SYSTEM IDENTIFICATION via STATE CONTRUCTION

Jan C. Willems
K.U. Leuven, Belgium

Part of a research project with Ivan Markovsky (K.U. Leuven)

> Paolo Rapisarda (Un. of Southampton)
> \& Bart De Moor (K.U. Leuven)

Problem

SYSID

SYSID

Data: an 'observed' vector time-series

$$
\begin{aligned}
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \quad & w(t) \in \mathbb{R}^{w} \\
& T \text { finite, infinite, or } T \rightarrow \infty
\end{aligned}
$$

$$
\downarrow
$$

A dynamical model from a model class,

e.g. a difference equation

$$
\begin{aligned}
R_{0} w(t)+ & R_{1} w(t+1)+\cdots+R_{L} w(t+L) \\
& =0 \\
& =M_{0} \varepsilon(t)+M_{1} \varepsilon(t+1)+\cdots+M_{L} \varepsilon(t+L)
\end{aligned}
$$

SYSID

'deterministic' ID

Model class:

$$
R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{L} w(t+L)=0
$$

SYSID algorithm:

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \mapsto \hat{R}(\xi)=\hat{R}_{0}+\hat{R}_{1} \xi+\cdots+\hat{R}_{\hat{L}} \xi^{\hat{L}}
$$

SYSID

‘deterministic’ ID: I/O form

Model class:

$$
\begin{array}{r}
P_{0} y(t)+\cdots+P_{L} y(t+L)=Q_{0} u(t)+\cdots+Q_{L} u(t+L) \\
w=\Pi\left[\begin{array}{l}
u \\
y
\end{array}\right], \Pi \text { permutation }, P(\xi)^{-1} Q(\xi) \text { proper }
\end{array}
$$

SYSID algorithm:

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \mapsto \hat{P}_{0}, \hat{P}_{1}, \cdots, \hat{P}_{\hat{L}} ; \hat{Q}_{0}, \hat{Q}_{1}, \cdots, \hat{Q}_{\hat{L}}
$$

SYSID

ID with unobserved latent inputs

Model class:

$$
\begin{aligned}
& R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{L} w(t+L) \\
& \quad=M_{0} \varepsilon(t)+M_{1} \varepsilon(t+1)+\cdots+M_{L} \varepsilon(t+L)
\end{aligned}
$$

SYSID algorithm (e.g. PEM):

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \mapsto(\hat{R}(\xi), \hat{M}(\xi))
$$

Usual assumption: w, ε stochastic. Main contributors: Deistler, Ljung. etc.

SYSID

ID with unobserved latent inputs

Why unobserved stochastic inputs?

$$
\begin{aligned}
& R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{L} w(t+L) \\
& \quad=M_{0} \varepsilon(t)+M_{1} \varepsilon(t+1)+\cdots+M_{L} \varepsilon(t+L)
\end{aligned}
$$

SYSID algorithm (e.g. PEM):

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \mapsto(\hat{R}(\xi), \hat{M}(\xi))
$$

Usual assumption: w, ε stochastic. Main contributors: Deistler, Ljung. etc.

Case of interest today

Assumptions:

- Data:

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots \quad w(t) \in \mathbb{R}^{W} \quad T \text { infinite }
$$

Case of interest today

Assumptions:

- Data:
$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots \quad w(t) \in \mathbb{R}^{W} \quad T$ infinite
- Deterministic SYSID

Case of interest today

Assumptions:

- Data:
$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots \quad w(t) \in \mathbb{R}^{W} \quad T$ infinite
- Deterministic SYSID
- I/O partition known if advantageous

Case of interest today

Assumptions:

- Data:
$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots \quad w(t) \in \mathbb{R}^{w} \quad T$ infinite
- Deterministic SYSID
- I/O partition known if advantageous
- Exact modeling with an eye towards approximations

Case of interest today

Assumptions:

- Data:
$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots \quad w(t) \in \mathbb{R}^{W} \quad T$ infinite
- Deterministic SYSID
- I/O partition known if advantageous
- Exact modeling with an eye towards approximations

From the simple to the complex!

The MPUM

The MPUM

- A model:= a subset $\mathfrak{B} \subseteq\left(\mathbb{R}^{\mathbb{w}}\right)^{\mathbb{N}}$, the 'behavior'

A family of (vector) time series

The MPUM

- A model:= a subset $\mathfrak{B} \subseteq\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{\boldsymbol{w}}: \Leftrightarrow \tilde{\boldsymbol{w}} \in \mathfrak{B}$

$$
\tilde{w}=(\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots)
$$

The MPUM

- A model:= a subset $\mathfrak{B} \subseteq\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{\boldsymbol{w}}: \Leftrightarrow \tilde{\boldsymbol{w}} \in \mathfrak{B}$
- \mathfrak{B}_{1} is more powerful than $\mathfrak{B}_{2}: \Leftrightarrow \mathfrak{B}_{1} \subset \mathfrak{B}_{2}$

Every model is prohibition.
The more a model forbids, the better it is.

Karl Popper (1902-1994)

The MPUM

- A model:= a subset $\mathfrak{B} \subseteq\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{\boldsymbol{w}}: \Leftrightarrow \tilde{\boldsymbol{w}} \in \mathfrak{B}$
- \mathfrak{B}_{1} is more powerful than $\mathfrak{B}_{2}: \Leftrightarrow \mathfrak{B}_{1} \subset \mathfrak{B}_{\mathbf{2}}$
- A model class: a family, \mathbb{B}, of models

The MPUM

- A model:= a subset $\mathfrak{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{\boldsymbol{w}}: \Leftrightarrow \tilde{\boldsymbol{w}} \in \mathfrak{B}$
- \mathfrak{B}_{1} is more powerful than $\mathfrak{B}_{\mathbf{2}}: \Leftrightarrow \boldsymbol{\mathfrak { B }}_{\mathbf{1}} \subset \mathfrak{B}_{\mathbf{2}}$
- A model class: a family, \mathbb{B}, of models
- The MPUM 'most powerful unfalsified model' in \mathbb{B} for $\tilde{\boldsymbol{w}}$, denoted $\mathfrak{B}_{\tilde{\boldsymbol{w}}}^{*}$:

1. $\mathfrak{B}_{\tilde{\boldsymbol{w}}}^{*} \in \mathbb{B}$
2. $\tilde{\boldsymbol{w}} \in \boldsymbol{B}_{\tilde{\boldsymbol{w}}}^{*}$
3. $\boldsymbol{\mathfrak { B }} \in \mathbb{B}$ and $\tilde{\boldsymbol{w}} \in \mathfrak{B} \Rightarrow \boldsymbol{\mathfrak { B }}_{\tilde{\boldsymbol{w}}}^{*} \subseteq \mathfrak{B}$

The MPUM

- A model:= a subset $\mathfrak{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{\boldsymbol{w}}: \Leftrightarrow \tilde{\boldsymbol{w}} \in \mathfrak{B}$
- \mathfrak{B}_{1} is more powerful than $\mathfrak{B}_{2}: \Leftrightarrow \mathfrak{B}_{1} \subset \mathfrak{B}_{2}$
- A model class: a family, \mathbb{B}, of models
- The MPUM 'most powerful unfalsified model' in \mathbb{B} for \tilde{w}, denoted $\mathfrak{B}_{\tilde{\boldsymbol{w}}}^{*}$

The MPUM

- A model:= a subset $\mathfrak{B} \subseteq\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{\boldsymbol{w}}: \Leftrightarrow \tilde{\boldsymbol{w}} \in \mathfrak{B}$
- \mathfrak{B}_{1} is more powerful than $\mathfrak{B}_{\mathbf{2}}: \Leftrightarrow \boldsymbol{\mathfrak { B }}_{\mathbf{1}} \subset \mathfrak{B}_{\mathbf{2}}$
- A model class: a family, \mathbb{B}, of models
- The MPUM 'most powerful unfalsified model' in \mathbb{B} for $\tilde{\boldsymbol{w}}$, denoted $\mathfrak{B}_{\tilde{\boldsymbol{w}}}^{*}$
- Given $\tilde{\boldsymbol{w}}$ and \mathbb{B}, does $\mathfrak{B}_{\tilde{\boldsymbol{w}}}^{*}$ exist?
- 'Exact' SYSID: Construct algorithms $\tilde{\boldsymbol{w}} \mapsto \mathfrak{B}_{\tilde{\boldsymbol{w}}}^{*}$

The model class

The model class \mathfrak{L}^{w}

We now define our model class (a family of subsets of $\left(\mathbb{R}^{w}\right)^{\mathbb{N}}$).

It is an exceedingly familiar one: $\mathfrak{L}^{\mathrm{W}}$.
$\mathfrak{B} \subseteq\left(\mathbb{R}^{\mathrm{W}}\right)^{\mathbb{N}}$ belongs to $\mathfrak{L}^{\mathrm{W}}: \Leftrightarrow$

The model class \mathfrak{L}^{w}

$\mathfrak{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{N}}$ belongs to $\mathfrak{L}^{\mathrm{w}}: \Leftrightarrow$

- \mathfrak{B} is linear, shift-invariant, and closed shift-invariant $: \Leftrightarrow \boldsymbol{\sigma} \mathfrak{B} \subseteq \mathfrak{B}$ $\sigma=$ the 'shift': $\quad(\sigma f)(t):=f(t+1)$.
- \mathfrak{B} is linear, time-invariant, and complete $: \Leftrightarrow$ 'prefix determined'

The model class \mathfrak{L}^{w}

$\mathfrak{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{N}}$ belongs to $\mathfrak{L}^{w}: \Leftrightarrow$

- \mathfrak{B} is linear, shift-invariant, and closed
- \mathfrak{B} is linear, time-invariant, and complete
- \exists matrices $R_{0}, R_{1}, \ldots, R_{L}$ such that \mathfrak{B} consists of all w that satisfy

$$
R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{L} w(t+L)=0
$$

In the obvious polynomial matrix notation

$$
R(\sigma) w=0
$$

The model class \mathfrak{L}^{w}

$\mathfrak{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{N}}$ belongs to $\mathfrak{L}^{w}: \Leftrightarrow$

- \mathfrak{B} is linear, shift-invariant, and closed
- \mathfrak{B} is linear, time-invariant, and complete
-

$$
R(\sigma) w=0
$$

- Including input/output partition

$$
\begin{gathered}
P(\sigma) y=Q(\sigma) u, \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right] \\
\operatorname{det}(P) \neq 0, \mathrm{~m} \text { inputs, } \mathrm{p} \text { outputs (=} \text { \# of equations) }
\end{gathered}
$$

The model class \mathfrak{L}^{w}

$\mathfrak{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{N}}$ belongs to $\mathfrak{L}^{w}: \Leftrightarrow$

- \mathfrak{B} is linear, shift-invariant, and closed
- \mathfrak{B} is linear, time-invariant, and complete
-

$$
R(\sigma) w=0
$$

$$
P(\sigma) y=Q(\sigma) u, \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

- \exists matrices A, B, C, D such that \mathfrak{B} consists of all $w^{\prime} s$ generated by

$$
\boldsymbol{\sigma} x=\boldsymbol{A} x+\boldsymbol{B} u, y=\boldsymbol{C} x+\boldsymbol{D} u, \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

The lag

$\mathrm{L}: \mathfrak{L}^{\mathrm{w}} \rightarrow \mathbb{Z}_{+}$,
$\mathrm{L}(\mathfrak{B})=$ smallest L such that there is a kernel representation:

$$
R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{L} w(t+L)=0
$$

Polynomial matrix in

$$
R(\sigma) w=0
$$

has degree $(\boldsymbol{R}) \leq \mathrm{L}$.

The MPUM in $\mathfrak{L}^{\mathbf{w}}$

Theorem: For infinite observation interval, $\boldsymbol{T}=\infty$ (our case), the MPUM for $\tilde{\boldsymbol{w}}$ in $\mathfrak{L}^{\mathrm{W}}$ exists.

In fact,

$$
\mathfrak{B}_{\tilde{\boldsymbol{w}}}^{*}=\operatorname{span}\left(\left\{\tilde{w}, \sigma \tilde{w}, \sigma^{2} \tilde{w}, \ldots\right\}\right)^{\text {closure }}
$$

We are looking for effective computational algorithms to go from $\tilde{\boldsymbol{w}}$ to (a representation of) $\mathfrak{B}_{\tilde{\boldsymbol{w}}}^{*}$,
e.g., a kernel repr. \sim the corresponding R;
e.g., the matrices $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ of an $\mathbf{i} / \mathrm{s} / \mathrm{o}$ representation of $\mathfrak{B}_{\tilde{\boldsymbol{w}}}^{*}$.

From data to kernel representation

$$
\tilde{w} \mapsto R
$$

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T), \ldots
$$

Basic idea: look through the window (with $\Delta>L$) in order to discover the system laws.

$$
\tilde{w} \mapsto R
$$

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T), \ldots
$$

Basic idea: look through the window (with $\Delta>L$) in order to discover the system laws.

$\tilde{\boldsymbol{w}} \mapsto \boldsymbol{R}$

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T), \ldots
$$

Basic idea: look through the window (with $\Delta>L$) in order to discover the system laws.

Is there a recursion, same for all these windows?

$$
\tilde{\boldsymbol{w}} \mapsto \boldsymbol{R}
$$

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T), \ldots
$$

Basic idea: look through the window (with $\Delta>L$) in order to discover the system laws.

The windows lead linea recta to the Hankel matrix

$$
\left[\begin{array}{ccccc}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \cdots \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+2) & \cdots \\
\vdots & \vdots & \vdots & & \\
\tilde{w}(\Delta+1) & \tilde{w}(\Delta+2) & \cdots & \tilde{w}(t+\Delta) & \cdots
\end{array}\right]
$$

and finding the vectors $\left[a_{0} a_{1} \cdots a_{\Delta-1}\right]$ in its left kernel

$\tilde{\boldsymbol{w}} \mapsto \boldsymbol{R}$

The windows lead linea recta to the Hankel matrix

$$
\left[\begin{array}{ccccc}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \cdots \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+2) & \cdots \\
\vdots & \vdots & \vdots & & \\
\tilde{w}(\Delta+1) & \tilde{w}(\Delta+2) & \cdots & \tilde{w}(t+\Delta) & \cdots
\end{array}\right]
$$

The problem of computing the left kernel of this Hankel matrix has been studied in many aspects

- Recursively in \boldsymbol{T} (Berlekamp-Massey, Antoulas, Kuijper, Polderman, e.a)
- Recursively in Δ
- A set of generators for the module generated by the left kernel
- Approximately
- Consistency aspects and persistency of excitation

From data to state representation

$$
\tilde{w} \mapsto\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

Of course, once we have $\mathfrak{B}_{\tilde{w}}^{*}$, we can analyze it, make an input/output partition, make an observable state representation

$$
\begin{aligned}
x(t+1) & =\boldsymbol{A} x(t)+B u(t) \\
y(t) & =C x(t)+D u(t), \quad w(t) \cong\left[\begin{array}{l}
u(t) \\
y(t)
\end{array}\right]
\end{aligned}
$$

and compute the state trajectory

$$
\tilde{x}(1), \tilde{x}(2), \ldots, \tilde{x}(t), \ldots
$$

corresponding to

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots
$$

$$
\tilde{w} \mapsto\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

Of course, once we have $\mathfrak{B}_{\tilde{w}}^{*}$, we can analyze it, make an input/output partition, make an observable state representation

$$
\begin{aligned}
x(t+1) & =\boldsymbol{A} x(t)+B u(t) \\
y(t) & =C x(t)+D u(t), \quad w(t) \cong\left[\begin{array}{l}
u(t) \\
y(t)
\end{array}\right]
\end{aligned}
$$

Of course,
$\left[\begin{array}{ccccc}\tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots\end{array}\right]=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]\left[\begin{array}{ccccc}\tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots\end{array}\right]$

$$
\tilde{w} \mapsto\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

Of course,

$$
\left[\begin{array}{ccccc}
\tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\
\tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ccccc}
\tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\
\tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots
\end{array}\right]
$$

But if we could go the other way:
first compute the state trajectory, directly from the data, then this equation provides a way of

$$
\text { identifying the parameters }\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right] \text { of } \mathfrak{B}_{\tilde{w}}^{*} \text { ! }
$$

$\tilde{w} \mapsto\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$

$$
\left[\begin{array}{ccccc}
\tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\
\tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ccccc}
\tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\
\tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots
\end{array}\right]
$$

This yields indeed a very attractive SYSID procedure:

- Truncation at some sufficiently large t
- Model reduce using SVD or one of its friends by lowering the row dimension of

$$
\left[\begin{array}{lllll}
\tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots
\end{array}\right]
$$

- Solving for $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ using Least Squares
\leadsto 'Subspace ID' , oblique projection, etc.,: championed by Bart De Moor and Peter Van Overschee.
$\tilde{w} \mapsto\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$

$$
\left[\begin{array}{ccccc}
\tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\
\tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ccccc}
\tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\
\tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots
\end{array}\right]
$$

Note that classical realization theory is a special case: data is impulse response.

$$
\tilde{w} \mapsto\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

How does this work?

$$
\begin{gathered}
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots \\
\Downarrow \\
\tilde{x}(1), \tilde{x}(2), \ldots, \tilde{x}(t), \ldots
\end{gathered}
$$

This is a very nice system theoretic question.

From data to state representation
$\tilde{w} \mapsto\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ by past/future intersection

$$
\left[\begin{array}{c}
\mathcal{H}_{-} \\
\hline \mathcal{H}_{+}
\end{array}\right]=\left[\begin{array}{cccc}
\tilde{w}(1) & \cdots & \tilde{w}(t) & \cdots \\
\tilde{w}(2) & \cdots & \tilde{w}(t+1) & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
\tilde{w}(\Delta) & \cdots & \tilde{w}(t+\Delta-1) & \cdots \\
\hline \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta) & \cdots \\
\tilde{w}(\Delta+2) & \cdots & \tilde{w}(t+\Delta+1) & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
\uparrow \\
\tilde{w}(2 \Delta) & \cdots & \tilde{w}(t+2 \Delta-1) & \cdots
\end{array}\right] \begin{gathered}
\text { PASTURE } \\
\downarrow \\
\downarrow \\
\downarrow
\end{gathered}
$$

$$
\tilde{w} \mapsto\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] \text { by past/future intersection }
$$

$$
\left[\begin{array}{c}
\mathcal{H}_{-} \\
\hline \mathcal{H}_{+}
\end{array}\right]=\left[\begin{array}{cccc}
\tilde{w}(1) & \cdots & \tilde{w}(t) & \cdots \\
\tilde{w}(2) & \cdots & \tilde{w}(t+1) & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
\tilde{w}(\Delta) & \cdots & \tilde{w}(t+\Delta-1) & \cdots \\
\hline \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta) & \cdots \\
\tilde{w}(\Delta+2) & \cdots & \tilde{w}(t+\Delta+1) & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
\uparrow \\
\tilde{w}(2 \Delta) & \cdots & \tilde{w}(t+2 \Delta-1) & \cdots
\end{array}\right] \begin{gathered}
\text { PAST } \\
\hline \downarrow
\end{gathered}
$$

The intersection of the span of the rows of \mathcal{H}_{-} with the span of the rows of \mathcal{H}_{+}equals

$$
\left[\begin{array}{lllll}
\tilde{x}(\Delta) & \tilde{x}(\Delta+1) & \cdots & \tilde{x}(t+\Delta-1) & \cdots
\end{array}\right] \leftarrow \text { PRESENT STATE }
$$

$$
\tilde{w} \mapsto\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] \text { by oblique projection }
$$

Solve for G

$$
\left[\begin{array}{ccc}
\tilde{w}(1) & \cdots & \tilde{w}(T-2 \Delta+1) \\
\vdots & \vdots & \vdots \\
\tilde{w}(\Delta) & \cdots & \tilde{w}(T-\Delta) \\
\hline \tilde{u}(\Delta+1) & \cdots & \tilde{u}(T-\Delta+1) \\
\vdots & \vdots & \vdots \\
\tilde{u}(2 \Delta) & \cdots & \tilde{u}(T)
\end{array}\right] G=\left[\begin{array}{ccc}
\tilde{w}(1) & \cdots & \tilde{w}(T-2 \Delta+1) \\
\vdots & \vdots & \vdots \\
\tilde{w}(\Delta) & \cdots & \tilde{w}(T-\Delta) \\
\hline 0 & \cdots & 0 \\
\vdots & \vdots & \vdots \\
0 & \cdots & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\tilde{y}(\Delta+1) & \cdots & \tilde{y}(T-\Delta+1) \\
\vdots & \vdots & \vdots \\
\tilde{y}(2 \Delta) & \cdots & \tilde{y}(T)
\end{array}\right] G=\left[\begin{array}{ccc}
\tilde{x}(\Delta) & \cdots & \tilde{x}(T-\Delta)
\end{array}\right]
$$

Computes $\tilde{x}!$
\square

These algorithms do not make use of the Hankel structure.

Recent development: uses the Hankel structure, together with shift-and-cut state construction algorithm.

$\tilde{\boldsymbol{w}} \mapsto\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ via left annihilators

Implementation. Compute 'the' left annihilators of \mathcal{H} :

$$
\left[\begin{array}{lllll}
N_{1} & N_{2} & N_{3} & \cdots & N_{\Delta}
\end{array}\right]\left[\begin{array}{ccccc}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \cdots \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+2) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \cdots \\
\tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta-1) & \cdots
\end{array}\right]=0
$$

$\tilde{\boldsymbol{w}} \mapsto\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ via left annihilators

Implementation. Compute 'the' left annihilators of \mathcal{H} :
$\left[\begin{array}{lllll}N_{1} & N_{2} & N_{3} & \cdots & N_{\Delta}\end{array}\right]\left[\begin{array}{ccccc}\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \cdots \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \cdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta-1) & \cdots\end{array}\right]=0$
Then
$=\left[\begin{array}{ccccc}N_{2} & N_{3} & \cdots & N_{\Delta} & 0 \\ N_{3} & N_{4} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ N_{\Delta-1} & N_{\Delta} & \cdots & 0 & 0 \\ N_{\Delta} & 0 & \cdots & 0 & 0\end{array}\right]\left[\begin{array}{ccccc}\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta-1) & \cdots\end{array}\right]$

$$
\tilde{\boldsymbol{w}} \mapsto\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

It actually suffices to compute a set of generators for the module generated by the left kernel.

- Truncation at some sufficiently large t
- Model reduce using SVD or one of its friends by lowering the row dimension of

$$
\left[\begin{array}{lllll}
\tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots
\end{array}\right]
$$

- Solving for $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ using Least Squares

Open question: Construct a balanced state trajectory from data.

Shift-and-cut

State maps

Problem: Given a behavior, for example, a kernel representation

$$
R\left(\frac{d}{d t}\right) w=0, \quad R(\sigma) w=0
$$

say known i/o $w \cong(u, y)$, find a state repr. $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ from R. I.e.

$$
\begin{aligned}
x(t+\mathbf{1}) & =\boldsymbol{A} x(t)+\boldsymbol{B} u(t), \\
y(t) & =\boldsymbol{C} x(t)+\boldsymbol{D} u(t), \quad w(t) \cong\left[\begin{array}{l}
u(t) \\
y(t)
\end{array}\right]
\end{aligned}
$$

or

$$
G w(t)+H x(t)+F x(t+\mathbf{1})=\mathbf{0}
$$

with same w-behavior.
This is the classical problem of realization, where the impulse response case has dominated the scene.

State maps

Paolo Rapisarda's Ph.D. thesis: start from any representation. Key Idea: Construct first a state map : $\boldsymbol{x}=\boldsymbol{X}(\sigma) w$ for a suitable polynomial matrix X, get $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ from (R, X).

State maps

Define the 'shift-and-cut' operator σ on $\mathbb{R}[\xi]$ as follows:

$$
\begin{aligned}
\sigma: p_{0}+p_{1} \xi & +\cdots+p_{n-1} \xi^{n-1}+p_{n} \xi^{n} \\
& \mapsto \quad p_{1}+p_{2} \xi+\cdots+p_{n-1} \xi^{n-2}+p_{n} \xi^{n-1}
\end{aligned}
$$

Extend-able in the obvious term-by-term way to $\mathbb{R}^{\bullet \times \bullet}[\xi]$. Repeated use of the cut-and-shift on $P \in \mathbb{R}^{\bullet \bullet \bullet}$ yields the 'stack' operator Σ_{P}, defined by

$$
\Sigma_{P}:=\left[\begin{array}{c}
\sigma(P) \\
\sigma^{2}(P) \\
\vdots \\
\sigma^{\operatorname{degree}(P)}(P)
\end{array}\right]
$$

State maps

Construction of state map by cut-and-shift and stack operators:
Theorem: Let $R(\sigma) w=0$ be a kernel representation of $\mathfrak{B} \in \mathfrak{L}^{W}$. Then $\Sigma_{R}(\sigma)$ is a state map for \mathfrak{B}.

The resulting state representation

$$
R(\sigma) w=0 ; \quad x=\Sigma_{R}(\sigma) w
$$

need not be minimal.
\exists reduction algorithms.

The third algorithm implements this on an observed time-series.

Performance

Performance

$\#$	Data set name	T	m	p	l
1	Data of the western basin of Lake Erie	57	5	2	1
2	Data of Ethane-ethylene column	90	5	3	1
3	Data of a 120 MW power plant	200	5	3	2
4	Heating system	801	1	1	2
5	Data from an industrial dryer	867	3	3	1
6	Data of a hair dryer	1000	1	1	5
7	Data of the ball-and-beam setup in SISTA	1000	1	1	2
8	Wing flutter data	1024	1	1	5
9	Data from a flexible robot arm	1024	1	1	4
10	Data of a glass furnace (Philips)	1247	3	6	1
11	Heat flow density through a two layer wall	1680	2	1	2
12	Simulation of a pH neutralization process	2001	2	1	6
13	Data of a CD-player arm	2048	2	2	1
14	Data from an industrial winding process	2500	5	2	2
15	Liquid-saturated heat exchanger	4000	1	1	2
16	Data from an evaporator	6305	3	3	1
17	Continuous stirred tank reactor	7500	1	2	1
18	Model of a steam generator	9600	4	4	1

Performance

Compare the misfit on the last 30% of the outputs and the execution time for computing the ID model from the first 70\% of the data.

Misfit

Performance

Execution time

Performance

Conclusions

Conclusions

- Deterministic SYSID: possible

Conclusions

- Deterministic SYSID: possible
- MPUM: elegant

Conclusions

- Deterministic SYSID: possible
- MPUM: elegant
- \exists algorithms to compute the MPUM from data: feasible

Conclusions

- Deterministic SYSID: possible
- MPUM: elegant
- \exists algorithms to compute the MPUM from data: feasible
- Direct state construction from data: clever and useful

Details \& copies of the lecture frames are available from/at Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems

Details \& copies of the lecture frames are available from/at Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you

