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Open and Connected

The central tenets of the field of systems and control:

Systems areopen and consist of

interconnected subsystems.

Synthesis of systems consists of
interconnecting subsystems
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Open

SYSTEM

ENVIRONMENT

Boundary
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Connected

Architecture with subsystems
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Mathematization

1. Get the physics right

2. The rest is mathematics

R.E. Kalman, Opening lecture
IFAC World Congress

Prague, July 4, 2005

– p. 6/52



Mathematization

1. Get the physics right

2. The rest is mathematics

R.E. Kalman, Opening lecture
IFAC World Congress

Prague, July 4, 2005

Prima la fisica, poi la matematica
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How it all began ...
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Planet ???

How, for heaven’s sake, does it move?
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Kepler’s laws

Johannes Kepler (1571-1630)
PLANET

SUN

Kepler’s laws:
Ellipse, sun in focus; = areas in = times;
(period)2 ∼= (diameter)3
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The equation of the planet

Consequence:
acceleration = function of position and velocity

d2

dt2
w(t) = A(w(t),

d

dt
w(t))

; via calculusand calculation

d2

dt2
w(t) +

1w(t)

|w(t)|2
= 0

Isaac Newton (1643-1727)
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The equation of the planet

Consequence:
acceleration = function of position and velocity

d2

dt2
w(t) = A(w(t),

d

dt
w(t))

; via calculusand calculation

d2

dt2
w(t) +

1w(t)

|w(t)|2
= 0

Isaac Newton (1643-1727)

Hypotheses 
 non

 fingo

– p. 10/52



Newton’s laws

2-nd law F ′(t) = m d2

dt2 w(t)

gravity F ′′(t) = m
1w(t)

|w(t)|2

3-rd law F ′(t) + F ′′(t) = 0

⇓

d2

dt2
w(t) +

1w(t)

|w(t)|2
= 0
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The paradigm of closedsystems
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‘Axiomatization’

K.1, K.2, & K.3

;
d2

dt2
w(t) +

1w(t)

| d
dtw(t)|2

= 0

;
d
dt

x = f(x)

; ‘dynamical systems’, flows

; flows as paradigm of dynamics: closed systems

Motion determined by internal initial conditions.
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‘Axiomatization’

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930- )
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‘Axiomatization’

X

A dynamical systemis defined by
a state spaceX and
a state transition function

φ : · · · such that · · ·

φ(t, x) = state at timet starting from state x

This framework of closed systems

is universally used for dynamics

in mathematics and physics
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‘Axiomatization’

X

A dynamical systemis defined by
a state spaceX and
a state transition function

φ : · · · such that · · ·

φ(t, x) = state at timet starting from state x

How could they forget Newton’s2nd law,

about Maxwell’s eq’ns,

about thermodynamics,

about tearing & zooming & linking,

...?
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‘Axiomatization’

Reply: assume‘fixed boundary conditions’

SYSTEM

ENVIRONMENT

Boundary

; to model a system,
we have to model also the environment!
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‘Axiomatization’

SYSTEM

ENVIRONMENT

Boundary

Chaos theory, cellular automata, sync, etc.,
function in this framework ...
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Meanwhile, in engineering, ...
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Input/output systems

SYSTEMstimulus response

cause
input

effect
output

u1
u2

u

1
y

um

y
2

p

input SYSTEM output
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The originators

Lord Rayleigh (1842-1919)

Oliver Heaviside (1850-1925)

Norbert Wiener (1894-1964)

and the many electrical circuit theorists ...
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Mathematical description

SYSTEMinput outputu y

Classical control p
(

d
dt

)

y = q
(

d
dt

)

u

u: input, y: output , p and q polynomials

G(s) = q(s)

p(s)
transfer functions, impedances, admittances.

PID rules. Bode, Nyquist, Nichols. Lead-lag. Root-locus.

Also transfer f’n models early on in circuit theory and filter ing.
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Mathematical description

SYSTEMinput outputu y

y(t) =
∫ t

0 or −∞
H(t − t′)u(t′) dt′

y(t) = H0(t) +

∫ t

−∞

H1(t − t′)u(t′) dt′+

∫ t

−∞

∫ t′

−∞

H2(t − t′, t′ − t′′)u(t′)u(t′′) dt′dt′′ + · · ·

– p. 19/52



Mathematical description

SYSTEMinput outputu y

y(t) =
∫ t

0 or −∞
H(t − t′)u(t′) dt′

y(t) = H0(t) +

∫ t

−∞

H1(t − t′)u(t′) dt′+

∫ t

−∞

∫ t′

−∞

H2(t − t′, t′ − t′′)u(t′)u(t′′) dt′dt′′ + · · ·

These models fail to deal with‘initial conditions’.
A physical system isSELDOM an i/o map
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An input/output map?

A system:⇔ map from inputs u to outputs y. Linear :⇔

αu 7→ αy, (u1 + u2) 7→ (y1 + y2)

cfr. numerous textbooks and Wikipedia....

Example: y(t) =
∫ t
−∞ or 0 H(t − t′)u(t′) dt′.
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An input/output map?

A system:⇔ map from inputs u to outputs y. Linear :⇔

αu 7→ αy, (u1 + u2) 7→ (y1 + y2)

cfr. numerous textbooks and Wikipedia....

Example: y(t) =
∫ t
−∞ or 0 H(t − t′)u(t′) dt′.

Combinep
(

d
dt

)

y = q
(

d
dt

)

u with feedbacku = Ky.

Both linear...
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An input/output map?

A system:⇔ map from inputs u to outputs y. Linear :⇔

αu 7→ αy, (u1 + u2) 7→ (y1 + y2)

Combinep
(

d
dt

)

y = q
(

d
dt

)

u with feedbacku = Ky.

Both linear...

Combined ; p
(

d
dt

)

y = Kq
(

d
dt

)

y.

We seem to have left the realm of linear systems.
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An input/output map?

A system:⇔ map from inputs u to outputs y. Linear :⇔

αu 7→ αy, (u1 + u2) 7→ (y1 + y2)

Combinep
(

d
dt

)

y = q
(

d
dt

)

u with feedbacku = Ky.

Both linear...

Combined ; p
(

d
dt

)

y = Kq
(

d
dt

)

y.

We seem to have left the realm of linear systems.
Via the (feed)back door??
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An input/output map?

A system:⇔ map from inputs u to outputs y. Linear :⇔

αu 7→ αy, (u1 + u2) 7→ (y1 + y2)

Combinep
(

d
dt

)

y = q
(

d
dt

)

u with feedbacku = Ky.

Both linear...

Combined ; p
(

d
dt

)

y = Kq
(

d
dt

)

y.

We seem to have left the realm of linear systems.
Via the (feed)back door??

F = mass d2

dt2 q ; q(t) = 1
mass

∫ t
−∞(t − t′)F (t′) dt′

Combine with inverse square law.Eppur NON si muove...
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Input/state/output systems

Around 1960: aparadigm shift

;
d
dtx = f(x, u), y = g(x, u)

Rudolf Kalman (1930- )
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Input/state/output systems

Around 1960: aparadigm shift

;
d
dtx = f(x, u), y = g(x, u)

1. open

2. ready to be interconnected
outputs of one system7→ inputs of another

3. deals with initial conditions

4. incorporates nonlinearities, time-variation

5. models many physical phenomena

6. ...
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Input/state/output systems

Around 1960: aparadigm shift

;
d
dtx = f(x, u), y = g(x, u)

Interconnection:

SYSTEM

SYSTEM
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‘Axiomatization’

State transition function:
φ(t, x, u) :

state reached at timet from x using input u.

X

d
dtx = f(x, u), y = g(x, u)

Read-out function:
g(x, u) : output value with statex and input value u.
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The input/state/output view turned out to be
very effective and fruitful

for modeling

for control (stabilization, robustness, ...)

�
�
�
�

to−be−controlled outputs

Actuators PLANT

FEEDBACK
CONTROLLER

control
inputs

measured
outputs

CLOSED−LOOP
SYSTEM

exogenous inputs

Sensors
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The input/state/output view turned out to be
very effective and fruitful

for modeling

for control (stabilization, robustness, ...)

prediction of one signal from another, filtering

understanding system representations
(transfer f’n, input/state/output, etc.)

model simplification, reduction

system ID: models from data

etc., etc., etc.
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Let’s take a closer look at the i/o framework ...

in control
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Difficulties with i/o

active control

�
�
�
�

to−be−controlled outputs

Actuators PLANT

FEEDBACK
CONTROLLER

control
inputs

measured
outputs

CLOSED−LOOP
SYSTEM

exogenous inputs

Sensors

Very intelligent, very useful, ... but general?
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Difficulties with i/o

active control

�
�
�
�

to−be−controlled outputs

Actuators PLANT

FEEDBACK
CONTROLLER

control
inputs

measured
outputs

CLOSED−LOOP
SYSTEM

exogenous inputs

Sensors

versus passive control
Dampers, heat fins, pressure valves, grooves and strips...

Controllers without sensors and actuators
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Difficulties with i/o

active control versus passive control

Controlling turbulence

airplanes, sharks, dolphins, golf balls, bicycling helmets, etc.
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Difficulties with i/o

active control versus passive control

Controlling turbulence
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Difficulties with i/o

active control versus passive control

Controlling turbulence

Nagano 1998
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Difficulties with i/o

active control versus passive control

Controlling turbulence

Nagano 1998
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Difficulties with i/o

active control versus passive control

Controlling turbulence

Nagano 1998
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Difficulties with i/o

active control versus passive control

Controlling turbulence

Nagano 1998

These are beautifulcontrollers! But, the only people not
calling this ”control” , are thecontrol engineers...
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Difficulties with i/o

active control versus passive control
Another example: the stabilizer of a ship

These are beautifulcontrollers! But, the only people not
calling this ”stabilization” , are thecontrol engineers...
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Let’s take a closer look at the i/o framework ...

for interconnection
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i/o and interconnection

Interconnection:

SYSTEM

SYSTEM

; SIMULINK c©
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i/o and interconnection

f11 f12

p
12

h 1
p

21
f21

p
22

f22

p 2h
11

d

dt
h1 = F1(h1, p11, p12), f11 = H11(h1, p11), f12 = H12(h1, p12)

d

dt
h2 = F1(h2, p21, p22), f21 = H21(h2, p21), f22 = H22(h2, p22)

inputs: the pressuresp11, p12, p21, p22

outputs: the flowsf11, f12, f21, f22
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i/o and interconnection

f11

h 1
p

22
f22

h 211
p

d

dt
h1 = F1(h1, p11, p12), f11 = H11(h1, p11), f12 = H12(h1, p12)

d

dt
h2 = F1(h2, p21, p22), f21 = H21(h2, p21), f22 = H22(h2, p22)

Interconnection: p12 = p21, f12 + f21 = 0

This identifies 2 inputs AND (NOT WITH) 2 outputs,
the sort of thing SIMULINK c© forbids.

This is the rule, not the exception (in fluidics, mechanics,...)
Interconnection is not input-to-output assignment!
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Sharing variables, not input-to-output assignment,
is the mechanism by which systems interact.

 block 1
Building
 block 2

Building
 block 1

Building
 block 2

Building

Before interconnection:
variables on interconnected terminals areindependent.

After interconnection: they are setequal.

No signal graphs!
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Let’s take a closer look at the i/o framework ...

for modeling
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i/o in modeling

Physical systems often interact with their environment through
physical terminals

SYSTEMENVIRONMENT

On each of these terminals many variables may ‘live’:
voltage & current
position & force
pressure & flow
price & demand
angle & momentum
etc. & etc.
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i/o in modeling

Physical systems often interact with their environment through
physical terminals

SYSTEMENVIRONMENT

Usually input and output variables onsameterminal:
NOT: on one terminal there is an input, on another there is an

output.

u1
u2

u

1
y

um

y
2

p

input SYSTEM output

This universal picture can be physically very misleading...
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Conclusion

The inability of the i/o framework to deal properly with

(i) interconnections
and

(ii) passive control

is lethal.

Just as the state, the input/output partition, if needed, should be
constructedfrom first principles models. Contrary to the state,
such a partition may not be useful, or even possible

We need a better, more flexible, universal, simpler framework
that properly deals with

open & connected.
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General formalism
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Generalities

What is a model? As amathematicalconcept.

What is a dynamical system?

What is the role of differential equations in thinking about
dynamical models?

– p. 34/52



Generalities

Intuition
We have a ‘phenomenon’ that produces ‘outcomes’ (‘events’).
We wish tomodel the outcomes thatcanoccur.

Beforewe model the phenomenon:
the outcomes are in a set, which we call theuniversum.

After we model the phenomenon:
the outcomes are declared (thought, believed)
to belong to thebehaviorof the model,
a subset of this universum.

This subset is what we consider the mathematical model.
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Generalities

This way we arrive at the

Definition

A math. model is a subsetB of a universumU of outcomes

B ⊆ U.

B is called the behavior of the model.
For example,the ideal gas lawstates that the temperatureT ,
pressureP , volumeV , and quantity (number of moles)N of
an ideal gas satisfy

PV

NT
= R

with R a universal constant.
– p. 34/52



Generalities

So, before Boyle, Charles, and Avogadro got into the act,
T, P, V and N may have seemed unrelated, yielding

U = R
4
+.

The ideal gas law restricts the possibilities to

B = {(T, P, V, N) ∈ R
4
+ | PV /NT = R}
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Dynamical systems

In dynamics, the outcomes are functions of time;

EVENTS

SYSTEM
time

time

time

Which event trajectories are possible?
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Dynamical systems

Definition

A dynamical system= Σ := (T, W, B)

with T ⊆ R, the time-axis (= the relevant time instances),
W, the signal space

(= where the variables take on their values),

B ⊆ W
T the behavior (= the admissible trajectories).

– p. 36/52



Dynamical systems

Definition

A dynamical system= Σ := (T, W, B)

with T ⊆ R, the time-axis (= the relevant time instances),
W, the signal space

(= where the variables take on their values),

B ⊆ W
T the behavior (= the admissible trajectories).

signal space

time

Totality of ‘legal’ trajectories =: the behavior
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Dynamical systems

Definition

A dynamical system= Σ := (T, W, B)

with T ⊆ R, the time-axis (= the relevant time instances),
W, the signal space

(= where the variables take on their values),

B ⊆ W
T the behavior (= the admissible trajectories).

For a trajectory (‘an event’) w : T → W, we thus have:

w ∈ B : the model allows the trajectory w,
w /∈ B : the model forbids the trajectory w.
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Dynamical systems

Definition

A dynamical system= Σ := (T, W, B)

with T ⊆ R, the time-axis (= the relevant time instances),
W, the signal space

(= where the variables take on their values),

B ⊆ W
T the behavior (= the admissible trajectories).

Usually,
T = R, or [0, ∞), etc. (in continuous-time systems),
or Z, or N, etc. (in discrete-time systems).

– p. 36/52



Dynamical systems

Definition

A dynamical system= Σ := (T, W, B)

with T ⊆ R, the time-axis (= the relevant time instances),
W, the signal space

(= where the variables take on their values),

B ⊆ W
T the behavior (= the admissible trajectories).

Usually,
W ⊆ R

w (in lumped systems),
a function space

(in distributed systems, time a distinguished variable),
a finite set (in DES)’ etc.
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Dynamical systems

Definition

A dynamical system= Σ := (T, W, B)

with T ⊆ R, the time-axis (= the relevant time instances),
W, the signal space

(= where the variables take on their values),

B ⊆ W
T the behavior (= the admissible trajectories).

Emphasis:

T = R,
W = R

w,
B = solutions of system of (linear constant coeff.)

ODE’s, difference eqn’s, or PDE’s.; ‘differential systems’.
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Examples

The behavior is all there is
Equivalence, representations, symmetries, controllability, model
simplification, etc. must refer to the behavior.
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Examples

The behavior is all there is
Equivalence, representations, symmetries, controllability, model
simplification, etc. must refer to the behavior.

Constant coefficient linear ODE’s (linear DAE’s)

R0w + R1
d

dt
w + R2

d2

dt2
w + · · · + R

n

dn

dtn
w = 0

T = R, W = R
w, B = solutions...

Notation: R
(

d

dt

)

w = 0, R ∈ R [ξ]•×w, real pol. matrix.

The solution definition is important. C∞ (R, R
w) or D (R, R

w)

different from L2 (R, R
w) or compact support.

Not only algebra, also analysis.
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Examples

Input / state / output systems

d

dt
x(t) = f(x(t), u(t), t), y(t) = h(x(t), u(t), t)

Behavior:
either the (u, y, x)’s, or the (u, y)’s?
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Examples

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

time-axis: R

Q: Variables of interest? A: Qh, Th, Qc, Tc, W

; signal space:W = R+ × R+ × R+ × R+ × R

Behavior B: a suitable family of trajectories.
But, there are some universal laws that restrict theB’s that are
‘thermodynamic’ .
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Examples

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:
∮

(Qh − Qc − W ) dt = 0;

∮

(
Qh

Th

−
Qc

Tc

) dt ≤ 0.

These laws deal with‘open’ systems.
But not with input/output systems!
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Controllability
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Controllability

Take any two trajectoriesw1, w2 ∈ B.

2

0

1
w

w

W

time

– p. 40/52



Controllability

Take any two trajectoriesw1, w2 ∈ B.

2

0

1
w

w

W

time

‘Controllability ’:

2

0 T

1
w

w

σ wT

W

time

W
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Controllability

The time-invariant systemΣ = (T, W, B) is said to be

controllable

if for all w1, w2 ∈ B there existsw ∈ B and T ≥ 0 such
that

w (t) =

{

w1 (t) t < 0

w2 (t − T ) t ≥ T

Controllability :⇔
legal trajectories must be‘patch-able’, ‘concatenable’.
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State Controllability

Special case: classical Kalman definitions for

d
dtx = f (x, u) .

controllability: variables = state or (input, state)
This is aspecial caseof our controllability:

?

X X

x1

x2

X

x 1

x 2

time
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State Controllability

Special case: classical Kalman definitions for

d
dtx = f (x, u) .

controllability: variables = state or (input, state)

Why should we be so concerned with the state?

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?
Or not properly editing the equations?

Kalman’s definition addresses a rather special situation.
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Tests

Given a representation, derive algorithms in terms of the
parameters for controllability. Consider B defined by

R

(

d

dt

)

w = 0.

R: polynomial matrix. Under what conditions on
R ∈ R

•×w [ξ] does it define acontrollable system?

Theorem: R
(

d
dt

)

w = 0 defines a controllable system
⇔

rank (R (λ)) = constant overλ ∈ C.
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Tests

Given a representation, derive algorithms in terms of the
parameters for controllability. Consider B defined by

R

(

d

dt

)

w = 0.

R: polynomial matrix. Under what conditions on
R ∈ R

•×w [ξ] does it define acontrollable system?

Iff it admits an image representation

w = M
(

d
dt

)

ℓ

kernel(R( d
dt)) = image(M( d

dt))

– p. 43/52



Tests

Note:

When is

p

(

d

dt

)

w1 = q

(

d

dt

)

w2

controllable? p, q ∈ R [ξ], not both zero.

Controllable ⇔ rank([p(λ) − q(λ)] = 1 ∀λ ∈ C.

Iff p and q are co-prime. No common factors!

Testable via Sylvester matrix, etc.

Generalizable.
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PDE’s
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PDE’s

Much of the theory also holds for PDE’s.

T = R
n, the set of independent variables, oftenn = 4,

W = R
w, the set of dependent variables,

B = set of mapsRn → R
w
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PDE’s

Much of the theory also holds for PDE’s.

T = R
n, the set of independent variables, oftenn = 4,

W = R
w, the set of dependent variables,

B = set of mapsRn → R
w

Let R ∈ R
•×w[ξ1, · · · , ξn], and consider

R
(

∂
∂x1

, · · · , ∂
∂xn

)

w = 0. (∗)

Define the associated behavior

B = {w ∈ C∞ (Rn, R
w) | (∗) holds}.
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Example

Maxwell’s eq’ns, diffusion eq’n, wave eq’n,. . .

∇ · ~E =
1

ε0
ρ ,

∇ × ~E = −
∂

∂t
~B,

∇ · ~B = 0 ,

c2
∇ × ~B =

1

ε0

~j +
∂

∂t
~E.
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Example

Maxwell’s eq’ns, diffusion eq’n, wave eq’n,. . .

∇ · ~E =
1

ε0
ρ ,

∇ × ~E = −
∂

∂t
~B,

∇ · ~B = 0 ,

c2
∇ × ~B =

1

ε0

~j +
∂

∂t
~E.

T = R × R
3 (time and space)n = 4,

w =
(

~E, ~B,~j, ρ
)

(electric field, magnetic field, current density, charge density),
W = R

3 × R
3 × R

3 × R, w = 10,
B = set of solutions to these PDE’s.

Note: 10 variables, 8 equations!⇒ ∃ free variables. ‘open’
– p. 47/52



Controllability for PDE’s

Controllability def’n in pictures :

O

1

��������
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w1, w2 ∈ B.
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Controllability for PDE’s

∃ w ∈ B ‘patches’ w1, w2 ∈ B.
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Controllability : ⇔ ‘patch-ability’.
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Are Maxwell’s equations controllable ?

The following equations in thescalar potential φ :

R × R
3 → R and thevector potential ~A : R × R

3 → R
3,

generate exactly the solutions to Maxwell’s equations:

~E = −
∂

∂t
~A − ∇φ,

~B = ∇ × ~A,

~j = ε0
∂2

∂t2
~A − ε0c2

∇
2 ~A + ε0c2

∇

“

∇ · ~A
”

+ ε0
∂

∂t
∇φ,

ρ = −ε0
∂

∂t
∇ · ~A − ε0∇

2φ.

Proves controllability. Illustrates the interesting connection

controllability ⇔ ∃ potential!
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Conclusion

A good theory of dynamics hasopen systems as the starting

point. Allows interconnection and tearing. Closed dynamical
systems as used in math and physics very limited.
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Conclusion

A good theory of dynamics hasopen systems as the starting

point. Allows interconnection and tearing. Closed dynamical
systems as used in math and physics very limited.

Input/state/output models are an excellent paradigm. They
model many things!

The flexibility and generality of the behavioral approach in
modeling open systems, and their interconnections, is evident.
Back-to-basics.
Incorporates wealth of system representations, deals for passive
control, generalizes painlessly to PDE’s, etc.
Exemplified by the notion of controllability.
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Details & copies of the lecture frames are available from/at
Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/∼jwillems
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Details & copies of the lecture frames are available from/at
Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/∼jwillems

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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