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Open and Connected

The central tenets of the field of systems and control:

Systems areopen and consist of
Interconnected subsystems.

Synthesis of systems consists of
Interconnecting subsystems
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Open

ENVIRONMENT

SYSTEM
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Connected

.LT

i

Architecture with subsystems
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Mathematization

1. |Get the physics right

2. The rest Is mathematics

R.E. Kalman, Opening lecture

IFAC World Congress
Prague, July 4, 2005
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Mathematization

1. |Get the physics right
2. The rest Is mathematics

R.E. Kalman, Opening lecture

IFAC World Congress
Prague, July 4, 2005

Prima la fisica, pol la matematica
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How it all began ...



Catel

How, for heaven’s sake, does it move?
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Kepler's laws

(2 N :
PLAN ET
Johannes Kepler (1571-1630) et
SUN

Kepler's laws:
Ellipse, sun in focus; = areas in = times;
(period)? = (diameter)3
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The equation of the planet

Consequence:
acceleration = function of position and velocity

2

d
w(t) = Aw(t), Sw (b))

~» Via calculusand calculation

| Specimen

Isaac Newton (1643-1727)
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The equation of the planet

Consequence:
acceleration = function of position and velocity

2

d
—mw(t) = Aw(®), Zw(®)

~» Via calculusand calculation

Isaac Newton (1643-1727)
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Newton’s laws

2-nd law  F’(t) = m-d;w(t)

i 1.t
gravity  F’(t) = mW

3-rdlaw  F'(t) + F"(t) = 0
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The paradigm of closedsystems



‘Axiomatization’

K.1l, K2, &K.3
lw)
~ dtzw(t) |%w(t)|2 =0
~ Lz = f(x)

~» ‘dynamical systems’, flows

~» flows as paradigm of dynamics closed systems

Motion determined by internal initial conditions.
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‘Axiomatization’

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930- )
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‘Axiomatization’

A dynamical systenms defined by
a state spaceX and

. X
a state transition function kf\
¢: ---suchthat ---. k\

¢(t, x) = state at timet starting from state x

This framework of closed systems
IS universally used for dynamics
In mathematics and physics
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‘Axiomatization’

A dynamical systenms defined by
a state spaceX and

. X
a state transition function L\
¢: ---suchthat ---. k\

¢(t, x) = state at timet starting from state x

How could they forget Newton's2™< |aw,
about Maxwell’'s eg’ns,
about thermodynamics,
about tearing & zooming & linking,
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‘Axiomatization’

Reply: assumefixed boundary conditions’

ENVIRONMENT

SYSTEM

Boundary

~» {0 model a system,
we have to model also the environment!

15/



‘Axiomatization’

ENVIRONMENT

SYSTEM

Boundary

Chaos theory, cellular automata, sync, etc.,
function In this framework ...
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Meanwhile, in engineering, ...
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Input/output systems

stimulus response
cause effect
input output
U1 —_ ! y1
U, —t Yo
input E SYSTEM output
U, ——— 5l u,
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The originators

Y e

Lord Rayleigh (1842-1919)

Oliver Heaviside (180—925)

and the many electrical circuit theorists ...

Norbert Wiener (1894-1964)
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Mathematical description

input — SYSTEM output

Classical control  p (£)y =q (£) u

u. Input, y: output, p and g polynomials
G(s) = % transfer functions, impedances, admittances.

PID rules. Bode, Nyquist, Nichols. Lead-lag. Root-locus.

Also transfer f'n models early on in circuit theory and filter ing.
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Mathematical description

input — SYSTEM Output

y(t) = [0 oo H(t — t)u(t') dt’

y(t) = Ho(t) + /_t Hy(t — t")u(t") dt’+

t t/
/ Hy(t —t',t' — t")u(t)u(t"”) dt'dt” + - - -
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Mathematical description

input — SYSTEM Output

y(t) = [0 oo H(t — t)u(t') dt’

y(t) = Ho(t) + /_t Hy(t — t")u(t") dt’+

t t/
/ Hy(t —t',t' — t")u(t)u(t"”) dt'dt” + - - -

— 00 J —OCO

These models fail to deal withiinitial conditions’.
A physical system iISSELDOM an i/o map

—n. 19/



An input/output map?

A system:< map from inputs « to outputsy. Linear : &

au — ay, (w1 + uz)+— (y1 + y2)

cfr. numerous textbooks and Wikipedia....

Example: y(t) = ffoo oro H(t —t)u(t') dt'.
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An input/output map?

A system:< map from inputs « to outputsy. Linear : &

au — ay, (w1 + uz)+— (y1 + y2)

cfr. numerous textbooks and Wikipedia....

Example: y(t) = ffoo oro H(t —t)u(t') dt'.

Combinep (%) y = q (%) u with feedbacku = K.

Both linear...
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An input/output map?
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Combined ~ p (%) y = Kq (%) Y.
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An input/output map?

A system:< map from inputs « to outputsy. Linear : &
au — ay, (w1 + uz)+— (y1 + y2)

Combine p (%) y = q (%) u with feedbacku = K.

Both linear...

Combined ~ p (%) y = Kq (%) Y.

We seem to have left the realm of linear systems.
Via the (feed)back door??

—n. 20/



An input/output map?

A system:< map from inputs « to outputsy. Linear : &
au — ay, (w1 + uz)+— (y1 + y2)

Combine p (%) y = q (%) u with feedbacku = K.

Both linear...

Combined ~ p (%) y = Kq (%) Y.

We seem to have left the realm of linear systems.
Via the (feed)back door??

F=mass g ~ qt)==_[' (t—t)F)dt

mass

Combine with inverse square law.Eppur NON si muove...
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Input/state/output systems

Around 1960: aparadigm shift

%m = f(z,u), y = g(z, u)

/\,}

‘:,i_ 2

Rudolf Kalman (1930- )
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Input/state/output systems

Around 1960: aparadigm shift

~> %:c:f(a:,u), y:g(az,u)

=

open

ready to be interconnected
outputs of one system— inputs of another

deals with initial conditions
Incorporates nonlinearities, time-variation

N

models many physical phenomena

L
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Input/state/output systems

Around 1960: aparadigm shift

%m — f(mau)a Yy = g(:z:,u)

Interconnection:

SYSTEM

E SYSTEM IE
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‘Axiomatization’

State transition function:
C/b(ta X u) .

state reached at timet from x using input .

%CE = f(z,u), y = g(x,u)

\X
Read-out function: \

g(x,u) : output value with statex and input value u.
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The input/state/output view turned out to be
very effective and fruitful

# for modeling

# for control (stabilization, robustness, ...)

CLOSED-LOOP

;é? SYSTEM

to—be-controlled outputs

exogenous inputs

E E E
sl e PLANT fo oo
control measured
B Inputs outputs f
FEEDBACK
3 CONTROLLER
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The input/state/output view turned out to be

© o o o

°

°

very effective and fruitful

for modeling

for control (stabilization, robustness, ...)

prediction of one signal from another, filtering

understanding system representations

(transfer f'n, input/state/output, etc.)

model simplification, reduction

system ID: models from data
etc., etc., etc.
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Let’s take a closer look at the I/o framework ...

In control
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active control

exogenous inputs

Difficulties with i/o

E

control
B Inputs

] PLANT

Z

CLOSED-LOOP
SYSTEM

to—be-controlled outputs

E

E

Sensors \:g_—

measured
outputs

FEEDBACK
CONTROLLER

Very intelligent, very useful, ... but general?
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Difficulties with 1/o

active control
CLOSED-LOOP

;é? SYSTEM

to—be-controlled outputs

exogenous inputs

E E E
:,ﬁ:, PLANT \r
control measured
B Inputs outputs f
FEEDBACK
3 CONTROLLER

versus passive control

Dampers, heat fins, pressure valves, grooves and strips...
Controllers without sensors and actuators
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Difficulties with i/o

active control versus passive control

Controlling turbulence

airplanes, sharks, dolphins, golf balls, bicycling helmet, etc.
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Difficulties with i/o

active control versus passive control

Controlling turbulence

-UNCONTROLLED
TURBULENCE
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Difficulties with i/o

active control versus passive control

Controlling turbulence

Nagano 1998
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Difficulties with i/o

active control versus passive control

Controlling turbulence

Nagano 1998
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Difficulties with i/o

active control versus passive control

Controlling turbulence

Nagano 1998
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Difficulties with 1/o

active control versus passive control

Controlling turbulence

Nagano 1998

These are beautifulcontrollers! But, the only people not
calling this "control” , are the control engineers...
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Difficulties with i/o

active control versus passive control
Another example: the stabilizer of a ship

These are beautifulcontrollers! But, the only people not
calling this "stabilization” , are the control engineers...
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Let’s take a closer look at the I/o framework ...

for iInterconnection
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Interconnection:

I/0 and interconnection

SYSTEM

E SYSTEM IE

~» SIMULINK ©
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I/0 and interconnection

hy

pnf-

11

d

|
[ pﬂf—l T“Z I—pzz

21 f)s

ahl = Fi(hi,p11,P12), f11 = Hi1(h1,p11), f12 = Hi2(h1,p12)

d

Eh2 = Fi1(h2,p21,p22), f21 = H21(h2,p21), f22 = Ha22(h2, p22)

Inputs: the pressurespi1, P12, P21, P22

outputs: the flows fi11, fi2, f21, f22
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I/0 and interconnection

o L N

11 ' 1:22

d
—h1 = Fi(h1,p11,P12), f11 = Hi1(h1,p11), fi2 = Hi2(h1,p12)

dt

d

ahz = Fi(h2,p21,p22), fo1 = H21(h2,p21), fo2 = H22(h2, p22)
Interconnection: P12 = P21, f12 + f21 =0

This identifies 2 inputs AND (NOT WITH) 2 outputs,

the sort of thing SIMULINK © forbids.
This is the rule, not the exception (in fluidics, mechanics,...)
Interconnection is not input-to-output assignment!
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Sharing variables not input-to-output assignment,
IS the mechanism by which systems interact.

Building Building Building Building
block 1 e e block 2 block 1 —— block 2

Before interconnection:
variables on interconnected terminals arendependent
After interconnection: they are setequal.

No signal graphs!
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Let’s take a closer look at the I/o framework ...

for modeling



I/0 iIn modeling

Physical systems often interact with their environment thiough
physicalterminals

[ ]
ENVIRONMENT o SYSTEM
[

On each of these terminals many variables may ‘live’:
#® voltage & current

position & force

pressure & flow

price & demand

angle & momentum

etc. & etc.
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I/0 iIn modeling

Physical systems often interact with their environment thiough
physicalterminals

[ ]
ENVIRONMENT o SYSTEM
[

Usually input and output variables onsameterminal:
NOT: on one terminal there is an input, on another there is an

output.
u, — 5t Y1
Uo—0— . )2

input SYSTEM e Output
u, >l ° .,

This universal picture can be physically very misleading..
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Conclusion

The inabllity of the i/o framework to deal properly with

(1) interconnections
and
(i) passive control

IS lethal.

Just as the state, the input/output partition, if needed, sbuld be
constructedfrom first principles models. Contrary to the state,
such a partition may not be usefu) or even possible

We need a better, more flexible, universal, simpler framewdt
that properly deals with
open & connected,
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General formalism

—n. 33/



Generalities

What is a model? As amathematical concept.

Whatis a dynamical system?

What is the role of differential equations in thinking about
dynamical models?
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Generalities

Intuition
We have a ‘phenomenon’ that produces ‘outcomes’ (‘events’)
We wish to modelthe outcomes thatcan occur.

Before we model the phenomenon:
the outcomes are in a set, which we call thaniversum

After we model the phenomenon:
the outcomes are declared (thought, believed)
to belong to thebehaviorof the model,
a subset of this universum.

This subset is what we consider the mathematical model.
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Generalities

This way we arrive at the

Definition

A math. modelis a subset?s of a universum 1 of outcomes

B C Il

B is called the behavior of the model.

For example,the ideal gas lawstates that the temperatureT’,
pressure P, volume V', and quantity (number of moles) IV of
an ideal gas satisfy

PV
NT

with R a universal constant.
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Generalities

So, before Boyle, Charles, and Avogadro got into the act,
T, P,V and N may have seemed unrelated, yielding

_ 4
U=RZ.
The ideal gas law restricts the possibilities to

B = {(T,P,V,N) e R} | PV/NT = R}
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Dynamical systems

In dynamics, the outcomes are functions of time-»

EVENTS

AV

time

time

SYSTEM

time

S b

Which event trajectories are possible?
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Dynamical systems

Definition

A dynamical systens |[X := (T, W, 23)

with T C R, thetime-axis (= the relevant time instances),
W, the signal space
(= where the variables take on their values),

B C W' | the behavior (=the admissible trajectories).
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Dynamical systems

Definition

A dynamical systens |[X := (T, W, 23)

with T C R, thetime-axis (= the relevant time instances),
W, the signal space
(= where the variables take on their values),

B C W' | the behavior (=the admissible trajectories).

i %% time

Totality of ‘legal’ trajectories =: the behavior

—n. 36/



A dynamical systens |[X := (T, W, 23)

Dynamical systems

Definition

with T C R, thetime-axis (= the relevant time instances),
W, the signal space

B C W

(= where the variables take on their values),
the behavior (=the admissible trajectories).

For atrajectory (‘an event’) w : T — W, we thus have:

w € B . the model the trajectory w,
w ¢ B . the model forbids the trajectory w.
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Dynamical systems

Definition

A dynamical systens |[X := (T, W, 23)

with T C R, thetime-axis (= the relevant time instances),
W, the signal space
(= where the variables take on their values),

B C W' | the behavior (=the admissible trajectories).

Usually,
T = R, or [0, c0), etc. (In continuous-time systems),
or Z, or N, etc. (in discrete-time systems).
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A dynamical systens |[X := (T, W, 23)

Dynamical systems

Definition

with T C R, thetime-axis (= the relevant time instances),
W, the signal space

B C W

Usually,

(= where the variables take on their values),
the behavior (=the admissible trajectories).

W C R¥ (in lumped systems),
a function space

(in distributed systems, time a distinguished variable),
a finite set (in DES)’ etc.
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A dynamical systens |[X := (T, W, 23)

Dynamical systems

Definition

with T C R, thetime-axis (= the relevant time instances),
W, the signal space

B C W

Emphasis

(= where the variables take on their values),
the behavior (=the admissible trajectories).

T = R,

W = RY,

B — solutions of system of (linear constant coeff.)
ODE'’s, difference eqn’s, or PDE’s.~» ‘differential systems’.
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Examples

The behavior is all there is
Equivalence, representations, symmetries, controllalty, model
simplification, etc. must refer to the behavior.
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Examples

The behavior is all there is
Equivalence, representations, symmetries, controllalty, model
simplification, etc. must refer to the behavior.

Constant coefficient linear ODE'’s (linear DAE’S)
Row + Rigw + Ryzw + - -+ + Rybw = 0

T =R, W = R",*8 = solutions...
Notation: R (£)w =0, R € R[£]*™", real pol. matrix.

The solution definition is important. € (R, R¥) or D (R, R¥)
different from L, (R, R¥) or compact support.
Not only algebra, also analysis.
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Examples

Input / state / output systems

Behavior:
either the (u, y, x)’s, or the (u,y)'s?
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Examples

_ Working
Heating QT terminal
terminal

Thermodynamic
Engine

Cooling

time-axis: R terminal

Q: Variables of interest? A: Qn,Tn, Q.. T., W

~> signal spaceW =Ry X Ry X Ry X Ry X R

Behavior ®B: a suitable family of trajectories.

But, there are some universal laws that restrict theX3’s that are
‘thermodynamic’.



Examples

_ Working
Heating QT terminal
terminal

Cooling

First and second law terminal
]{(Qh—Qc—W)dtZO; %(&—&)dtgo.
Th Tc

These laws deal withiopen’ systems.
But not with input/output systems!
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Controllability
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Controllability

Take any two trajectories wy, wo € 8.

w M/—_‘

time
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Controllability

Take any two trajectories wy, wo € 8.

0 time

‘Controllability

.
------
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Controllability

The time-invariant systemX = (T, W, 28) is said to be

controllable

If forall wq,ws € B there existsw € B andT > 0 such
that

B wl(t) t <O
- 'LU2(t—T) tZT

Controllability :&<

legal trajectories must be‘patch-able’, ‘concatenable’.
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State Controllability

Ex = f (w,u).
controllability: variables = state or (input,
This is aspecial casef our controllability:
/
x/x/f

state)

time
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State Controllability

il
.
:

Special caseclassical Kalman definitions for

o

%m:f(w,u).

controllability: variables = state or (input, state)

Why should we be so concerned with the state?

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?
Or not properly editing the equations?

Kalman’s definition addresses a rather special situation.
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Tests

Given a representation, derive algorithms in terms of the
parameters for controllability. Consider 25 defined by

()
R|— | w=0.
dt

R: polynomial matrix. Under what conditions on
R € R**¥ [¢] does it define acontrollable system?

Theorem: R (%) w = 0 defines a controllable system

rank (R (A)) = constant overA € C.
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Tests

Given a representation, derive algorithms in terms of the
parameters for controllability. Consider 25 defined by

()
R|— | w=0.
dt

R: polynomial matrix. Under what conditions on
R € R**¥ [¢] does it define acontrollable system?

Iff it admits an image representation
_ d

kernel(R(%)) = image(M(%))

—n. 43/



Tests
Note:

® Whenis

() = (&)

— | w1 = — | w
p dt 1 q dt 2
controllable? p, g € R [£], not both zero.

Controllable <« rank([p(A) —q(N)] =1V € C.
Iff p and g are co-prime. No common factors!
Testable via Sylvester matrix, etc.

Generalizable.
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PDE'’s
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PDE'’s

Much of the theory also holds for PDE'’s.

T = R", the set of independent variables, oftem = 4,
W = RY, the set of dependent variables,
B — set of mapsR® — R"
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PDE'’s

Much of the theory also holds for PDE'’s.

T = R", the set of independent variables, oftem = 4,
W = RY, the set of dependent variables,
B — set of mapsR® — R"
Let R € R**¥[&q, -+ , &), and consider
R(a%,-.- ,%)wzo. (%)

Define the associated behavior

B — {w € € (R, RY) | () holds}.
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Example

Maxwell’'s eq'ns, diffusion eg’n, wave eq'n,. ..

Y
&
I

|
5

—> 8—»
VXE = ——
ot ’
V-B = 0,
1 -

OM
Y
X
w]
[
|
Q




Example

Maxwell’'s eq'ns, diffusion eg’n, wave eq'n,. ..

— 1
V-E = — P
€0
— 8—»
VXE = ——
ot "’
V-B = o0,
— —_ 8—»
2 ;
c“°VXB = — —
Eog—i_at

T =R x R3 (time and spaceh = 4,

w = (Ea Ea .77 P)

(electric field, magnetic field, current density, charge desity),
W =R3 x R3 x R3 x R,w = 10,

B — set of solutions to these PDE’s.

Note: 10 variables, 8 equations!=- 3 free variables. ‘open’



Controllability for PDE’s

Controllability def’n in pictures
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Controllability for PDE’s

Jw € B ‘patches’ wy, wo € B.

Controllability : < ‘patch-ability’.
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Are Maxwell’'s equations controllable ?

The following equations in thescalar potential ¢ :

R x R3 — R and the vector potential A : R x R3 — R3,
generate exactly the solutions to Maxwell's equations:

—> 8 g
5t o,
B = VXA,
J = eoﬁA — 6002V2A+ €OCZV (V . A) + €0§V¢9
O -
= —e0—V-A—gogV?3op.
P €05, eoV o

Proves controllability. Illustrates the interesting connection

controllability < 3 potential!
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Conclusion

A good theory of dynamics has open systems as the starting

point. Allows interconnection and tearing. Closed dynamical
systems as used in math and physics very limited.

—n. 51/



Conclusion

A good theory of dynamics has open systems as the starting

point. Allows interconnection and tearing. Closed dynamical
systems as used in math and physics very limited.

Input/state/output models are an excellent paradigm. They
model many things!
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Conclusion

A good theory of dynamics has open systems as the starting

point. Allows interconnection and tearing. Closed dynamical
systems as used in math and physics very limited.

Input/state/output models are an excellent paradigm. They
model many things!

The flexibility and generality of the behavioral approach in
modeling open systems, and their interconnections, is e\aat.
Back-to-basics.

Incorporates wealth of system representations, deals forgssive
control, generalizes painlessly to PDE’s, etc.

Exemplified by the notion of controllability.
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Details & copies of the lecture frames are available from/at
Jan. Wl |l ens@sat . kul euven. be

http://ww. esat. kul euven. be/ ~jw | | ens
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Details & copies of the lecture frames are available from/at

Jan. Wl | ens@sat . kul euven. be

http://ww. esat. kul euven. be/ ~jw | | ens

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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