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Lyapunov functions
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Lyapunov functions

Consider the classical dynamical system, the ‘flow’

Y :x = f(x)
withx € X = R" the state and f : X — X the vectorfield.

Denote the set of solutions x : R — X by *B, the ‘behavior’.
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Lyapunov functions

Consider the classical dynamical system, the ‘flow’
Y :x = f(x)
withx € X = R" the state and f : X — X the vectorfield.

Denote the set of solutions x : R — X by *B, the ‘behavior’.

V:X—=R

is said to be a Lyapunov function for X if along x € B

&V (z() <0

Equivalently,if V=:=VV.f <O0.
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Typical Lyapunov theorem

Lyapunov \ Y
function

system
trajectory

V(x)>0and V= (x) < 0for0 # x € X

—
V x € 2B, there holds = (t) — 0 fort — oo ‘global stability’
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Lyapunov

Lyapunov {’ns play a remarkably central role in the field.

SEAVKHH PYCCKIE MATEMATHK
JJJA M. ‘S.Slﬂ'v H{}B_

: Xiaytie ‘j xS Onst.
4 H‘L\

KOR: Imu’m =

Aleksandr Mikhailovich Lyapunov (1857-1918)
Introduced Lyapunov’s ‘second method’ in his thesis (1899).
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Dissipative systems
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Open systems

‘Open’ systems are a much more appropriate starting point
for the study of dynamics. For example,

s outputs

~»  the dynamical system
L
¥: x=f(x,u), y=h(xu).

uecU=R"y €Y =RP,x € X=DR": input, output, state.

Behavior 28 = allsol’'ns (u,y,z): R —>U X Y X X.
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Dissipative dynamical systems

Let s:U XY — R beafunction, called the supply rate.

V: X = R,

called the storage function, such that

4y (z() < s(u),y())

vV (u(),y(),z()) €B.
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Dissipation inequality

% V() <s(u(-),y(-))
V (u(),y(),xz()) € B.

This inequality is called the dissipation inequality.

Equivalent to

VE (x,u) 1= VV (x) - f (x,u) < 5 (x, b (x, 1))
for all (u,x) € U x X,

If equality holds: ‘conservative’ system.
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Dissipation inequality

SUPPLY

ﬁ il
| SYSTEM
STORAGE\ e

¢ YYvY !
DISSIPATION

s (u,y) models something like the power delivered to the
system when the input value is u and output value is x.

V (x) then models the internally stored energy.

Dissipativity :&
rate of increase of internal energy < power delivered.
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Dissipation inequality

Special case: ‘closed’ system: s = 0 then

dissipativity <+ V is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.
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Dissipation inequality

Special case: ‘closed’ system: s = 0 then

dissipativity <+ V is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closed systems ~ Dissipativity for open systems.
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The construction of storage functions

Basic question:

Given (a representation of ) 3, the dynamics,
and given s, the supply rate,
is the system dissipative w.r.t. s, l.e.
does there exist a storage function V' such that
the dissipation inequality holds?
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The construction of storage functions

Basic question:

Given (a representation of ) 3, the dynamics,
and given s, the supply rate,
is the system dissipative w.r.t. s, i.e.
does there exist a storage function V' such that
the dissipation inequality holds?

input

SYSTEM

—

supply

output

Monitor power in, known dynamics, what is the stored energy?
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov

functions, 7 - and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov

functions, 7 - and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.

The storage function V is in general far from unique. There
are two ‘canonical’ storage functions:

the available storage and the required supply .

For conservative systems, V' is unique.
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Dissipative systems

Dissipative systems and storage functions play a remarkably
central role in the field.
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Dissipative systems

Dissipative systems and storage functions play a remarkably
central role in the field.

The construction of storage functions
is the question which we shall discuss today
for systems described by PDE’s.
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PDE’s



Examples

Heat diffusion in a bar

q(X,t)
e
7 |
. >
T(x,t)
~» the PDE
L
ot oxz2 @ °

(x € R, position, t € R, time), (2-D system)
describes the evolution of the temperature 7" (x, t)
and the heat q (x, T') supplied to / radiated away.
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Examples

The voltage V (x,t) and current I (x,t) in a coaxial cable

1(x,t)

¢ ) —=

s,
—V = RI— L—1,
ox ot

9,
—1 = GV —C—-V.
ot

R the resistance, L the inductance, C the capacitance of the cable,

G the conductance of the dielectric medium, all per unit length.
(2-D system)
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Maxwell’s equations

Examples

<
o}

<
X
&,

<
w}

2V x B
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Examples

Maxwell’s equations

- 1
V-E = — P
€0
— 8—»
VXE = ——
ot ’
V-B = o,
2
c‘VXB = — —
€og+3t

T = R X R3 (time and space) ~» n = 4 (4-D system),

w = (E By 7, P)

(electric field, magnetic field, current density, charge density),
W =R3 x R} x R3 X R,~» w = 10,

B — set of solutions to these PDE’s.

Note: 10 variables, 8 equations! = d free variables.
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PDE’s: polynomial matrix notation

Consider, for example, the PDE:

0° 0

wiy (T1,x2) + W1 (1, x2) + — w2 (x1,22) = O
o5 0z
o’ o4

w2 (T1,T2) + —ngwl (z1,z2) + —613411102 (T1,22) = O
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PDE’s: polynomial matrix notation

Consider, for example, the PDE:

03 0]

wi (T1,T2) + w1 (T1,x2) + ——wsa (T1,22) =
o5 0z
03 04

wa (T1,T2) + %wl (T1,x2) + sz (T1,22) =

2

£Lq

Notation:
0 o w1
le—a €2<_>—7’w: ’ R(€17€2):
8:1:1 82132 w9
0 %)

&3

&1
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Linear differential distributed systems

T = R", the set of independent variables,

typically n = 4: time and space,
W = RR¥, the set of dependent variables,
8 — the solutions of a linear constant coefficient PDE.
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Linear differential distributed systems

T = R", the set of independent variables,

typically n = 4: time and space,
W = RR¥, the set of dependent variables,
8 — the solutions of a linear constant coefficient PDE.

Let R € R**"[£1,- -+ , &n], and consider

R i) w=0. (9

Define the associated behavior
B = {w € € (R*,RY) | (*) holds }.

Notation for n-D linear shift-invariant differential systems:
(R*,R",B) € £, or’B c L.
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Elimination theorem

Theorem:

If the behavior of (w1, ..., Wx, Wkt1,...,Wy)
obeys a constant coefficient linear PDE,
then so does the behavior of (wq,...,wy)!
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Elimination theorem

Theorem:

If the behavior of (w1, ..., Wx, Wkt1,...,Wy)
obeys a constant coefficient linear PDE,
then so does the behavior of (wq,...,wy)!

Which PDE’s describe (p, E, f) in Maxwell’s equations ?

Eliminate B from Maxwell’s equations ~»

- 1
V-E = — P

€0

0lv. B + V-7 = 0

Oat J == ’

02 . o - Fo BN

eo——=FE +e0c° VXV XFE + —3 = 0.

ot? ot — p.19/50




Image representation

0 o _
R(a—m"”aa—%)w—o

is called a kernel representation of the associated 5 € £7.
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Image representation

o0 0 _
R(a—wl,...,amn>w 0

is called a kernel representation of the associated 5 € £7.
Another representation: image representation

_ 0 5]
w_M<_3:131’...’8_£cn)£
° ° [ d a a W
Eliminationthm = im (M (671’ v, 3%)) c £ !

Do all behaviors of linear constant coefficient PDE’s admit an
image representation???
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Image representation

o0 0 _
R(a—wl,...,amn>w 0

is called a kernel representation of the associated 5 € £7.
Another representation: image representation

_ 0 5]
w_M<_3:131’...’8_£cn)£
° ° [ d a a W
Eliminationthm = im (M (671’ v, 3%)) c £ !

Do all behaviors of linear constant coefficient PDE’s admit an
image representation???

B € £ admits an image representation iff it is ‘controllable’.
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Controllability

Def’n in pictures:
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Controllability

Def’n in pictures:

w ‘patches’ wq, wo € B.

d w €€ B V wy,we € B: Controllability :< ‘patchability’.
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Controllability

Theorem: The following are equivalent:

1. B € £7 is controllable

2. B admits an image representation
3, ...
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Are Maxwell’s equations controllable ?
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Are Maxwell’s equations controllable ?

The following equations
in the scalar potential ¢ : R x R?> — R and

the vector potential A:R xR — R3
generate exactly the solutions to Maxwell’s equations:

— 6 -
ot ?
B = VXA,
S 8% . " = o
J = ETOwA — e0c?V32A + goc?V (V . A) + €Oav¢7
o -
= —e0—-V-A—¢V?g.
P r-:oat €0 ¢

Proves controllability. Illustrates the interesting connection

controllability < 3 potential!
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1-D case.

Controllability

Controllability : <

w
1

N

time
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Controllability

1-D case. Controllability

When does R (%) w = O define a controllable system ?
R E R [S]OXW.
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Controllability

1-D case. Controllability

When does R (%) w = 0define a controllable system ?

Iff rank(R(A)) isthesameforall A € C
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Controllability

1-D case. Controllability

When does R (%) w = O define a controllable system ?

Iff rank(R(A)) isthesameforall A € C

d d
p(a)y = Q(E)u

controllable iff p and g have no common factor.
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Controllability
1-D case. Controllability
When does R (%) w = O define a controllable system ?

Iff rank(R(A)) isthesameforall A € C

d d
p(a)y = Q(a)u

controllable iff p and g have no common factor.

Image representation leads to an effective numerical test, also
for PDE’s.
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Observability

Observability of the image representation

w:M<a . 3)e

ox.°’ Bz,
is defined as: £ can be deduced from w,

i.e. M (i oo, 2 ) should be injective.
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Observability

Observability of the image representation

w:M(“’ . 3)@

ox.°’ Bz,
is defined as: £ can be deduced from w,

i.e. M (i oo, 2 > should be injective.

Not all controllable systems admit an observable im. repr’n.
For n = 1, they do. For n > 1, exceptionally so.

The latent variable £ in an im. repr’n may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation with an observable potential.
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Dissipative distributed systems
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Notation

Multi-index notation:

= (X15+e.5%n) k= (k1y...5kn) €= (l1,...,6y),
62(519"' 7£n)7c:(C19°°°9Cn)7n:(7717°°°977n)9

d _ (.0 8\ dt _ [ 8™ gr
der ~— \O0x1? "2 0z, ) Ydxk ~ \ k17" " gk |0

dxr = dxidxs ...dx,,

R(%)w:O for R(agl,--- ,8awn>w:O,

w:M(%>£ for w:M(azl,--- ,a%n)ﬁ,

etc.
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Notation

. 0 5]
V.= 3:131+.”+8:13n°

For simplicity of notation, and for concreteness, we often take
n = 4, independent variables, ¢, time, and x, y, z, space.

V.:= 8% + Bay | gz, ‘spatial flux’
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QDF’s

The quadratic map acting on w : R* — R" and its
derivatives, defined by

-
d* d*
—> — d —
W Dk (dwk w) fork (dw£w>
is called quadratic differential form (QDF) on €°° (R, R").
(I)k,g € R"*": WLOG: (I)k,g = (I)Zk°
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QDF’s

The quadratic map acting on w : R* — R" and its
derivatives, defined by

-
d* d*
—> — d —
W Dk (dwk w) fork (dw£w>
is called quadratic differential form (QDF) on €°° (R, R").
(I)k,g € R"*": WLOG: (I)k,g = (I)Zk°

Introduce the 2n-variable polynomial matrix &
®(¢,m) =) Preltn’.
k.t

Denote the QDF as Q4. QDF’s are parametrized by R [, 1] .
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Dissipative distributed systems

We henceforth consider only controllable linear differential
systems and QDE’s for supply rates.
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Dissipative distributed systems

We henceforth consider only controllable linear differential
systems and QDFE’s for supply rates.

Definition: B8 € £7, controllable, is said to be

(a QDF) if

Jze Qe (w) dx >0

for all w € B of compact support, i.e., for all w € B N D.

? := ¢€°° and ‘compact support’.
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Dissipative distributed systems

Assume n = 4:
independent variables x, y, z; 1 : space and time.

Idea: Qg3 (w) (x,y, 2z;t) dexdydz dt :

‘energy’ supplied to the system

in the space-cube [z, + dx| X |y,y + dy] X [z, 2z + dz]
during the time-interval [t,t + dt].

Dissipativity : <

f]R{ [fRs Qs (w) (z,y, 2, 1) dwdydz] dt > 0| Vw € BND.

A dissipative system absorbs net energy.
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Example: EM fields

Maxwell’s eq’ns define a dissipative (in fact, a conservative)
system w.r.t. the QDF —FE . ;

Indeed, if E, ; are of compact support and satisty

0 R &
“V.E4+ V-] = o,
“05¢ J
82E+ 2V X VX E + 0 = 0
£0—= £0C —37 = 0,
0912 0 9t’

then
fi [fus (- -3) dedydz] dt=o.
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The storage and the flux
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Local dissipation law

Dissipativity : <

[x [fes Qs (w) dedydz] dt >0 forallw € BN D.
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Local dissipation law

Dissipativity : <
Ik [fRs Qs (w) da:dydz] dt >0 forallw € B N3D.

Can this be reinterpreted as:

As the system evolves, some of the energy supplied is locally
stored, some locally dissipated, and some redistributed over
space?
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Local dissipation law

!! Invent storage and flux, locally defined in time and space,
such that in every spatial domain there holds:

SUPPLY

it

% Storage + Spatial flux < Supply.
%_ FLUX

="

STORAGE

yyy

DISSIPATION

Supply = partly stored + partly radiated + partly dissipated.

—p.33/50



MAIN RESULT (stated for n = 4)

Thm: n =4 :x,y, z;t : space/time; B € £}, controllable.

Then [, |[ps Qo (w) dzdydz| dt >0 forallw € BND

)
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MAIN RESULT (stated for n = 4)

Thm: n =4 :x,y, z;t : space/time; B € £}, controllable.

Then [, |[ps Qo (w) dzdydz| dt >0 forallw € BND

: _ 0 0 o0 0
d an im. repr. w = M( 3 8t)£ of B3,
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MAIN RESULT (stated for n = 4)

Thm: n =4 :x,y, z;t : space/time; B € £}, controllable.

Then [, |[ps Qo (w) dzdydz| dt >0 forallw € BND
()
danim. repr. w = M (aam’ Bay’ z?z’ gt) ¢ of B, and

QDF’s S, the storage, and Fj, Fy, F,, the flux,
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MAIN RESULT (stated for n = 4)

Thm: n =4 :x,y, z;t : space/time; B € £}, controllable.

Then [, |[ps Qo (w) dzdydz| dt >0 forallw € BND
()
danim. repr. w = M <aaa;’ Bay’ a?z’ gt) ¢ of B, and

QDF’s S, the storage, and Fj, Fy, F,, the flux,
such that the local dissipation law

55 (0) + ZF: (0) + 2. Fy () + 2 F: (£) < Qa (w)

holds for all (w, £) that satisfy w = M (aam’ aayv 86z’ gt) l.



Hidden variables

The local law involves
possibly unobservable, - i.e., hidden!
latent variables (the £’s).

This gives physical notions as stored energy, entropy, etc., an
enigmatic physical flavor.

—p.35/50



Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative)
with respect to — E . f, the rate of energy supplied.
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Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative)
with respect to — E . f, the rate of energy supplied.

Introduce the stored energy density, S, and
the energy flux density (the Poynting vector), F,

§(B,B) = 28 B+
)2 2

—

B - B,

F (E’, B’) ;= eoc’E X B.

Local conservation law for Maxwell’s equations:

—

25(B,B)+v-F(E,B)=—E-j.

Involves B, unobservablefrom F and j. 3650



The proof



Outline of the proof

Using controllability and image representations, we may
assume, WLOG: B = ¢ (R*, R")

To be shown

Global dissipation : <

Qs (w) >0forallw € ®
Rn

()
FT: V:Qu(w) <Qsp(w) forallw € €°°

&: Local dissipation
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/ Qs (w) >0forallw € ®

{ (Parseval)

$ (—tw,tw) > O0forallw € R*
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Qs (w) > 0forallw € ©
Rn

{ (Parseval)

$ (—tw,tw) > O0forallw € R*

() (Factorization equation)

I D: ®(—¢&,¢)=DT (=€) D(€)
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/ Qs (w) >0forallw € ®
Rn

{ (Parseval)

$ (—tw,tw) > O0forallw € R*

() (Factorization equation)

I D: ®(—¢&,¢)=DT (=€) D(€)
T (easy)

C&+n)' Tn)=2(n) —D" () D (n)
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/ Qs (w) >0forallw € ®
Rn

{ (Parseval)

$ (—tw,tw) > O0forallw € R*

() (Factorization equation)

I D: ®(—¢&,¢)=DT (=€) D(€)
$ (easy)
IT: (C+n) ¥(n)=2(n) —D" () D(n)

$ (clearly)

FVT: V-:-Qu(w) <Qsp(w) forallw € €°°

—~p.39/50



Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : <

Qs (w) >0forallw € ®
Rn

()
FT: V:Qu(w) <Qp(w) forallw € €°°

&: Local dissipation
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Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : <

Qs (w) >0forallw € ®
Rn

()
FT: V:Qu(w) <Qp(w) forallw € €°°

&: Local dissipation

However, ... this argument is valid only for n = 1...
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The factorization equation (FE)
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The factorization equation

Consider

X' (=€) X (§) =Y (§) (FE)

with Y € R***[£] given, and X the unknown. Solvable??
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The factorization equation

Consider

X' (=€) X (§) =Y (§) (FE)

with Y € R***[£] given, and X the unknown. Solvable??

12

X' (&)X (&)=Y (¢

with Y € R***[£] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?
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The factorization equation

Consider

X' (=€) X (§) =Y (§) (FE)

with Y € R***[£] given, and X the unknown. Solvable??

12

X' (&)X (&)=Y (¢

with Y € R***[£] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?

Scalar case: write the real polynomial Y as a sum of squares

Yzw%—l—wg—I—---—I—mf{.

— p.42/50



X' (X () =Y(& (FE)

Y is a given polynomial matrix; X is the unknown.

For n =1 andY € R [¢], solvable (with X € R?[¢]) iff

Y (a) >0 for all o € R.

— p.43/50



X' (X () =Y(& (FE)

Y is a given polynomial matrix; X is the unknown.

For n =1 andY € R [¢], solvable (with X € R?[¢]) iff

Y (a) >0 for all o € R.

For n =1 and Y € R®***[£], it is well-known (but
non-trivial) that (FE) is solvable (with X € R®**® [£]!) iff

Y(a)=Y' (a) >0 for all o € R.
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X' (X () =Y(& (FE)

Y is a given polynomial matrix; X is the unknown.

For n =1 and Y € R®***[£], it is well-known (but
non-trivial) that (FE) is solvable (with X € R®**® [£]!) iff

Y(a)=Y' ' (a) >0 foralla € R.
For n > 1 and under the symmetry and positivity condition
Y(a)=Y' (a) >0 for all « € R*,

this equation can nevertheless in general not be solved over
the polynomial matrices, for X € R®**[£],
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X' (X () =Y(& (FE)

Y is a given polynomial matrix; X is the unknown.

For n =1 and Y € R®***[£], it is well-known (but
non-trivial) that (FE) is solvable (with X € R®**® [£]!) iff

Y(a)=Y' ' (a) >0 foralla € R.
For n > 1 and under the symmetry and positivity condition
Y(a)=Y' (a) >0 for all « € R*,

this equation can nevertheless in general not be solved over
the polynomial matrices, for X € R®**[£],

but it can be solved over the matrices of rational functions,
i.e., for X € R**°® (¢).

— p.43/50



Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

" Solve p =p7+p3+---+p, pgiven
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

" Solve p =p7+p3+---+p, pgiven

A polynomial p € R[&1,--+ ,&], withp (aq,...,0,4) >0
for all (a1,...,a,) € R" can in general not be expressed as a
SOS of polynomials, with the p;’s € R[&q,--- , &
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

" Solve p =p7+p3+---+p, pgiven

A polynomial p € R[&1,--+ ,&], withp (aq,...,0,4) >0
for all (a1,...,a,) € R" can in general not be expressed as a
SOS of polynomials, with the p;’s € R[&q,--- , &

But a rational function (and hence a polynomial)

S R(éla'” 7€n) 7With p(ala-“aan) 2 0, for all
(a1y...,04) € R®, can be expressed as a SOS of (x = 27)
rational functions, with the p;’s € R (&1,:-- ,&,).

— p.44/50



Outline of the proof

= solvability of the factorization eq’n

$ (—tw,tw) > 0forallw € R*

I | (Factorization equation)

I D: ®(—&,6) =DT (=€) D(€)

over the rational functions, i.e., with D a matrix with
elements in R (£1,--- , &) .

— p.45/50



Outline of the proof

= solvability of the factorization eq’n

$ (—tw,tw) > 0forallw € R*

I | (Factorization equation)

I D: ®(—&,6) =DT (=€) D(€)

over the rational functions, i.e., with D a matrix with
elements in R (£1,--- , &) .

The need to introduce rational functions in this factorization
equation and an image representation of 25 (to reduce the

pbm to €°°) are the causes of the unavoidable presence of
(possibly unobservable, i.e., ‘hidden’) latent variables in the
local dissipation law.  pas/so
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable £ in various
(non-observable) image representations of 5.

2. of D in the factorization equation
®(—¢,6)=D' (—§) D (¢
3. (in the case n > 1) of the solution ¥ of

C+n)' T(n) =@ n) — DT (¢)D(n)

For conservative systems, ® (—&, &) = 0, whence D = 0,
but, when n > 1, the third source of non-uniqueness remains.
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Uniqueness

The non-uniqueness is very real, even for EM fields. Cir.

The ambiguity of the field energy

... There are, in fact, an infinite number of different possibilities
for u [the internal energy] and S [the flux] ... It is sometimes
claimed that this problem can be resolved using the theory of
gravitation ... as yet nobody has done such a delicate
experiment ... So we will follow the rest of the world - besides,
we believe that it [our choice] is probably perfectly right.

The Feynman Lectures on Physics,
Volume I1, page 27-6.
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SUMMARY

The theory of dissipative systems centers around the
construction of the storage function

global dissipation < 3 local dissipation law

Involves possibly hidden latent variables

(e.g. B in Maxwell’s eq’ns)

The proof = Hilbert’s 17-th problem

Neither controllability nor observability are good generic

system theoretic assumptions for physical models

— p.49/50



Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems
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Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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