
SYSTEM IDENTIFICATION
via

STATE CONTRUCTION

Jan C. Willems
K.U. Leuven, Belgium

Seminar, University of Southampton February 15, 2006 – p.1/33

Part of a research project with
Ivan Markovsky (K.U. Leuven)

Paolo Rapisarda (Un. of Southampton)
& Bart De Moor (K.U. Leuven)

– p.2/33

Problem

– p.3/33

SYSID

MATHEMATICAL MODEL

OBSERVED DATA
MODEL CLASS

– p.4/33

SYSID

Data: an ‘observed’ vector time-series

finite, infinite, or

A dynamical model from a model class,
e.g. a difference equation

or

– p.5/33

SYSID

‘deterministic’ ID

variables
observed

MODEL w

Model class:

SYSID algorithm:

– p.6/33

SYSID

‘deterministic’ ID: I/O form

variables
observedobserved

variables

MODELu y

Model class:

permutation proper

SYSID algorithm:

– p.6/33

SYSID

ID with unobserved latent inputs

variables
observedobserved

variables

latent
variables

MODEL

!

u

(unobserved)

y

Model class:

SYSID algorithm (e.g. PEM):

Usual assumption: stochastic. Main contributors: Deistler, Ljung. etc.
– p.6/33

SYSID

ID with unobserved latent inputs

variables
observedobserved

variables

latent
variables

MODEL

!

u

(unobserved)

y

Model class:

SYSID algorithm (e.g. PEM):

Usual assumption: stochastic. Main contributors: Deistler, Ljung. etc.

Why unobserved stochastic inputs?

– p.6/33

Case of interest today

Assumptions:

Data:

infinite

– p.7/33

Case of interest today

Assumptions:

Data:

infinite

Deterministic SYSID

– p.7/33

Case of interest today

Assumptions:

Data:

infinite

Deterministic SYSID
I/O partition known if advantageous

– p.7/33

Case of interest today

Assumptions:

Data:

infinite

Deterministic SYSID
I/O partition known if advantageous

Exact modeling with an eye towards approximations

– p.7/33

Case of interest today

Assumptions:

Data:

infinite

Deterministic SYSID
I/O partition known if advantageous

Exact modeling with an eye towards approximations

From the simple to the complex!

Stochastic

Exact

Exact Approximate
Deterministic

Approximate

Stochastic

Deterministic

– p.7/33

The MPUM

– p.8/33

The MPUM

A model:= a subset , the ‘behavior’
A family of (vector) time series

– p.9/33

The MPUM

A model:= a subset , the ‘behavior’

is unfalsified by

– p.9/33

The MPUM

A model:= a subset , the ‘behavior’

is unfalsified by

is more powerful than :

Every model is prohibition.
The more a model forbids, the better it is.

Karl Popper
(1902-1994)

– p.9/33

The MPUM

A model:= a subset , the ‘behavior’

is unfalsified by

is more powerful than :

A model class: a family, , of models

– p.9/33

The MPUM

A model:= a subset , the ‘behavior’

is unfalsified by

is more powerful than :

A model class: a family, , of models

The MPUM ‘most powerful unfalsified model’ in for ,
denoted :

1.

2.

3. and

– p.9/33

The MPUM

A model:= a subset , the ‘behavior’

is unfalsified by

is more powerful than :

A model class: a family, , of models

The MPUM ‘most powerful unfalsified model’ in for ,
denoted

Falsified

Unfalsified

MPUM

OBSERVED DATA

– p.9/33

The MPUM

A model:= a subset , the ‘behavior’

is unfalsified by

is more powerful than :

A model class: a family, , of models

The MPUM ‘most powerful unfalsified model’ in for ,
denoted

Given and , does exist?

‘Exact’ SYSID: Construct algorithms

– p.9/33

The model class

– p.10/33

The model class

We now define our model class (a family of subsets of).

It is an exceedingly familiar one: .

belongs to

– p.11/33

The model class

belongs to

is linear, shift-invariant, and closed

shift-invariant

the ‘shift’: .

is linear, time-invariant, and complete : ’prefix determined’

– p.11/33

The model class

belongs to

is linear, shift-invariant, and closed

is linear, time-invariant, and complete

matrices such that consists of all that
satisfy

In the obvious polynomial matrix notation

– p.11/33

The model class

belongs to

is linear, shift-invariant, and closed

is linear, time-invariant, and complete

Including input/output partition

, inputs, outputs (= # of equations)

– p.11/33

The model class

belongs to

is linear, shift-invariant, and closed

is linear, time-invariant, and complete

matrices such that
consists of all generated by

– p.11/33

The lag

smallest such that there is a kernel representation:

Polynomial matrix in

has .

– p.12/33

The MPUM in

Theorem: For infinite observation interval, (our case),
the MPUM for in exists.

In fact,

span

We are looking for effective computational algorithms to go from to
(a representation of) ,

e.g., a kernel repr. the corresponding ;

e.g., the matrices of an i/s/o representation of .

– p.13/33

From data to kernel representation

– p.14/33

Basic idea: look through the window (with) in order to
discover the system laws.

"
~

1 T"t+t

w

time

W

– p.15/33

Basic idea: look through the window (with) in order to
discover the system laws.

w~
"

1 T"t+t time

W

– p.15/33

Basic idea: look through the window (with) in order to
discover the system laws.

"

t

w~

1 T"t+ time

W

Is there a recursion, same for all these windows?

– p.15/33

Basic idea: look through the window (with) in order to
discover the system laws.

The windows lead linea recta to the Hankel matrix

...
...

...

and finding the vectors in its left kernel

– p.15/33

The windows lead linea recta to the Hankel matrix

...
...

...

The problem of computing the left kernel of this Hankel matrix has
been studied in many aspects

Recursively in (Berlekamp-Massey, Antoulas, Kuijper, Polderman, e.a)

Recursively in

A set of generators for the module generated by the left kernel

Approximately

Consistency aspects and persistency of excitation

– p.15/33

From data to state representation

– p.16/33

Of course, once we have , we can analyze it, make an
input/output partition, make an observable state representation

and compute the state trajectory

corresponding to

– p.17/33

Of course, once we have , we can analyze it, make an
input/output partition, make an observable state representation

Of course,

– p.17/33

Of course,

But if we could go the other way:

first compute the state trajectory, directly from the data,
then this equation provides a way of

identifying the parameters of !

– p.17/33

This yields indeed a very attractive SYSID procedure:

Truncation at some sufficiently large

Model reduce using SVD or one of its friends by lowering the
row dimension of

Solving for using Least Squares

‘Subspace ID’ , oblique projection, etc.,: championed by Bart
De Moor and Peter Van Overschee. – p.18/33

Note that classical realization theory is a special case: data is
impulse response.

– p.18/33

How does this work?

This is a very nice system theoretic question.

– p.19/33

From data to state representation

– p.20/33

by past/future intersection

...
...

...
...

...
...

...
...

PAST

FUTURE

– p.21/33

by past/future intersection

...
...

...
...

...
...

...
...

PAST

FUTURE

The intersection of the span of the rows of
with the span of the rows of equals

PRESENT STATE

Nice num. impl. (e.g. via left kernel) subspace ID – p.21/33

by oblique projection

Solve for

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

Computes ! ‘oblique projection

– p.22/33

These algorithms do not make use of the Hankel structure.

Recent development: uses the Hankel structure, together with
shift-and-cut state construction algorithm.

– p.23/33

via left annihilators

Implementation. Compute ‘the’ left annihilators of :

...
...

...
...

– p.24/33

via left annihilators

Implementation. Compute ‘the’ left annihilators of :

...
...

...
...

Then

...
...

...
...
...

...
...

...
...

...
...

– p.24/33

It actually suffices to compute a set of generators for the module
generated by the left kernel.

Truncation at some sufficiently large

Model reduce using SVD or one of its friends by lowering the
row dimension of

Solving for using Least Squares

Open question: Construct a balanced state trajectory from data.

– p.25/33

Shift-and-cut

– p.26/33

State maps

Problem: Given a behavior, for example, a kernel representation

say known i/o , find a state repr. from . I.e.

or

with same -behavior.
This is the classical problem of realization, where the impulse
response case has dominated the scene. – p.27/33

State maps

Paolo Rapisarda’s Ph.D. thesis: start from any representation.
Key Idea: Construct first a state map : for a suitable

polynomial matrix , get from .

– p.27/33

State maps

Define the ‘shift-and-cut’ operator on as follows:

Extend-able in the obvious term-by-term way to .
Repeated use of the cut-and-shift on yields the
‘stack’ operator , defined by

...

– p.27/33

State maps

Construction of state map by cut-and-shift and stack operators:

Theorem: Let be a kernel representation of .
Then is a state map for .

The resulting state representation

need not be minimal.

reduction algorithms.

The third algorithm implements this on an observed time-series.

– p.28/33

Performance

– p.29/33

Performance

Data set name

1 Data of the western basin of Lake Erie 57 5 2 1
2 Data of Ethane-ethylene column 90 5 3 1
3 Data of a 120 MW power plant 200 5 3 2
4 Heating system 801 1 1 2
5 Data from an industrial dryer 867 3 3 1
6 Data of a hair dryer 1000 1 1 5
7 Data of the ball-and-beam setup in SISTA 1000 1 1 2
8 Wing flutter data 1024 1 1 5
9 Data from a flexible robot arm 1024 1 1 4
10 Data of a glass furnace (Philips) 1247 3 6 1
11 Heat flow density through a two layer wall 1680 2 1 2
12 Simulation of a pH neutralization process 2001 2 1 6
13 Data of a CD-player arm 2048 2 2 1
14 Data from an industrial winding process 2500 5 2 2
15 Liquid-saturated heat exchanger 4000 1 1 2
16 Data from an evaporator 6305 3 3 1
17 Continuous stirred tank reactor 7500 1 2 1
18 Model of a steam generator 9600 4 4 1

– p.30/33

Performance

Compare the misfit on the last 30% of the outputs and
the execution time for computing the ID model from the first 70% of
the data.

Misfit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

50

100

x1

y1

t1

stls
pem
subid

l1 l2 l3

– p.30/33

Performance

Execution time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10

20

30

40

50

x2

y2

stls
pem
subid

l4 l5 l6 l7 l8 l9

– p.30/33

Performance

!4 !2 0 2 4 6
!3

!2

!1

0

1

2

3

4

5

6
t

x

y

– p.30/33

Conclusions

– p.31/33

Conclusions

Deterministic SYSID: possible

– p.32/33

Conclusions

Deterministic SYSID: possible
MPUM: elegant

– p.32/33

Conclusions

Deterministic SYSID: possible
MPUM: elegant
algorithms to compute the MPUM from data: feasible

– p.32/33

Conclusions

Deterministic SYSID: possible
MPUM: elegant
algorithms to compute the MPUM from data: feasible

Direct state construction from data: clever and useful

– p.32/33

Details & copies of the lecture frames are available from/at
Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/ jwillems

– p.33/33

Details & copies of the lecture frames are available from/at
Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/ jwillems

Thank you
Thank you

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you
– p.33/33

