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Dissipativity

w System
Dynamical

Interacting variables

Assume the variables have a physical meaning, and that a
function of the variables means ‘supply’ . For example,

mass flow

currents I and voltagesV ; V⊤I = electrical ‘power’
rate of electrical energy supplied

positionsq, forcesF ; F⊤ d
dt q = mechanical ‘power’

temperature T and heat flowQ ;= Q
T ‘entropy flow’

Interacting variables
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Dissipativity

supply rate

s

w

System

Interacting variables

Dynamical

There is a ‘supply’ ; dissipative: part of the supply is ‘lost’ .

mass flow loss: leakage

currents I and voltagesV ; V⊤I = ‘electrical power’
loss: heat in resistors

positions p, forcesF ; F⊤ d
dt q = ‘mechanical power’

heat loss due to friction

temperature T and heat flowQ ;= Q
T ‘entropy flow’

irreversibility
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Dissipativity

supply rate

s

w

System

Interacting variables

Dynamical

How do we formalize this concept?

Relevance:

System theory for physical systems

Mechanisms for stability
by interconnecting dissipative systems

Robustness

Mechanisms for stabilization by adding friction
– p. 3/42
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Lyapunov functions

Consider the classical dynamical system, the‘flow’

Σ : d
dt x = f (x)

with x ∈ X = R
n the state and f : X → X the vectorfield.

Denote the set of solutionsx : R → X by B, the ‘behavior’.
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Lyapunov functions

Consider the classical dynamical system, the‘flow’

Σ : d
dt x = f (x)

with x ∈ X = R
n the state and f : X → X the vectorfield.

Denote the set of solutionsx : R → X by B, the ‘behavior’.

V : X → R

is said to be a Lyapunov function for Σ if along x ∈ B

d
dt V (x(·)) ≤ 0

Equivalently, if
•

V Σ := ∇V · f ≤ 0.

– p. 5/42



Lyapunov type ‘theorem’

Lyapunov

trajectory
system

function
V

X

V (x) > 0 and
•

V Σ (x) < 0 for 0 6= x ∈ X

⇒

∀ x ∈ B, there holdsx(t) → 0 for t → ∞ ‘global stability’
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Lyapunov

Lyapunov f’ns play a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov’s ‘second method’ in his thesis (1899).
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The classicalnotion of a dissipative system
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Open systems

‘Open’ systemsare a much more appropriate starting point
for the study of dynamics than ‘flows’. For example,

u1
u2

u

1
y

um

y
2

p

input SYSTEM output

; the dynamical system

Σ : d
dt x = f (x,u) , y = h(x,u) .

u ∈ U = R
m,y ∈ Y = R

p,x ∈ X = R
n: input, output, state.

Behavior B = all sol’ns (u,y,x) : R → U×Y×X.
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Dissipative dynamical systems

Now consider

s : U×Y → R called the supply rate,

V : X → R called the storage functon.

Σ is said to be
dissipativew.r.t. the supply rate s and with storageV

:⇔

d
dt V (x(·)) ≤ s(u(·) ,y(·))

for all (u,y,x) ∈ B.
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Dissipation inequality

d
dt V (x(·)) ≤ s(u(·) ,y(·))

for all (u,y,x) ∈ B.

This inequality is called the dissipation inequality.

Equivalent to

•
V Σ (x,u) := ∇V (x) · f (x,u) ≤ s(x,h(x,u))

for all (u,x) ∈ U×X.

If equality holds: ‘conservative’ system.
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Dissipation inequality

supply
SYSTEM

DISSIPATION

SUPPLY

STORAGE

s(u,y) models something like thepower delivered to the
system when the input value isu and output value isy.

V (x) then models the internallystored energy.

Dissipativity :⇔
rate of increase of internal energy ≤ power delivered
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The construction of storage functions

Basic question:

Given (a representation of )Σ, the dynamics,
and givens, the supply rate,

is the system dissipative w.r.t.s, i.e.
does there exista storage functionV such that

the dissipation inequality holds?

Analog question of construction of Lyapunov f’n for stable
systems.
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The construction of storage functions

Basic question:

Given (a representation of )Σ, the dynamics,
and givens, the supply rate,

is the system dissipative w.r.t.s, i.e.
does there exista storage functionV such that

the dissipation inequality holds?

supply
SYSTEM

Monitor power in, known dynamics, what is the stored energy?
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.
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The construction of storage functions

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov
functions, H∞ and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.

Example:

d
dt

x = Ax+Bu,y = Cx, s ; ||u||2−||y||2, V ; x⊤Qx, Q = Q⊤.

[[
d
dt

x⊤Qx≤ ||u||2−||y||2 ]] ⇔ [[

[

A⊤Q+QA−C⊤C QB

B⊤Q −I

]

4 0]]

form α1A1+α2A2 + · · ·+αnAn < 0 ; ! acronym LMI
– p. 14/42



The construction of storage functions

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov
functions, H∞ and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.

The storage functionV is in general far from unique. There
are two ‘canonical’ storage functions:

the available storage and therequired supply .

For conservativesystems,V is unique.
Dissipative systems play an important role in the field.
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How good is this notion?
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Stability of dissipative interconnections
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Construction of Lyapunov functions

x

w

System

Interconnected
System

Plant Uncertain

Is this uncertain system stable?
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Construction of Lyapunov functions

x

w

System

Interconnected
System

Plant Uncertain

Is this uncertain system stable?

x

w w

sP
sU

System
Uncertain

Plant

Yes, if both systems are dissipative andsP + sU = 0

; Lyapunov f’n = sum of storage f’ns.⇒ stability.
This requires the state, also for the uncertain system.
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Thermodynamics
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Thermodynamics

terminal
work

terminals
thermal

work

(heat−flow, temperature)

Engine
Thermodynamic

Conservative w.r.t. - work + Σheat terminals heat flow

Dissipative w.r.t. -Σheat terminals
heat flow

temperature
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Thermodynamics

terminal
work

terminals
thermal

work

(heat−flow, temperature)

Engine
Thermodynamic

Conservative w.r.t. - work + Σheat terminals heat flow

Dissipative w.r.t. -Σheat terminals
heat flow

temperature

Input/output setting is hopeless!
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Electrical circuit synthesis
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Circuit synthesis

Consider the relation between the voltage across and the
current into a one-port electrical circuit containing (positive)
resistors, capacitors, inductors, and transformers.

I

−

+

V

Interconnected
RLCT’s
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Circuit synthesis

Consider the relation between the voltage across and the
current into a one-port electrical circuit containing (positive)
resistors, capacitors, inductors, and transformers.

I

−

+

V

Interconnected
RLCT’s

This relation is an FDLS (assume properness, etc.)

d
dt

x = Ax+BI, V = Cx+DI.

The transfer function G(s) = C(Is−A)−1B+D is called
the driving point impedance .
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Circuit synthesis

I

−

+

V

Interconnected
RLCT’s

Synthesis problem:

When is a rational f’n G ∈ R(ξ ) realizable as the driving
point impedance of an electrical circuit containing (positive)
resistors, capacitors, inductors, and transformers?

– p. 21/42



Circuit synthesis

I

−

+

V

Interconnected
RLCT’s

Synthesis problem:

When is a rational f’n G ∈ R(ξ ) realizable as the driving
point impedance of an electrical circuit containing (positive)
resistors, capacitors, inductors, and transformers?

Iff G is ‘positive real’

[p.r. ] :⇔ [Re(s) > 0⇒ Re(G(s)) > 0] Otto Brune, 1932
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Circuit synthesis

I

−

+

V

Interconnected
RLCT’s

Synthesis problem:

When is a rational f’n G ∈ R(ξ ) realizable as the driving
point impedance of an electrical circuit containing (positive)
resistors, capacitors, inductors, and transformers?

Iff G is ‘positive real’

[p.r. ] :⇔ [Re(s) > 0⇒ Re(G(s)) > 0] Otto Brune, 1932

Trafos are not needed Raoul Bott & Richard Duffin, 1949
– p. 21/42



Synthesis of behaviors

I
+

−

V

R
L

C
R

C

L

d
dt IL = −RL

L IL + 1
LV

d
dtVC = − 1

RCCVC + 1
RCCV

RCI −V = RCIL −VC
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Synthesis of behaviors

I
+

−

V

R
L

C
R

C

L

d
dt IL = −RL

L IL + 1
LV

d
dtVC = − 1

RCCVC + 1
RCCV

RCI −V = RCIL −VC

Take RL = RC = 1,C = 1,L = 1, and eliminateVC, IL ;

d
dt

V +V =
d
dt

I + I

Uncontrollable system with unobservable storage function

S =
1
2

(

I2
L +V 2

C

) d
dt

S = VI −
1
2

(

RLI2
L +RCI2

C

)

≤V I
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Synthesis of behaviors

I
+

−

V

R
L

C
R

C

L

d
dt IL = −RL

L IL + 1
LV

d
dtVC = − 1

RCCVC + 1
RCCV

RCI −V = RCIL −VC

Take RL = RC = 1,C = 1,L = 1, and eliminateVC, IL ;

d
dt

V +V =
d
dt

I + I impedance = 1

Uncontrollable system with unobservable storage function

S =
1
2

(

I2
L +V 2

C

) d
dt

S = VI −
1
2

(

RLI2
L +RCI2

C

)

≤V I
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Synthesis of behaviors

What can we conclude from this example?

1. The behavior is uncontrollable

V (t) = I(t)+Ae−t , A ∈ R

– p. 23/42



Synthesis of behaviors

What can we conclude from this example?

1. The behavior is uncontrollable

V (t) = I(t)+Ae−t , A ∈ R

2. The storage f’n is unobservable

The physical storage function is not a f’n of just any state
representation.

– p. 23/42



Synthesis of behaviors

What can we conclude from this example?

1. The behavior is uncontrollable

V (t) = I(t)+Ae−t , A ∈ R

2. The storage f’n is unobservable

The physical storage function is not a f’n of just any state
representation.

3. RLC(T) synthesis of behaviors (rather than impedances)
is an open problem.
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Dynamics in the supply rate

In some examples (part of) the dynamics comes from the
supply rate.

Consider a spring

F ,q
1    1

F ,q
2    2

k

Dynamical variables: positionsq1,q2, forcesF1,F2. Eq’ns

F1 = −F2, F1 = k (q2−q1) .

Memoryless system. But stores energy.
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Dynamics in the supply rate

In some examples (part of) the dynamics comes from the
supply rate.

Consider a spring

F ,q
1    1

F ,q
2    2

k

Dynamical variables: positionsq1,q2, forcesF1,F2. Eq’ns

F1 = −F2, F1 = k (q2−q1) .

Memoryless system. But stores energy.
Supply rate: s ; F1

d
dt q1 +F2

d
dt q2.

Stored energyV ;
1
2(q1−q2)

2.

– p. 24/42



i/s/o systems

As is often observed, the input/state/output framework
models many things, is better than anything that came before
it, but it has some shortcomings...

For the analysis of physical systems,

it does not really fit well

– p. 25/42



A new definition of dissipativity
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Behaviors

Dynamical system:Σ = (T,W,B), with T ⊆ R the time-set,
W the signal space, andB ⊆ W

T the behavior.
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Behaviors

Dynamical system:Σ = (T,W,B), with T ⊆ R the time-set,
W the signal space, andB ⊆ W

T the behavior.

Latent variable dynamical systemis a refinement,
with behavior represented with the aid of latent variables.

ΣL = (T,W,L,Bfull ) with L the space of latent variables,
and Bfull ⊆ (W×L)T the full behavior .
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Behaviors

Dynamical system:Σ = (T,W,B), with T ⊆ R the time-set,
W the signal space, andB ⊆ W

T the behavior.

Latent variable dynamical systemis a refinement,
with behavior represented with the aid of latent variables.

ΣL = (T,W,L,Bfull ) with L the space of latent variables,
and Bfull ⊆ (W×L)T the full behavior .

ΣL inducesΣ = (T,W,B) with manifest behavior

B =
{

w : T → W
∣

∣ ∃ℓ : T → L such that (w, ℓ) ∈ Bfull
}

.

– p. 27/42



Behaviors

Dynamical system:Σ = (T,W,B), with T ⊆ R the time-set,
W the signal space, andB ⊆ W

T the behavior.

Latent variable dynamical systemis a refinement,
with behavior represented with the aid of latent variables.

ΣL = (T,W,L,Bfull ) with L the space of latent variables,
and Bfull ⊆ (W×L)T the full behavior .

ΣL inducesΣ = (T,W,B) with manifest behavior

B =
{

w : T → W
∣

∣ ∃ℓ : T → L such that (w, ℓ) ∈ Bfull
}

.

The behavior is all there is . Linearity, time-invariance, ...
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Dissipativity & Behaviors

s
rate of supply   

absorbed
by the system 

SYSTEM

Dissipativeness restricts the waysupply goes in and out .

Start with Σ = (R ,R ,B) dynamical system,
where s : R → R , s ∈ B, models rate of supplyabsorbed.

by the system 
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Dissipativity & Behaviors

s
rate of supply   

absorbed
by the system 

SYSTEM

Dissipativeness restricts the waysupply goes in and out .

Start with Σ = (R ,R ,B) dynamical system,
where s : R → R , s ∈ B, models rate of supplyabsorbed.

Add ΣL = (R ,R ,R ,Bfull) a latent variable representation.
(s,V ) ∈ Bfull , V : R → R models the supplystored; assume
time-invariant.

by the system 
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Dissipativity & Behaviors

Start with Σ = (R ,R ,B) dynamical system,
where s : R → R , s ∈ B, models rate of supplyabsorbed.

Add ΣL = (R ,R ,R ,Bfull) a latent variable representation.
(s,V ) ∈ Bfull , V : R → R models the supplystored; assume
time-invariant.

V is said to be astoragew.r.t. the supply rate s if the
dissipation inequality

V (t1)−V (t0) ≤
∫ t1

t0
s(t) dt

holds ∀ (s,V ) ∈ Bfull and ∀ t0 ≤ t1,
s

rate of supply   
absorbed

by the system 

V   STORAGE 
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Dissipativity & Behaviors

Start with Σ = (R ,R ,B) dynamical system,
where s : R → R , s ∈ B, models rate of supplyabsorbed.

V is said to be astoragew.r.t. the supply rate s if the
dissipation inequality

V (t1)−V (t0) ≤
∫ t1

t0
s(t) dt

holds ∀ (s,V ) ∈ Bfull and ∀ t0 ≤ t1,
s

rate of supply   
absorbed

by the system 

V   STORAGE 

Given Σ = (R ,R ,B), time-invariant, does there exists
a representationΣL = (R ,R ,R ,Bfull), time-invariant,

such that the dissipation inequality holds?
– p. 28/42



Nonnegative storage

Simple existence result for non-negative storage functions.

THEOREM

Σ = (R ,R ,B) is dissipative with non-negative storage⇔

∀s ∈ B and ∀ t0 ∈ R , ∃K ∈ R ,

such that −
∫ T

t0
s(t) dt ≤ K for T ≥ t0

‘Available storage’ is finite. N.a.s.c.!

– p. 29/42



Nonnegative storage

Simple existence result for non-negative storage functions.

THEOREM

Σ = (R ,R ,B) is dissipative with non-negative storage⇔

∀s ∈ B and ∀ t0 ∈ R , ∃K ∈ R ,

such that −
∫ T

t0
s(t) dt ≤ K for T ≥ t0

‘Available storage’ is finite. N.a.s.c.!

A n.a.s.c. for the existence ofBfull and V (in terms of B) is ?
∃ sufficient conditions in terms of periodic trajectories
assumingobservabilityof V from s.

– p. 29/42



Quadratic supply rates
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QDF’s

A quadratic differential form (QDF) is a quadratic expression
in the components ofw ∈ C∞ (R,Rw) and its derivatives:

Σk,ℓ

(

d k

dt k w
)⊤

Φk,ℓ

(

d ℓ

dt ℓ w
)

with the Φk,ℓ ∈ R
w×w. Map from C∞ (R,Rw) to C∞ (R,R) .

Compact notation and a convenient calculus.

Φ(ζ ,η) = Σk,ℓ Φk,ℓζ kη ℓ

Notation QDF QΦ (w).

QΦ is said to benon-negative(denotedQΦ ≥ 0) :⇔
QΦ (w) ≥ 0 for all w ∈ C∞ (R,Rw).
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Dissipativity of QDF’s

Consider ΣΦ =
(

R ,R , im(QΦ)
)

: supply rate is QDF.

s : R → R is in B ⇔∃ w such that

s = QΦ(w) = Σk,ℓ

(

d k

dt k
w

)⊤

Φk,ℓ

(

d ℓ

dt ℓ
w

)

Very general, ‘Linear systems, quadratic functionals’,
controllability. Examples: linear circuits, t’f f’n with s upply
rate quadratic form in input and output, linear mechanical
systems, ... Interesting special cases:

d
dt

x = Ax+Bu,y = Cx+Du,s = ||u||2−||y|2, or s = u⊤y

(u,y)-behavior:

[

u
y

]

= M( d
dt )w, Φ → M(ζ )⊤ΣM(η)
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Dissipativity of QDF’s

ΣΦ is dissipative (∃ storage) if

∫ +∞
−∞ QΦ (w) dt ≥ 0

∀w ∈ C∞ (R,Rw) compact support.

Equivalently, if

Φ(iω,−iω)+Φ⊤ (−iω, iω) ≥ 0 ∀ ω ∈ R

Equivalently, if

∃ Ψ : d
dt QΨ ≤ QΦ (LMI)

– p. 32/42



Dissipativity of QDF’s

For a non-negative storage function, we obtain instead

∫ 0
−∞ QΦ (w) dt ≥ 0

∀w ∈ C∞ (R,Rw) of compact support.

In 1-D case storage f’n ofw ‘observability’.
Not so in n-D case, as Maxwell’s eq’ns.
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Some open problems

cfr. my website
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Intrinsic characterization of dissipativity

Let Σ = (R ,R ,B) be time-invariant. When is it dissipative?

I.e., when does there exists a time-invariant latent variable
representationΣL = (R ,R ,R ,Bfull), time-invariant,
such that the dissipation inequality holds?

∃ sufficient conditions in terms of periodic behavior,
controllability, observability, equilibrium points, ...
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Characterization of QDF’s

Given B ⊆ C∞ (R,R), shift-invariant.

When does∃ Φ ∈ R
w×w [ζ ,η ] such that B = image(QΦ) ?

– p. 35/42



Characterization of positive storage f’ns for QDF’s

Conjecture:

The following are equivalent for Φ ∈ R
w×w [ζ ,η ]:

1.
∫ 0
−∞ QΦ (w) dt ≥ 0 ∀w ∈ C∞ (R,Rw) of compact support,

2. ∀w ∈ C∞ (R,Rw) , ∃K ∈ R ,
such that−

∫ T
0 QΦ (w) dt ≤ K ∀T ≥ 0.

1. ⇒ 2. is easy.

– p. 36/42



Characterization of quadratic storage functions

Conjecture:

A QDF has a storage iff it has a QDF as a storage

Without signature conditions (as small gain, positive operator,
conicity).

– p. 37/42



Passive behavior synthesis

Stated for single input/single output systems. Consider

p(
d
dt

)V = q(
d
dt

)I.

When realizable as behavior of the port var. of a circuit with
(positive) resistors, capacitors, inductors, and transformers?

RLCT’s

2

V
1

1I

I 2

Interconnected

V

Necessary:
p
q

p.r. p.r. n.a.s.c. whenp and q co-prime.

What conditions does dissipativity impose on common factors?
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Transformerless synthesis

Bott-Duffin synthesis realizes the impedance, not the behavior.
They do not use minimal realization, common factors are
introduced. Uncontrollable parts are added in the behavior.

Is a synthesizable SISO behavior ... without transformers?

Suspect: NOT.
Transformerless synthesis of behaviors more open than ever.

– p. 39/42



Summary
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Conclusion

The notion of dissipativeness, while subtle, allows an adequate
formulation in the setting of behaviors (s, the supply) and
latent variables (V , the storage).

– p. 41/42



Conclusion

The notion of dissipativeness, while subtle, allows an adequate
formulation in the setting of behaviors (s, the supply) and
latent variables (V , the storage).

Also for dissipative systems, this means backing off from
input/output thinking!
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Reference:
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Dissipativity and Stability of Interconnections
International Journal of Nonlinear and Robust Control
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Reference:
JCW and K. Takaba
Dissipativity and Stability of Interconnections
International Journal of Nonlinear and Robust Control

to appear

Thank you for your attention
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