

SYSTEM IDENTIFICATION via STATE CONTRUCTION

Jan C. Willems K.U. Leuven, Belgium

Seminar, University of Southampton

February 15, 2006 – p.1/33

Part of a research project with Ivan Markovsky (K.U. Leuven) Paolo Rapisarda (Un. of Southampton) & Bart De Moor (K.U. Leuven)

Data: an 'observed' vector time-series

$$egin{aligned} ilde w(1), ilde w(2), \dots, ilde w(T) & w(t) \in \mathbb{R}^{ ilde w} \ & T ext{ finite, infinite, or } T o \infty \ & igcup \end{aligned}$$

A dynamical model from a model class,

e.g. a difference equation

$$egin{aligned} R_0 oldsymbol{w}(t) + R_1 oldsymbol{w}(t+1) + \cdots + R_L oldsymbol{w}(t+L) \ &= 0 \ & \ & \ & \ & = M_0 arepsilon(t) + M_1 arepsilon(t+1) + \cdots + M_L arepsilon(t+L)) \end{aligned}$$

'deterministic' ID

Model class:

$$R_0 \boldsymbol{w}(t) + R_1 \boldsymbol{w}(t+1) + \cdots + R_L \boldsymbol{w}(t+L) = 0$$

SYSID algorithm:

 $ilde w(1), ilde w(2), \dots, ilde w(T) \mapsto \hat R(\xi) = \hat R_0 + \hat R_1 \xi + \dots + \hat R_{\hat L} \xi^{\hat L}$

'deterministic' ID: I/O form

Model class:

$$P_0 oldsymbol{y}(t) + \dots + P_L oldsymbol{y}(t+L) = Q_0 oldsymbol{u}(t) + \dots + Q_L oldsymbol{u}(t+L),$$

 $w = \Pi egin{bmatrix} u \ y \end{bmatrix}, \Pi$ permutation $, P(\xi)^{-1}Q(\xi)$ proper

SYSID algorithm:

$$ilde w(1), ilde w(2), \dots, ilde w(T) \mapsto \hat P_0, \hat P_1, \cdots, \hat P_{\hat L}; \ \hat Q_0, \hat Q_1, \cdots, \hat Q_{\hat L}$$

ID with unobserved latent inputs

Model class:

$$R_0 \boldsymbol{w}(t) + R_1 \boldsymbol{w}(t+1) + \dots + R_L \boldsymbol{w}(t+L)$$

= $M_0 \boldsymbol{\varepsilon}(t) + M_1 \boldsymbol{\varepsilon}(t+1) + \dots + M_L \boldsymbol{\varepsilon}(t+L)$

SYSID algorithm (e.g. PEM):

$$ilde w(1), ilde w(2), \dots, ilde w(T) \mapsto ig(\hat R(\xi), \hat M(\xi)ig)$$

Usual assumption: w, ε stochastic. Main contributors: Deistler, Ljung. etc.

ID with unobserved latent inputs

Why unobserved stochastic inputs? $R_0 w(t) + R_1 w(t+1) + \dots + R_L w(t+L)$ $= M_0 \varepsilon(t) + M_1 \varepsilon(t+1) + \dots + M_L \varepsilon(t+L)$

SYSID algorithm (e.g. PEM):

$$\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(T) \mapsto \left(\hat{R}(\xi), \hat{M}(\xi)\right)$$

Usual assumption: w, ε stochastic. Main contributors: Deistler, Ljung. etc.

Assumptions:

 $ilde{w}(1), ilde{w}(2), \dots, ilde{w}(t), \dots \qquad w(t) \in \mathbb{R}^{ ilde{w}} \qquad egin{array}{ccc} T & ext{ infinite} \end{array}$

Assumptions:

$$ilde{w}(1), ilde{w}(2), \dots, ilde{w}(t), \dots \qquad w(t) \in \mathbb{R}^{ ilde{w}} \qquad egin{array}{cc} T & ext{infinite} \end{array}$$

Deterministic SYSID

Assumptions:

Data:

$$ilde{w}(1), ilde{w}(2), \dots, ilde{w}(t), \dots \qquad w(t) \in \mathbb{R}^{ ilde{w}} \qquad egin{array}{cc} T & ext{infinite} \end{array}$$

- Deterministic SYSID
- I/O partition known if advantageous

Assumptions:

Data:

$$ilde{w}(1), ilde{w}(2), \dots, ilde{w}(t), \dots \qquad w(t) \in \mathbb{R}^{ ilde{w}} \qquad egin{array}{cc} T & ext{infinite} \end{array}$$

- Deterministic SYSID
- I/O partition known if advantageous
- Exact modeling with an eye towards approximations

Assumptions:

Data:

$$ilde{w}(1), ilde{w}(2), \dots, ilde{w}(t), \dots \qquad w(t) \in \mathbb{R}^{ ilde{w}} \qquad egin{array}{cc} T & ext{ infinite} \end{array}$$

- Deterministic SYSID
- I/O partition known if advantageous
- Exact modeling with an eye towards approximations

From the **simple** to the complex!

A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$, the 'behavior'

A family of (vector) time series

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$, the 'behavior'
- **\mathfrak{B}** is unfalsified by $\tilde{w} : \Leftrightarrow \tilde{w} \in \mathfrak{B}$ $\tilde{w} = \left(\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots\right)$

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$, the 'behavior'
- ${}_{igstacksymbol{\mathscr{B}}}$ ${}_{igstacksymbol{\mathscr{B}}}$ is unfalsified by $ilde{w}: \Leftrightarrow ilde{w} \in \mathfrak{B}$
- \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$

Every model is prohibition.

The more a model forbids, the better it is.

Karl Popper (1902-1994)

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$, the 'behavior'
- ${}_{igstacksymbol{\mathscr{B}}}$ ${}_{igstacksymbol{\mathscr{B}}}$ is unfalsified by $ilde{w}$: \Leftrightarrow $ilde{w}\in\mathfrak{B}$
- **9** \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$
- **A model class:** a family, \mathbb{B} , of models

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$, the 'behavior'
- **9** \mathfrak{B} is unfalsified by $ilde{w}:\Leftrightarrow ilde{w}\in\mathfrak{B}$
- \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$
- **A model class:** a family, \mathbb{B} , of models
- The MPUM 'most powerful unfalsified model' in \mathbb{B} for \tilde{w} , denoted $\mathfrak{B}^*_{\tilde{w}}$:
 - 1. $\mathfrak{B}^*_{ ilde{w}} \in \mathbb{B}$
 - 2. $ilde{w}\in\mathfrak{B}^*_{ ilde{w}}$
 - 3. $\mathfrak{B} \in \mathbb{B}$ and $ilde{w} \in \mathfrak{B} \Rightarrow \mathfrak{B}^*_{ ilde{w}} \subseteq \mathfrak{B}$

- ${}_{igstacksymbol{\mathscr{B}}}$ is unfalsified by $ilde{w}:\Leftrightarrow ilde{w}\in\mathfrak{B}$
- **9** \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$
- **A model class:** a family, \mathbb{B} , of models
- The MPUM 'most powerful unfalsified model' in \mathbb{B} for \tilde{w} , denoted $\mathfrak{B}^*_{\tilde{w}}$

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$, the 'behavior'
- ${}_{igstarrow} {}_{igstarrow} {}_{igstarr$
- \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$
- **A model class:** a family, \mathbb{B} , of models
- The MPUM 'most powerful unfalsified model' in \mathbb{B} for \tilde{w} , denoted $\mathfrak{B}^*_{\tilde{w}}$
- **Given** $ilde{w}$ and \mathbb{B} , does $\mathfrak{B}^*_{ ilde{w}}$ exist?

• 'Exact' SYSID: Construct algorithms $ilde{w}\mapsto\mathfrak{B}^*_{ ilde{w}}$

The model class

We now define our model class (a family of subsets of $(\mathbb{R}^{w})^{\mathbb{N}}$).

It is an exceedingly familiar one: $\mathfrak{L}^{\mathtt{W}}$.

The model class \mathfrak{L}^{W}

 $\mathfrak{B}\subseteq \left(\mathbb{R}^{\mathtt{W}}
ight)^{\mathbb{N}}$ belongs to $\mathfrak{L}^{\mathtt{W}}$: \Leftrightarrow

 \checkmark \mathfrak{B} is linear, shift-invariant, and closed

shift-invariant : $\Leftrightarrow \sigma \mathfrak{B} \subseteq \mathfrak{B}$

- $\sigma =$ the 'shift': $(\sigma f)(t):=f(t+1).$
- ${}_{m S}$ is linear, time-invariant, and complete $\;:\Leftrightarrow$ 'prefix determined'

The model class $\mathfrak{L}^{\mathsf{w}}$

$\mathfrak{B}\subseteq \left(\mathbb{R}^{\mathtt{w}} ight)^{\mathbb{N}}$ belongs to $\mathfrak{L}^{\mathtt{w}}:\Leftrightarrow$

- ${}_{igstacless}\mathfrak{B}$ is linear, shift-invariant, and closed
- ${}_{igstacless}\mathfrak{B}$ is linear, time-invariant, and complete
- Imatrices R_0, R_1, \ldots, R_L such that \mathfrak{B} consists of all w that satisfy

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_L w(t+L) = 0$$

In the obvious polynomial matrix notation

$$R(\sigma)w = 0$$

The model class $\mathfrak{L}^{\mathsf{w}}$

$\mathfrak{B}\subseteq \left(\mathbb{R}^{\mathtt{W}} ight)^{\mathbb{N}}$ belongs to $\mathfrak{L}^{\mathtt{W}}:\Leftrightarrow$

- ${}_{m{\mathfrak{B}}}$ is linear, shift-invariant, and closed
- ${}_{igstacless}\mathfrak{B}$ is linear, time-invariant, and complete

$$R(\sigma)w = 0$$

Including input/output partition

$$P(\sigma)\mathbf{y} = Q(\sigma)\mathbf{u}, \ \mathbf{w} \cong \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \end{bmatrix}$$

 $\det(P) \neq 0$, m inputs, p outputs (= # of equations)

The model class \mathfrak{L}^{W}

$\mathfrak{B}\subseteq \left(\mathbb{R}^{\mathtt{W}} ight)^{\mathbb{N}}$ belongs to $\mathfrak{L}^{\mathtt{W}}$: \Leftrightarrow

- ${}_{m \mathfrak B}$ is linear, shift-invariant, and closed
- ${}_{m{\mathfrak{B}}}$ is linear, time-invariant, and complete

$$R(\sigma)w = 0$$

$$P(\sigma)\mathbf{y} = Q(\sigma)\mathbf{u}, \ \mathbf{w} \cong \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \end{bmatrix}$$

Imatrices A, B, C, D such that
 \mathfrak{B} consists of all w's generated by
 $\sigma x = Ax + Bu, \ y = Cx + Du, \quad w \cong \left[\begin{smallmatrix} u \\ y \end{smallmatrix} \right]$

The lag

L: $\mathfrak{L}^{w} \to \mathbb{Z}_{+},$ L(\mathfrak{B}) = smallest L such that there is a kernel representation:

$$R_0 oldsymbol{w}(t) + R_1 oldsymbol{w}(t+1) + \dots + R_L oldsymbol{w}(t+L) = 0.$$

Polynomial matrix in

$$R(\sigma)w = 0$$

has $\operatorname{degree}(R) \leq L$.

The MPUM in $\mathfrak{L}^{\mathsf{w}}$

Theorem: For infinite observation interval, $T = \infty$ (our case), the MPUM for \tilde{w} in $\mathfrak{L}^{\mathbb{V}}$ exists.

In fact,

$$\mathfrak{B}^*_{ ilde{w}} = \operatorname{span}(\{ ilde{w}, \sigma ilde{w}, \sigma^2 ilde{w}, \ldots\})^{\operatorname{closure}}$$

We are looking for effective computational algorithms to go from \tilde{w} to (a representation of) $\mathfrak{B}^*_{\tilde{w}}$,

e.g., a kernel repr. \rightsquigarrow the corresponding R;

e.g., the matrices
$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$$
 of an i/s/o representation of $\mathfrak{B}^*_{\tilde{w}}$.

From data to kernel representation

$$ilde w(1), ilde w(2), \dots, ilde w(T), \dots$$

<u>Basic idea</u>: look through the window (with $\Delta > L$) in order to discover the system laws.

$$ilde w(1), ilde w(2), \dots, ilde w(T), \dots$$

<u>Basic idea</u>: look through the window (with $\Delta > L$) in order to discover the system laws.

$$ilde w(1), ilde w(2), \dots, ilde w(T), \dots$$

<u>Basic idea</u>: look through the window (with $\Delta > L$) in order to discover the system laws.

Is there a recursion, same for all these windows?

$$ilde w(1), ilde w(2), \dots, ilde w(T), \dots$$

<u>Basic idea</u>: look through the window (with $\Delta > L$) in order to discover the system laws.

The windows lead linea recta to the Hankel matrix

and finding the vectors $[a_0 \, a_1 \, \cdots \, a_{\Delta-1}]$ in its left kernel

The windows lead linea recta to the Hankel matrix

igg[ilde w(1)	$ ilde{w}(2)$	• • •	$ ilde{w}(t)$	•••
$ ilde{w}(2)$	$ ilde{w}(3)$	• • •	$ ilde{w}(t+1)$	•••
$ ilde{w}(3)$	$ ilde{w}(4)$	• • •	$ ilde{w}(t+2)$	•••
:	:	:		
•	•	-		
$\lfloor ilde{w}(\Delta+1)$	$ ilde{w}(\Delta+2)$	• • •	$ ilde{w}(t+\Delta)$	•••

The problem of computing the left kernel of this Hankel matrix has been studied in many aspects

- Recursively in T (Berlekamp-Massey, Antoulas, Kuijper, Polderman, e.a)
- Recursively in Δ
- A set of generators for the module generated by the left kernel
- Approximately
- Consistency aspects and persistency of excitation

From data to state representation

Of course, once we have $\mathfrak{B}^*_{\tilde{w}}$, we can analyze it, make an input/output partition, make an observable state representation

$$egin{aligned} oldsymbol{x}(t+1) &= & Aoldsymbol{x}(t) + Boldsymbol{u}(t), \ &oldsymbol{y}(t) &= & Coldsymbol{x}(t) + Doldsymbol{u}(t), &oldsymbol{w}(t) \cong \left[egin{aligned} oldsymbol{u}(t) \ oldsymbol{y}(t) \end{bmatrix} \end{aligned}$$

and compute the state trajectory

 $ilde{x}(1), ilde{x}(2), \dots, ilde{x}(t), \dots$

corresponding to

$$ilde w(1), ilde w(2), \dots, ilde w(t), \dots$$

Of course, once we have $\mathfrak{B}^*_{\tilde{w}}$, we can analyze it, make an input/output partition, make an observable state representation

$$egin{aligned} oldsymbol{x}(t+1) &= & Aoldsymbol{x}(t) + Boldsymbol{u}(t), \ &oldsymbol{y}(t) &= & Coldsymbol{x}(t) + Doldsymbol{u}(t), &oldsymbol{w}(t) \cong \left[egin{aligned} oldsymbol{u}(t) \ oldsymbol{y}(t) \end{bmatrix} \end{aligned}$$

Of course,

$$\begin{bmatrix} \tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots \end{bmatrix}$$

$$\tilde{w} \mapsto \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$$

Of course,

$$\begin{bmatrix} \tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots \end{bmatrix}$$

But if we could go the other way:

first compute the state trajectory, directly from the data, then this equation provides a way of

identifying the parameters
$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$$
 of $\mathfrak{B}_{\widetilde{w}}^*$!

$$\tilde{w} \mapsto \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$$

$$\begin{bmatrix} \tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots \end{bmatrix}$$

This yields indeed a very attractive SYSID procedure:

- **Figure 3 Truncation** at some sufficiently large t
- Model reduce using SVD or one of its friends by lowering the row dimension of

$$egin{bmatrix} ilde{x}(1) & ilde{x}(2) & \cdots & ilde{x}(t) & \cdots \end{bmatrix}$$

Solving for $\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$ using Least Squares

→ 'Subspace ID', oblique projection, etc.,: championed by Bart De Moor and Peter Van Overschee.

$$\tilde{w} \mapsto \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$$

$$\begin{bmatrix} \tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots \end{bmatrix}$$

Note that classical realization theory is a special case: data is impulse response.

$$\tilde{w} \mapsto \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$$

How does this work?

$$ilde w(1), ilde w(2), \dots, ilde w(t), \dots$$
 \Downarrow
 $ilde x(1), ilde x(2), \dots, ilde x(t), \dots$

This is a very nice system theoretic question.

From data to state representation

$$\tilde{w} \mapsto \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$$
 by past/future intersection

$$\tilde{w} \mapsto \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$$
 by past/future intersection

The intersection of the span of the rows of \mathcal{H}_{-} with the span of the rows of \mathcal{H}_{+} equals

Nice num. impl. (e.g. via left kernel) \rightarrow subspace ID

$$\tilde{w} \mapsto \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$$
 by oblique projection

 ${\rm Solve} \ {\rm for} \ G$

igg[ilde w(1)	• • •	$ ilde{w}(T-2\Delta+1)$ -		$ ilde{w}(1)$	• • •	$ ilde{w}(T-2\Delta+1)$]
:	÷	÷		:	:	÷
$ ilde{w}(\Delta)$	•••	$ ilde{w}(T-\Delta)$	G =	$ ilde{w}(\Delta)$	•••	$ ilde{w}(T-\Delta)$
$ ilde{u}(\Delta+1)$	• • •	$ ilde{u}(T-\Delta+1)$		0	• • •	0
	÷	÷			÷	÷
$ ilde{u}(2\Delta)$	• • •	$ ilde{u}(T)$ _		0	• • •	0

$$\begin{bmatrix} \tilde{y}(\Delta+1) & \cdots & \tilde{y}(T-\Delta+1) \\ \vdots & \vdots & \vdots \\ \tilde{y}(2\Delta) & \cdots & \tilde{y}(T) \end{bmatrix} G = \begin{bmatrix} \tilde{x}(\Delta) & \cdots & \tilde{x}(T-\Delta) \end{bmatrix}$$

Computes \tilde{x} !

 \cong 'oblique projection

These algorithms do not make use of the Hankel structure.

Recent development: uses the Hankel structure, together with shift-and-cut state construction algorithm.

$$ilde{w} \mapsto \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 via left annihilators

Implementation. Compute 'the' left annihilators of \mathcal{H} :

 $N_1 \quad N_2 \quad N_3 \quad \cdots \quad N_n$

– p.24/33

$$ilde{w} \mapsto \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 via left annihilators

Implementation. Compute 'the' left annihilators of \mathcal{H} :

$$\begin{bmatrix} N_1 & N_2 & N_3 & \cdots & N_\Delta \end{bmatrix} \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \cdots \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta-1) & \cdots \end{bmatrix} = 0$$
Then
$$\begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+1) & \cdots \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+1) \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+1) \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta-1) & \cdots \end{bmatrix}$$

$$ilde{w}\mapstoegin{bmatrix}A&B\C&D\end{bmatrix}$$

It actually suffices to compute a set of generators for the module generated by the left kernel.

- **Figure 3 Truncation** at some sufficiently large t
- Model reduce using SVD or one of its friends by lowering the row dimension of

$$\begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \end{bmatrix}$$
Solving for $\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$ using Least Squares

Open question: Construct a **balanced** state trajectory from data.

Shift-and-cut

Problem: Given a behavior, for example, a kernel representation

$$R\left(rac{d}{dt}
ight)w=0, \qquad R(\sigma)w=0$$

say known i/o $w\cong(u,y)$, find a state repr. $\left[egin{array}{c|c|c|} A&B\\\hline C&D \end{array}
ight]$ from R. I.e.

$$\begin{aligned} \mathbf{x}(t+1) &= A\mathbf{x}(t) + B\mathbf{u}(t), \\ \mathbf{y}(t) &= C\mathbf{x}(t) + D\mathbf{u}(t), \qquad \mathbf{w}(t) \cong \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) \end{bmatrix} \end{aligned}$$

or

$$Gw(t) + Hx(t) + Fx(t+1) = 0$$

with same w-behavior.

This is the classical problem of realization, where the impulse response case has dominated the scene.

State maps

Paolo Rapisarda's Ph.D. thesis: start from any representation. Key Idea: Construct first a state map : $x = X(\sigma)w$ for a suitable polynomial matrix X, get $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ from (R, X).

State maps

Define the 'shift-and-cut' operator σ on $\mathbb{R}[\xi]$ as follows:

$$\sigma: p_0 + p_1 \xi + \dots + p_{n-1} \xi^{n-1} + p_n \xi^n$$

$$\mapsto p_1 + p_2 \xi + \dots + p_{n-1} \xi^{n-2} + p_n \xi^{n-1}$$

Extend-able in the obvious term-by-term way to $\mathbb{R}^{\bullet \times \bullet}[\xi]$. Repeated use of the cut-and-shift on $P \in \mathbb{R}^{\bullet \times \bullet}$ yields the 'stack' operator Σ_P , defined by

$$\Sigma_P := egin{bmatrix} \sigma(P) \ \sigma^2(P) \ dots \ \sigma^{ ext{degree}(P)}(P) \end{bmatrix}$$

Construction of state map by cut-and-shift and stack operators:

<u>Theorem</u>: Let $R(\sigma)w = 0$ be a kernel representation of $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$. Then $\Sigma_R(\sigma)$ is a state map for \mathfrak{B} .

The resulting state representation

$$R(\sigma)w=0\,;\quad x=\Sigma_R(\sigma)w$$

need not be minimal.

 \exists reduction algorithms.

The third algorithm implements this on an observed time-series.

#	Data set name		m	p	l
1	Data of the western basin of Lake Erie	57	5	2	1
2	Data of Ethane-ethylene column	90	5	3	1
3	Data of a 120 MW power plant	200	5	3	2
4	Heating system	801	1	1	2
5	Data from an industrial dryer	867	3	3	1
6	Data of a hair dryer	1000	1	1	5
7	Data of the ball-and-beam setup in SISTA	1000	1	1	2
8	Wing flutter data	1024	1	1	5
9	Data from a flexible robot arm	1024	1	1	4
10	Data of a glass furnace (Philips)	1247	3	6	1
11	Heat flow density through a two layer wall	1680	2	1	2
12	Simulation of a pH neutralization process	2001	2	1	6
13	Data of a CD-player arm	2048	2	2	1
14	Data from an industrial winding process	2500	5	2	2
15	Liquid-saturated heat exchanger	4000	1	1	2
16	Data from an evaporator	6305	3	3	1
17	Continuous stirred tank reactor	7500	1	2	1
18	Model of a steam generator	9600	4	4	1

Compare the misfit on the last 30% of the outputs and the execution time for computing the ID model from the first 70% of the data.

Misfit

Execution time

Conclusions

Deterministic SYSID: possible

- Deterministic SYSID: possible
- MPUM: elegant

- Deterministic SYSID: possible
- MPUM: elegant
- \blacksquare algorithms to compute the MPUM from data: feasible

- Deterministic SYSID: possible
- MPUM: elegant
- \blacksquare \exists algorithms to compute the MPUM from data: feasible
- Direct state construction from data: clever and useful

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Details & copies of the lecture frames are available from/at

```
Jan.Willems@esat.kuleuven.be
```

http://www.esat.kuleuven.be/~jwillems

