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MODEL CLASS
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MATHEMATICAL MODEL
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SYSID

Data: an ‘observed’ vector time-series

w(l),w(2),...,w(T) w(t) € R”
T finite, infinite, or I' — o0

A dynamical model from a model class,
e.g. a difference equation

Row(t) + Ryw(t+1)+---+ Rrw(t+ L)
=0
or :M0€(t)—|—M1€(t—|—1)+°°°—|—ML€(t—|—L)
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SYSID

observed
variables
MODEL T W

Row(t) + Riw(t+1)+---+ Rrw(t+ L) =0

‘deterministic’ ID

Model class:

SYSID algorithm:

@(1),®(2),...,0(T) — R(&) = Ro + Ri&+ -+ + R; ¢"
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SYSID

‘deterministic’ ID: 1/0 form

observed
variables

Model class:

—> observe d

—> variables
: MODEL | Sy

o

B =

Poy(t) +- -+ Pry(t+ L) = Qou(t) +- -+ Qru(t+ L),

w =11

SYSID algorithm:

u

Y

, IT permutation , P(£) "1 Q(¢&) proper

A A

12)(1),’(1)(2),...,’(2)(1—1) I—)P(),Pl,"’ ,Pj;; QOana"’ 7Qf,
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SYSID

ID with unobserved latent inputs

observed

. observed
variables >

variables

v: | MODEL Ty
—
—>
* e latent
‘ € variables
Model class: (unobserved)

Row(t) + Ryw(t+1)+---+ Rrw(t + L)
= Mpope(t) + Mie(t+1)+---+ Mre(t+ L)

SYSID algorithm (e.g. PEM):

w(1),@(2),...,0(T) —~ (R(§), M(€))

Usual assumption: w, € stochastic. Main contributors: Deistler, Ljung. etc.
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SYSID

ID with unobserved latent inputs

T* “.TT latent
‘ € variabl

Why unobserved stochastic inputs?

Row(t) + Ryw(t+1)+---+ Rrw(t + L)
= Mpope(t) + Mie(t+1)+---+ Mre(t+ L)

SYSID algorithm (e.g. PEM):

w(1),@(2),...,0(T) —~ (R(§), M(€))

Usual assumption: w, € stochastic. Main contributors: Deistler, Ljung. etc.
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Case of interest today

Assumptions:

® Data:

W(1), D(2), ..., 0(t),...  w(t) ER" T infinite
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Case of interest today

Assumptions:

® Data:
W(1), W(2),...,5(),... w(t) € RY T infinite

® Deterministic SYSID
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Case of interest today

Assumptions:

® Data:
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Case of interest today

Assumptions:

® Data:
W(1), W(2),...,5(),... w(t) € RY T infinite

® Deterministic SYSID

® /O partition known if advantageous

® Exact modeling with an eye towards approximations

From the simple to the complex!

—= Approximate

/ Deterministic \
Exact — Approximate

Deterministic \ / = Stochastic
+

—_— Exact

Stochastic —p.7/33



The MPUM
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The MPUM

® A model:=asubset 8 C (R")", the ‘behavior’

A family of (vector) time series
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The MPUM
® A model:=asubset 8 C (R")", the ‘behavior’

® °*Bis unfalsifiedby w :< w € B
w = (113(1),113(2), coesw(t), .. )
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The MPUM

® A model:=asubset 8 C (R")", the ‘behavior’
® ‘B is unfalsifiedby w &< w € B

® B, is more powerful than 5, < B, C B,

Every model is prohibition.

The more a model forbids, the better it is.

S Karl Popper (1902-1924)

Karl Popper
(1902-1994)
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The MPUM

A model:= a subset 8 C (IR")", the ‘behavior’
B is unfalsified by w :< w € B
5, is more powerful than 8, : & B, C B,

A model class: a family, [B, of models
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The MPUM

A model:= a subset 8 C (IR")", the ‘behavior’
B is unfalsified by w :< w € B
5, is more powerful than 8, : & B, C B,

A model class: a family, [B, of models

The | MPUM | ‘most powerful unfalsified model’ in B for w,
denoted 5 :

1.5° BB
2. w € B
3. BecBandweB =B, CB
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The MPUM

A model:= a subset 8 C (IR")", the ‘behavior’

B is unfalsified by w :< w € B

5, is more powerful than 8, : & B, C B,

A model clas

The | MPUM
denoted 557

s: a family, [B, of models

‘most powerful unfalsified model’ in B for w,

MPUM

Unfalsified

Falsified

OBSERVED DATA
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°

°

The MPUM

A model:= a subset 8 C (IR")", the ‘behavior’

B is unfalsified by w :< w € B

5, is more powerful than 8, : & B, C B,

A model class: a family, [B, of models

The

denoted 557

MPUM

‘most powerful unfalsified model’ in B for w,

Given w and B, does 5. exist?

‘Exact’ SYSID: Construct algorithms w +— 57
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The model class

—p.10/33



The model class £F

We now define our model class (a family of subsets of (R¥)").

It is an exceedingly familiar one: £".

B C (RY)" belongs to £ : &
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The model class £F

B C (RY)" belongs to £¥ :<>

® 8 is linear, shift-invariant, and closed

shift-invariant : <> o8 C ‘B

o =the‘shift’: (o f)(t) := f(t+1).

® ‘’YB is linear, time-invariant, and complete :<> ’prefix determined’
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The model class £F

B C (RY)" belongs to £¥ :<>
® ‘*B is linear, shift-invariant, and closed
#® 8B is linear, time-invariant, and complete

® d matrices Ry, R1,..., R such that 35 consists of all w that
satisfy

Row(t) + Ryw(t+1)+---+ Ryw(t+ L) =0
In the obvious polynomial matrix notation

R(oc)w =0
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The model class £F

B C (RY)" belongs to £¥ :<>
® 8 is linear, shift-invariant, and closed

#® °’YB is linear, time-invariant, and complete

K
R(o)w =0
#® Including input/output partition

P(o)y = Q(o)u, w=[y]

det(P) # 0, minputs, p outputs (= # of equations)
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The model class £F

B C (RY)" belongs to £ : &

9
9
9

°

83 is linear, shift-invariant, and closed

Y3 is linear, time-invariant, and complete

R(o)w =0

Po)y = Q(o)u, w = [y]

3 matrices A, B, C, D such that
B consists of all w’s generated by
ocr = Ax + Bu, y = Cx + Du,

w = [y]
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The lag

L:,SW—>Z_|_,

L(23) = smallest L such that there is a kernel representation:

Row(t) + Ryw(t+1)+---+ Ryw(t+ L) = 0.

Polynomial matrix in

R(oc)w =0
has degree(R) < L.
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The MPUM in £7

Theorem: For infinite observation interval, I' — oo (our case),
the MPUM for w in £" exists.

In fact,

*

* = span({w O"UJ 0_ })closure

We are looking for effective computational algorithms to go from w to

. *
(a representation of) 5,

e.gd., a kernel repr. ~» the corresponding R;

A | B
e.g., the matrices [ P ] of an i/s/o representation of %:‘B.
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From data to kernel representation
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(1), ®(2), ..., w(T),...

Basic idea: look through the window (with A > L) in order to

discover the system laws.

time
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(1), ®(2), ..., w(T),...

Basic idea: look through the window (with A > L) in order to

discover the system laws.

time
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(1), ®(2), ..., w(T),...

Basic idea: look through the window (with A > L) in order to

discover the system laws.

Is there a recursion, same for all these windows?
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(1), ®(2), ..., w(T),...

Basic idea: look through the window (with A > L) in order to

discover the system laws.

The windows lead linea recta to the Hankel matrix

w(1) w(2)
w(2) w(3)
W (3) W (4)

B(A+1) @A 2)

and finding the vectors [ag a; - - -

w(t)
W(t+ 1)
@(t + 2)

W(t+ A)

aa_1] in its left kernel
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The windows lead linea recta to the Hankel matrix

The problem of computing the left kernel of this Hankel matrix has

w(1) w(2)
w(2) w(3)
w(3) w(4)

_fa}(A'+ 1) ra}(A'+ 2)

been studied in many aspects

o000l

Recursively in T' (Berlekamp-Massey, Antoulas, Kuijper, Polderman, e.a)

Recursively in A

A set of generators for the module generated by the left kernel

Approximately

Consistency aspects and persistency of excitation

w(t + 1)
W (t + 2)

W(t + A)
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From data to state representation
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_ [ AlB ]
w +—
C|D
Of course, once we have 5, we can analyze it, make an
input/output partition, make an observable state representation

r(t+ 1) = Ax(t) + Bu(t),

y(t) = Cuxz(t) + Du(t), w(t)= [ZEQ]

and compute the state trajectory

Z(1), Z(2),...,&(t),...
corresponding to

B(1), W(2), ..., w0(t),...
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o [t ]

Of course, once we have 5, we can analyze it, make an
input/output partition, make an observable state representation

r(t+ 1) = Ax(t) + Bu(t),
y(t) = Cuz(t) + Du(t), w(t) [u(t)]

y(t)
Of course,
£(2) &@3) -+ &t+1) .| _ |A B| |&1) &2) --- &@) -
y(1) g(2) --- y(t) C D| |ua(l) a(2) --- u(t)
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- [1f2]

Of course,
£(2) #@3) ..o &t+1) .| _ A Bl |#1) &(2) --- &)
g(1) 9(2) --- y(t) C D| |a(1) a(2) --- a(t)

But if we could go the other way:

first compute the state trajectory, directly from the data,
then this equation provides a way of

- . . A ‘ B * |
identifying the parameters [ = ‘ 5 ] of 355 !
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- [1f2]

£(2) x3) -.-- &(t+1) --. _
y(1) y(@2) .- g@)

A B
C D

e(1) «(2) --- @(¢)
a(l) w(2) --- )

This yields indeed a very attractive SYSID procedure:
® Truncation at some sufficiently large ©

® Model reduce using SVD or one of its friends by lowering the
row dimension of

E(1) #(2) .- @) -

A
® Solving for [ = } i ] using Least Squares

~~» ‘Subspace ID’ , oblique projection, etc.,: championed by Bart
De Moor and Peter Van Overschee. ~p.1833



- [1f2]

£(2) x3) -.-- &(t+1) --. _
y(1) y(@2) .- g@)

A B
C D

(1) ®(2) --- ®(¢)
u(l) a(2) --- a)

Note that classical realization theory is a special case: data is
impulse response.
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- [1f2]

How does this work?

(1), B(2), ..., 0(t),...
2
#(1),5(2), ..., &(t),...

This is a very nice system theoretic question.
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From data to state representation
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W [%%] by past/future intersection

(1) (D) 4
@(2) @(t + 1) 4
: : T
B w(A) w(t+ A —1) PAST
| @+ @(t + A) FUTURE
w(A 4+ 2) w(t+ A +1) 4
. . 1
@(20) @(t+ 24 — 1) +
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w — [%}%] by past/future intersection

The intersection of the span of the rows of H _
with the span of the rows of ‘H_ equals

| #A) #A+1)

Nice num. impl. (e.g. via left kernel) ~~» subspace ID

F(t+ A —1)

w(1) w(t) 4
w(2) w(t 4 1) 4
: : T
H_ B w(A) w(t+ A —1) PAST
H B w(A 4 1) w(t + A) FUTURE
w(A 4+ 2) w(t+ A +1) 4
. . +
@(20) @(t+ 24 — 1) +

- ] <— PRESENT STATE
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w [%}%] by oblique projection

Solve for G

w(l) - (T —2A+1) | [ w(1) - W(T —2A+1)
W(A) .- B(T — A) - W(A) - (T — A)
a(A+1) - @(T—A+1) 0o ... 0

@(24) .- arT) o .- 0

[ G(A+1) - GT—A+1)

_ _ : G = [ F(A) .- ;;;(T_A)]
y(24) .- y(T)

~Y . . .
Computes ! — ‘oblique projection
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- [2f2]

These algorithms do not make use of the Hankel structure.

Recent development: uses the Hankel structure, together with
shift-and-cut state construction algorithm.
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w — [A B] via left annihilators
C D

Implementation. Compute ‘the’ left annihilators of H.:

(1) @ (2) e @(t)
w(2) w(3) w(t + 1)
(N0 N2 Ns - Na| |®(3) @4 - @@E+2) | =0

B(A) BA+L) - @E+ A1)
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w — [A B] via left annihilators
C D

Implementation. Compute ‘the’ left annihilators of H.:

w(1) w(2) - W (t)
@ (2) @ (3) w(t+ 1)
[Nl No N3 .- NA] w(3) w(4) w(t + 2) ool =0
B(A) BA+L) - @E+ A1)
Then [53(1) #(2) ... %(t) .. ]
N2 Ns - Na 0| [@1) @@ - @)
N3 Na - 0 0] |445(2) w(3) .- w(t+1)
— 5 Lo | | w(s) w(4) .- w(t+2)
Na_1 Na 0O O ) ; ; ;
| Na 0 .- 0 o] [®QA) #(A+1) .. @E+A-1)

—p.24/33



C D

It actually suffices to compute a set of generators for the module

generated by the left kernel.

® Truncation at some sufficiently large ¢

® Model reduce using SVD or one of its friends by lowering the
row dimension of

B(1) B(2) - @) -

. AlB |
® Solving for p= ‘ 5 using Least Squares

Open question: Construct a balanced state trajectory from data.
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Shift-and-cut
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State maps

Problem: Given a behavior, for example, a kernel representation

T C P —

A
say known i/o w = (u, y), find a state repr. [ = f; ] from R. lLe.

rx(t+1) = Ax(t) + Bu(t),
y(t) = Ca(t) + Du(t), w(t)=|ud]
Gw(t) + Hx(t) + Fx(t+1) =0

with same w-behavior.
This is the classical problem of realization, where the impulse
response case has dominated the scene. “pa273



State maps

Paolo Rapisarda’s Ph.D. thesis: start from any representation.

Key Idea: Construct first a state map : * = X (o )w for a suitable
A|B
C|D

polynomial matrix X, get [ ] from (R, X).
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State maps

Define the ‘shift-and-cut’ operator o on R [£] as follows:

o:po+ P&+ FPrn_1" 4+ prg™

= D1

p2£_|_...

pn—lgn_z

pnfn_l

Extend-able in the obvious term-by-term way to R®*® [£].

Repeated use of the cut-and-shifton P € R®**® yields the
‘stack’ operator 2ip , defined by

o(P)
o?(P)

gdegree(P) (P)
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State maps

Construction of state map by cut-and-shift and stack operators:

Theorem: Let R(o)w = 0 be a kernel representation of 25 € £V,
Then X p (o) is a state map for 2.

The resulting state representation

R(o)w =0; x=3XYg(o)w

need not be minimal.
3 reduction algorithms.

The third algorithm implements this on an observed time-series.
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Performance
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Performance

#  Data set name T m p 1
1 Data of the western basin of Lake Erie 57 5 2 1
2 Data of Ethane-ethylene column % 5 3 1
3 Data of a 120 MW power plant 200 5 3 2
4 Heating system 801 1 1 2
5 Data from an industrial dryer 867 3 3 1
6 Data of a hair dryer 1000 1 1 5
7 Data of the ball-and-beam setup in SISTA 1000 1 1 2
8 Wing flutter data 1024 1 1 5
9 Data from a flexible robot arm 1024 1 1 4
10 Data of a glass furnace (Philips) 1247 3 6 1
11 Heat flow density through atwo layerwall | 1680 2 1 2
12 Simulation of a pH neutralization process | 2001 2 1 6
13 Data of a CD-player arm 2048 2 2 1
14 Data from an industrial winding process 2500 5 2 2
15 Liquid-saturated heat exchanger 4000 1 1 2
16 Data from an evaporator 6305 3 3 1
17 Continuous stirred tank reactor 7500 1 2 1
18 Model of a steam generator 9600 4 4 1

- p.30/33



Performance

Compare the misfit on the last 30% of the outputs and
the execution time for computing the ID model from the first 70% of

the data.

Misfit

1 12 13 1

B stls
100+
1 ‘ | ‘
0
1 2 3

[ Ipem
B subid | -

N

4 5 7 8 9101112131415161718

y1
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Execution time

50
40
30

Al

>
20
10

0

Performance

B stl's
- | __Ipem
B subid

.ﬂlHlﬂ L

o

1l
6 7 8 9

X2

10 11 12 13 14 15 16 17 18
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Performance

| 0
. @
h
3F ®
2r ® °
o
1 ° ° i ;‘ "
0 . ° . ¢ »
L ® oo O
O ":
” ° ® 0‘0..0 Y
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Conclusions
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Conclusions

® Deterministic SYSID: possible
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Conclusions

® Deterministic SYSID: possible
® MPUM: elegant

- p.32/33



Conclusions

® Deterministic SYSID: possible
® MPUM: elegant
#® d algorithms to compute the MPUM from data: feasible
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Conclusions

Deterministic SYSID: possible
MPUM: elegant
- algorithms to compute the MPUM from data: feasible

Direct state construction from data: clever and useful
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Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems
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Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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