based (declarative) modeling is a good alternative"

from K.J. Åström
Present Developments in Control Applications
IFAC 50-th Anniversary Celebration
Heidelberg, September 12, 2006.

Remedy

A dynamical system
$: \Leftrightarrow$ a family of time functions, 'the behavior'.

Interconnection $: \Leftrightarrow$ 'variable sharing'.

Even though modeling of interconnected physical systems may be the strongest case for 'behaviors', I will not deal with this today.

Concepts

Models

A dynamical system : $\Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$
\begin{aligned}
& \mathbb{T} \subseteq \mathbb{R} \quad \text { 'time set' } \\
& \mathbb{W} \text { 'signal space' } \\
& \mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} \text { the 'behavior' } \\
& \quad \text { a family of trajectories } \mathbb{T} \rightarrow \mathbb{W}
\end{aligned}
$$

henceforth, today, $\quad \mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{R}^{w}$.
Hence today \mathfrak{B} is a family of vector-valued continuous-time trajectories
$\boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R}^{\boldsymbol{w}} \in \mathfrak{B}$ means " w is compatible with the model" $w: \mathbb{R} \rightarrow \mathbb{R}^{\boldsymbol{w}} \notin \mathfrak{B}$ means "the models forbids w "

Models

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}\right) \quad \sim \mathfrak{B}$
linear $: \Leftrightarrow w_{1}, w_{2} \in \mathfrak{B}, \alpha \in \mathbb{R}$, imply $\alpha w_{1}+w_{2} \in \mathfrak{B}$ time-invariant $: \Leftrightarrow \boldsymbol{w} \in \mathfrak{B}, \sigma$ any shift, imply $\sigma w \in \mathfrak{B}$ differential : \Leftrightarrow 'described' by an ODE. 'LTIDS'

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

$\sim \quad R\left(\frac{d}{d t}\right) w=0 \quad R$ typically 'wide' $\square \quad \square \quad$ LTIDS
$R=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}} \quad$ polynomial matrix.
Defines $\mathfrak{B}=$ kernel $\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$ 'kernel representation' of \mathfrak{B}

Models

For example,

$$
\begin{gathered}
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right], P, Q \text { polynomial matrices } \\
\frac{d}{d t} x=A x+B u, y=C x+D u, \quad w=\left[\begin{array}{l}
u \\
y \\
x
\end{array}\right] \text { or } w=\left[\begin{array}{l}
u \\
y
\end{array}\right] \\
y=G\left(\frac{d}{d t}\right) u, w=\left[\begin{array}{l}
u \\
y
\end{array}\right], P, Q \text { matrices of rational } \mathrm{f} \text { 'ns } \\
\text { DAE's } \quad F \frac{d}{d t} x+G x+H w=0
\end{gathered}
$$

etc.

Controllability

The time-invariant system $\left(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}\right) \quad \sim \mathfrak{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{R}}$

controllable : \Leftrightarrow

for all $\boldsymbol{w}_{1}, w_{2} \in \mathfrak{B}$, exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

Controllability

The time-invariant system $\left(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}\right) \quad \sim \mathfrak{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{R}}$
stabilizable $: \Leftrightarrow \quad$ for all $w \in \mathfrak{B}$, exists $\boldsymbol{w}^{\prime} \in \mathfrak{B}$ such that

stable $: \Leftrightarrow \quad w \in \mathfrak{B}$ implies $\boldsymbol{w}(t) \rightarrow \mathbf{0}$ for $t \rightarrow \infty$ autonomous : \Leftrightarrow

$$
w_{1}, w_{2} \in \mathfrak{B}, w_{1}(t)=w_{2}(t) \text { for } t<0 \text { implies } w_{1}=w_{2}
$$

Controllability

The time-invariant system $\left(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}\right) \quad \sim \mathfrak{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{R}}$

$$
R\left(\frac{d}{d t}\right) w=0
$$

defines a controllable system iff
$R(\lambda)$ has the same rank for all $\lambda \in \mathbb{C}$.
a stabilizable system iff
$R(\lambda)$ has the same rank for all $\lambda \in \overline{\mathbb{C}}_{+}$.

Observability

Consider the dynamical system $\left(\mathbb{R}, \mathbb{R}^{w_{1} \times \mathrm{w}_{2}}, \mathfrak{B}\right)$

w_{2} observable from $w_{1}: \Leftrightarrow$

$$
\left(w_{1}, w_{2}\right),\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B} \Rightarrow w_{2}=w_{2}^{\prime}
$$

w_{2} detectable from $w_{1}: \Leftrightarrow$
$\left(w_{1}, w_{2}\right),\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B} \Rightarrow w_{2}(t)-w_{2}^{\prime}(t) \rightarrow 0$ for $t \rightarrow \infty$

Observability

Consider the dynamical system $\left(\mathbb{R}, \mathbb{R}^{w_{1} \times w_{2}}, \mathfrak{B}\right)$

w_{2} observable from $w_{1}: \Leftrightarrow$

$$
\left(w_{1}, w_{2}\right),\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B} \Rightarrow w_{2}=w_{2}^{\prime}
$$

w_{2} detectable from $w_{1}: \Leftrightarrow$
$\left(w_{1}, w_{2}\right),\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B} \Rightarrow w_{2}(t)-w_{2}^{\prime}(t) \rightarrow 0$ for $t \rightarrow \infty$
There exists a map $F: w_{1} \mapsto w_{2}$ such that
$\left(w_{1}, w_{2}\right) \in \mathfrak{B} \Rightarrow w_{2}=F\left(w_{1}\right)$ recovers w_{2} (asymptotically)
There are tests for

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}
$$

LTIDS: Basic results

LTIDS

Recall

$$
R\left(\frac{d}{d t}\right) w=0
$$

\boldsymbol{R} a polynomial matrix $R \in \mathbb{R}[\boldsymbol{\xi}]^{\bullet \times w} \sim \mathfrak{L}^{w}, \mathfrak{L}^{\bullet}$
Fact 1: $\mathfrak{L} \boldsymbol{\bullet}$ closed under addition, intersection, \& projection

LTIDS

Fact 1: \mathfrak{L}^{\bullet} closed under addition, intersection, \& projection
Consider

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto \text { behavior } \mathfrak{B}
$$

Define

$$
\mathfrak{B}_{1}:=\left\{w_{1} \mid \exists w_{2} \text { such that }\left(w_{1}, w_{2}\right) \in \mathfrak{B}\right\}
$$

Elimination thm $\exists \boldsymbol{R}$ such that $\mathfrak{B}_{1}=\operatorname{kernel}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$!
E.g. $\frac{d}{d t} x=A x+B u, y=C x+D u \Rightarrow P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u$ linear DAE's always allow elimination of nuisance variables

LTIDS

Fact 1: \mathfrak{L} • closed under addition, intersection, \& projection

In LTIDS described by ODE if systems 1 and 2 are. In nonlinear case, very unlikely described by ODE, even if systems 1 and 2 are!

Why are ODE's so common?

LTIDS

Fact 1: \mathfrak{L}^{\bullet} closed under addition, intersection, $\&$ projection
Fact 2: Consequences of $\mathfrak{B} \in \mathfrak{L}^{w}: \mathbb{R}[\xi]$-submodule of $\mathbb{R}[\xi]^{\text {w }}$
$n \in \mathbb{R}[\boldsymbol{\xi}]^{\mathbb{W}}$ is a consequence of $\mathfrak{B}: \Leftrightarrow \boldsymbol{n}^{\top}\left(\frac{d}{d t}\right) \mathfrak{B}=0$.
E.g. Observability of

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}
$$

equivalent to existence of consequences

$$
w_{2}=F\left(\frac{d}{d t}\right) w_{1}
$$

LTIDS

Fact 1: \mathfrak{L}^{\bullet} closed under addition, intersection, $\&$ projection
Fact 2: Consequences of $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}: \mathbb{R}[\xi]$-submodule of $\mathbb{R}[\xi]^{\mathrm{W}}$
$n \in \mathbb{R}[\xi]^{W}$ is a consequence of $\mathfrak{B}: \Leftrightarrow \boldsymbol{n}^{\top}\left(\frac{d}{d t}\right) \mathfrak{B}=0$.
E.g. detectability of

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}
$$

equivalent to existence of consequences

$$
H\left(\frac{d}{d t}\right) w_{1}=F\left(\frac{d}{d t}\right) w_{2}, \quad H \text { Hurwitz }
$$

LTIDS

Fact 1: \mathfrak{L}^{\bullet} closed under addition, intersection, $\&$ projection
Fact 2: Consequences of $\mathfrak{B} \in \mathfrak{L}^{w}: \mathbb{R}[\boldsymbol{\xi}]$-submodule of $\mathbb{R}[\boldsymbol{\xi}]^{\text {w }}$
Fact 3: Controllability of $\mathfrak{B} \in \mathfrak{L}^{W} \Leftrightarrow \exists$ image repr'ion
Consider $\boldsymbol{w}=M\left(\frac{d}{d t}\right) \ell$

$$
\text { i.e., } w \text {-behavior } \mathfrak{B}=\operatorname{image}\left(M\left(\frac{d}{d t}\right)\right) .
$$

Elimination thm $\Rightarrow \boldsymbol{B}=\operatorname{kernel}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$, for some \boldsymbol{R}.
So, all images are kernels, but what kernels are images?

Control

Control as Interconnection

Interconect via control terminals:

Control as Interconnection

Interconect via control terminals:

- Are all interconnections 'reasonable'?
- Which controlled behaviors can be achieved?
- Parametrize all stabilizing controllers

Many controllers are not sensor-to-actuator

Controlling turbulence:

Many controllers are not sensor-to-actuator

Strips op schaatspak verminderen drukweerstand en verhogen snelheid

Many controllers are not sensor-to-actuator

Stabilization:

Many controllers are not sensor-to-actuator

Disturbance attenuation:

Full Control

Let \mathfrak{B} be the plant behavior, \mathfrak{C} the controller behavior, Then the controlled behavior $\mathfrak{K}=\mathfrak{B} \cap \mathfrak{C} \subseteq \mathfrak{B}$

Control means finding a subbehavior of the plant behavior
Henceforth, $\mathfrak{B} \in \mathfrak{L}^{\mathfrak{W}}, \mathfrak{C} \in \mathfrak{L}^{\mathrm{W}} \Rightarrow \mathfrak{K}=\mathfrak{B} \cap \mathfrak{C} \in \mathfrak{L}^{\mathrm{w}}$

How to generate subbehaviors?

Plant \& controller in kernel repr'ion. $\quad R$ is 'wide'

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=0 \quad \Rightarrow \quad\left[\begin{array}{l}
\boldsymbol{R} \\
C
\end{array}\right]\left(\frac{d}{d t}\right) w=0
$$

Plant in kernel \& controller in image representation

$$
R\left(\frac{d}{d t}\right) w=0 \quad \Rightarrow \quad R C\left(\frac{d}{d t}\right) \ell=0
$$

Plant \& controller in image representation. M is 'tall'
$w=M\left(\frac{d}{d t}\right) \ell \quad \Rightarrow \quad\left[\begin{array}{ll}M & C\end{array}\right]\left(\frac{d}{d t}\right) \ell^{\prime}=0$

$\begin{aligned} \text { 'Squaring' } & \sim \text { creating autonomous behavior } \\ & \Rightarrow \text { pole placement, stabilization, } . . .\end{aligned}$

Regularity

2 notions of 'well behaved' controllers:

'regular' and 'superregular'.

\mathfrak{C} is a regular controller for $\mathfrak{B}: \Leftrightarrow$

$$
\mathrm{p}(\mathfrak{K})=\mathrm{p}(\mathfrak{B})+\mathrm{p}(\mathfrak{C})
$$

$p:=$ number of eq' $\mathbf{n s}$, of output variables.
\mathfrak{C} is a superregular controller for $\mathfrak{B}: \Leftrightarrow$, in addition,

$$
\mathrm{n}(\mathfrak{K})=\mathrm{n}(\mathfrak{B})+\mathrm{n}(\mathfrak{C})
$$

$\mathrm{n}:=$ number of state variables, 'McMillan degree’.

Regularity

\mathfrak{C} is a regular controller for $\mathfrak{B}: \Leftrightarrow$

$$
\mathrm{p}(\mathfrak{K})=\mathrm{p}(\mathfrak{B})+\mathrm{p}(\mathfrak{C})
$$

(\pm) allows proper and improper controller transfer functions. The states need to be 'prepared' before interconnection.
\mathfrak{C} is a superregular controller for $\mathfrak{B}: \Leftrightarrow$, in addition,

$$
\mathrm{n}(\mathfrak{K})=\mathrm{n}(\boldsymbol{\mathfrak { B }})+\mathrm{n}(\mathfrak{C})
$$

(\pm) allows only proper transfer functions in the controller. It is equivalent to feedback control.

Regularity

Superregularity also means:

 'the controller can take effect at any time'$$
\forall w^{\prime} \in \mathfrak{B}, w^{\prime \prime} \in \mathfrak{C}, \exists \boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{C} \text { such that }
$$

On regular controllers: Madhu Belur \& Harry Trentelman, IEEE AC, 2002

Implementability

Assume that the plant $\mathfrak{B} \in \mathfrak{L}^{w}$ is controllable, then any $\mathfrak{K} \subseteq \mathfrak{B}$ is implementable by a regular controller, i.e.

$$
\forall \mathfrak{K} \in \mathfrak{L}^{\mathrm{W}}, \exists \mathfrak{C} \in \mathfrak{L}^{\mathrm{W}} \text { such that } \mathfrak{K}=\mathfrak{B} \cap \mathfrak{C}
$$

In order to be implementable by a superregular controller, we need $n(\mathfrak{K})$ to be sufficiently high.

Implementability

w to-be-controlled variables, c control variables. Assume behavior of plant, before control, $\in \mathfrak{L}^{\mathrm{w}+\mathrm{c}}$.

Implementability

Let $\mathfrak{P} \in \mathfrak{L}^{W}$ be the plant behavior, the behavior of to-be-controlled variables before the controller is applied.

Let $\mathfrak{N} \in \mathfrak{L}^{W}$ be the hidden behavior, the behavior of to-be-controlled variables compatible with $w=0$.

Assume \mathfrak{P} controllable. \mathfrak{K} is regularly implementable iff

$$
\mathfrak{N} \subseteq \mathfrak{K} \subseteq \mathfrak{P}
$$

Observers: Joint work with Jochen

Observer Architecture

Observer Architecture

Observed variables

Observer Architecture

Plant var:: $(v, z): v$ observed, z to-be-estimated var.
Observer variables: $(v, \hat{z}): v$ observed, \hat{z} estimates
Interconnected system variables: $\boldsymbol{v}, \boldsymbol{z}, \hat{z}$.
Estimation error:

$$
e=z-\hat{z}
$$

Plant behavior: \mathfrak{B}, Observer behavior: $\hat{\mathfrak{B}}$, Error behavior: \mathfrak{E} Call $\hat{\mathfrak{B}}$ a replicator of \mathfrak{B} if for all $(y, z) \in \mathfrak{B}$, there exists
$(y, \hat{z}) \in \hat{\mathfrak{B}}$ such that $z=\hat{z}, \quad$ i.e. $\mathfrak{B} \subseteq \hat{\mathfrak{B}}$
tracking if the error behavior \mathcal{E} is autonomous.
Thm: Assume plant \mathfrak{B} controllable, \boldsymbol{y} 'free' in observer $\hat{\mathfrak{B}}$. $\hat{\mathfrak{B}}$ is tracking iff it is a replicator

Observers means finding a supbehavior of the plant behavior

How to generate supbehaviors?

Plant in kernel representation.
R is 'tall'
Plant:

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) z=H\left(\frac{d}{d t}\right) v
$$

How to generate supbehaviors?

Plant in kernel representation.
R is 'tall'
Plant:

$$
R\left(\frac{d}{d t}\right) \boldsymbol{z}=\boldsymbol{H}\left(\frac{d}{d t}\right) v
$$

Observer:

$$
F\left(\frac{d}{d t}\right) \boldsymbol{R}\left(\frac{d}{d t}\right) \hat{z}=\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{H}\left(\frac{d}{d t}\right) \boldsymbol{v}
$$

How to generate supbehaviors?

Plant in kernel representation.
R is 'tall'
Plant:

$$
R\left(\frac{d}{d t}\right) \boldsymbol{z}=\boldsymbol{H}\left(\frac{d}{d t}\right) v
$$

Observer:

$$
F\left(\frac{d}{d t}\right) \boldsymbol{R}\left(\frac{d}{d t}\right) \hat{z}=\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{H}\left(\frac{d}{d t}\right) \boldsymbol{v}
$$

Error dynamics: $e=z-\hat{z} \quad$ 'eliminate' $v, z, \hat{z} \Rightarrow$

$$
\boldsymbol{F}\left(\frac{d}{d t}\right) \boldsymbol{R}\left(\frac{d}{d t}\right) e=0
$$

So, squaring up \boldsymbol{R} to $F R$
\Rightarrow error autonomous, desired input structure.
Pole placement, stabilization, ...

Example

Plant equations in 'observability' canonical form:

$$
V\left(\frac{d}{d t}\right) v=0, \quad z=Z\left(\frac{d}{d t}\right) v
$$

This canonical form exists iff z observable from v in the plant.

Example

Plant equations in 'observability' canonical form:

$$
V\left(\frac{d}{d t}\right) v=0, \quad z=Z\left(\frac{d}{d t}\right) v
$$

This canonical form exists iff z observable from v in the plant.
Observer:

$$
P\left(\frac{d}{d t}\right) \hat{z}=P\left(\frac{d}{d t}\right) Z\left(\frac{d}{d t}\right) v+S\left(\frac{d}{d t}\right) V\left(\frac{d}{d t}\right) v
$$

Example

Plant equations in 'observability' canonical form:

$$
V\left(\frac{d}{d t}\right) v=0, \quad z=Z\left(\frac{d}{d t}\right) v
$$

This canonical form exists iff z observable from v in the plant.
Observer:

$$
P\left(\frac{d}{d t}\right) \hat{z}=P\left(\frac{d}{d t}\right) Z\left(\frac{d}{d t}\right) v+S\left(\frac{d}{d t}\right) V\left(\frac{d}{d t}\right) v
$$

Error dynamics:

$$
P\left(\frac{d}{d t}\right) e=0
$$

Example

Plant equations in 'observability' canonical form:

$$
V\left(\frac{d}{d t}\right) v=0, \quad z=Z\left(\frac{d}{d t}\right) v
$$

This canonical form exists iff z observable from \boldsymbol{v} in the plant.
Observer:

$$
P\left(\frac{d}{d t}\right) \hat{z}=P\left(\frac{d}{d t}\right) Z\left(\frac{d}{d t}\right) v+S\left(\frac{d}{d t}\right) V\left(\frac{d}{d t}\right) v
$$

Error dynamics:

$$
P\left(\frac{d}{d t}\right) e=0
$$

Choose P for stability, S for high frequency roll-off, etc.

Conclusion

The barrier

"Block diagrams unsuitable for serious physical modeling

- the control/physics barrier"

"Behavior based (declarative) modeling is a good alternative"

from K.J. Åström
Present Developments in Control Applications m

IFAC 50-th Anniversary Celebration Heidelberg, September 12, 2006.

The barrier

"Block diagrams unsuitable for serious physical modeling

- the control/physics barrier"
"Behavior based (declarative) modeling is a good alternative"

from K.J. Åström
Present Developments in Control Applications

IFAC 50-th Anniversary Celebration Heidelberg, September 12, 2006.

Block diagrams are indeed unsuitable for serious physical modeling. Block diagrams also exclude many controllers!

The barrier

"Block diagrams unsuitable for serious physical modeling

- the control/physics barrier"
"Behavior based (declarative) modeling is a good alternative"

from K.J. Åström
Present Developments in Control Applications

IFAC 50-th Anniversary Celebration Heidelberg, September 12, 2006.

Block diagrams are indeed unsuitable for serious physical modeling. Block diagrams also exclude many controllers!

Behaviors respect the physics, easier, more general concepts, block diagrams are a very important special case, ...

Details \& copies of the lecture frames are available from/at Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you
Thank you

Thank you

Thank you
Thank you
Thank you

