STATE CONSTRUCTION in SYSID

Jan C. Willems
K.U. Leuven, Belgium

SYSID 2006, Newcastle, Australia March 29, 2006

—p.1/24

Joint paper with lvan Markovsky & Bart De Moor (K.U. Leuven)

—p.2/24

Problem

—p.3/24

SYSID

MODEL CLASS

OBSERVED DATA

MATHEMATICAL MODEL

—p.4/24

SYSID

Data: an ‘observed’ vector time-series

w(l),w(2),...,w(T) w(t) € RY
T finite, infinite, or T' — o0

A dynamical model from a model class, e.g. a difference equation

Row(t) + Riw(t+1)+---+ Rrw(t + L)
=0
OR
Row(t) + Riw(t+1)+---+ Rrw(t + L)
= Mpoe(t) + M1e(t+1)+ -+ Mre(t + L)
(PEM, EIV, etc.)

—p.5/24

SYSID

observed
variables
MODEL : W

Row(t) + Riw(t+1)+---+ Rrw(t+ L) =0

‘deterministic’ ID

Model class:

SYSID algorithm:

w(1),w(2),...,0(T) — Ro,Ri,...,R;

- always an i/o partition w = 11 , I1 a permutation.

—p.6/24

Case of interest

Assumptions:

® Data:
W(1), @(2),...,w(t),... w(t) € R” T infinite

® Deterministic SYSID

® |/O partition known if advantageous

® Exact modeling with an eye towards approximations

—p.7/24

Equivalent representations of the model class

—p.8/24

The model class £7

Our model class is an exceedingly familiar one: £¥.
B C (RY)" belongs to £¥ : <&
® ‘B is linear, shift-invariant, and closed

® ‘B is linear, time-invariant, and complete :< ’prefix determined’

- p.9/24

The model class £7

B C (RY)" belongs to £¥ : <&
® ‘B is linear, shift-invariant, and closed
® Y3 is linear, time-invariant, and complete :<> ’prefix determined’

® d matrices Ry, R1,..., Ry such that 53: all w that satisfy
Row(t) + Riw(t+1)+---+ Ryw(t+ L) =0
In the obvious polynomial matrix notation
R(oc)w =0
® Including input/output partition

P(o)y = Q(o)u, w=[4] det(P) 0

- p.9/24

The model class £7

B C (RY)" belongs to £¥ : <&

9
K
K

°

B3 is linear, shift-invariant, and closed

'8 is linear, time-invariant, and complete :< ’prefix determined’

R(oc)w =0

3 matrices A, B, C, D such that
B consists of all w’s generated by
ocr = Ax + Bu, y = Cx 4+ Du,

w = [y

- p.9/24

The lag

LZEW—>Z+,

L(23) = smallest L such that there is a kernel representation:

Ryw(t) + Ryw(t+1)+---+ Rrw(t+ L) = 0.

Polynomial matrix in

R(oc)w =0
has degree(R) < L.

~p.10/24

The MPUM

ID principle: associate with w(1),w(2)y...,w(t),«--

U

the most powerful unfalsified model (MPUM) in £¥

Exact definition: tomorrow —
today think of the MPUM as the system that produced the data

under persistency of excitation

—p.11/24

From data to model to state

—p.12/24

o [l]

Once we have (an estimate of) the MPUM, the system that produced

the data w , we can analyze it, make an i/o partition, an observable
state representation

x(t+1) = Ax(t) + Bu(t),

y(t) = Ca(t) + Du(t), w(t)= |3]

and compute the (unique) state trajectory

(1), #(2),...,&(t),...
corresponding to

(1), B(2), ..., 0(t),...

~p.13/24

o [l]

Once we have (an estimate of) the MPUM, the system that produced

the data w , we can analyze it, make an i/o partition, an observable
state representation

x(t+1) = Ax(t) + Bu(t),

y(t) = Cz(t) + Du(t), w(t) [’;gg]

and compute the (unique) state trajectory

#(1),5(2), ..., &), ..

Of course,
£(2) #@3) - &t+1) .| _ |A B| |[&1) &2) --- E®) -
g(1) g(2) - g (t) Cc D| |a)) @2 --- @) i

Of course,
£(2) #@3) - &t+1) .| _ |A B| |[&1) &2) --- E@) -
g(1) g(2) --- y(t) C D| |al) u(2) --- a(l)

But if we could go the other way:

S

first compute the state trajectory x , directly from the data
then this equation provides a way of

A|B
identifying the system parameters [= } -]

~p.13/24

o [l]

#(2) #@B) --- #¢+1) ---| _|A B
(1) g2) --- y(t) ¢ D

(1) #(2) --- @(t)
a(l) w2 ---)

This idea yields a very attractive SYSID procedure:

® Truncation at suff. large £, missing data : cancel columns

® Model reduce using SVD e.a. by lowering the row dim. of

[&3(1) #(2) -+ @(t) }

A
® Solve for [= } f)] using Least Squares

~~» what has come to be known as ‘subspace ID’ .

—p.14/24

From data to state

—p.15/24

o [l]

How does this work?

B(1), B(2), - .., 0(t),...
\
F(1), #(2), ..., 5(t),...

This Is a very nice system theoretic question.

Note that classical realization theory is a special case: data is
impulse response.

~p.16/24

o [l]

Can we somehow identify, directly from the data , the map

w(1),w(2),...,w(A)

B(2),(3), .-, (A + 1)

z(1)

(2)

~p.16/24

o [l]

Can we somehow identify, directly from the data , the map

w(1),w(2),...,w(A)

w(2),w(3),...,w(A+1)

We give 3 (related) algorithms.

F(A + 1)

#(A + 2)

~p.16/24

W [%’%] by past/future intersection

w(1) w(t)

@ (2) @(t+ 1)

@(A) W(t+A—1)
B(A + 1) Wt + A)
B (A + 2)

@(2A)

D(t+ A+1)

@(t+ 24 — 1)

T
T

T
PAST

FUTURE

I
{
i

—p.17/24

W [%’%] by past/future intersection

 B(1) @ (t) |
B (2) B(t 4+ 1)
[H_] B(A) B(t+ A —1)
Hy B (A + 1) W(t+ A)
@ (A + 2) W(t+ A + 1)
@(24) @(t+ 24 — 1)

T
T

T
PAST

FUTURE

I
{
i

Fact: The intersection of the span of the rows of H _ with the span
of the rows of H _ equals the state space.

The common linear combinations

A+ EA+2)

State = what is common between past and future.

E(t 4+ A)

Numerical implementation ~~ subspace ID

s

PRESENT STATE

—p.17/24

w [%’%] by oblique projection

Solve for G
w(1) - W(T —2A+1) | [w(l) .- W(T —2A+1) |
W(A) --r @(T — A) - B(A) - @(T — A)
G(A+1) .- @(T—A+1) 0 .- 0
@(2A) ... @(T) _ o - 0
g(A+1) - GT—-A+1)
: : : G = | #Aa+1) - HT-A+1) |
y(24a) - y(T)

~Y . . .
Computes T! — ‘oblique projection

~p.18/24

o [l]

These algorithms do not make use of the Hankel structure.

Recent development: uses the Hankel structure, together with
shift-and-cut state construction algorithm.

~p.19/24

w — [A B] via left annihilators
C D

Implementation. Compute ‘the’ left annihilators of H.:

(1) @ (2) . @ (t)
@(2) @w(B) .- w(t+1)
[Ni N2 Ns - Na| |®(3) @) . @@E+2) | =0

B(A) BA+L) - BE+ A1)

—p.20/24

w — [A B] via left annihilators
C D

Implementation. Compute ‘the’ left annihilators of H.:

(1) @ (2) . @ (t)

W (2) W(3) .- B(t + 1)

Ni N2 Ns --- Na| [®0B) @4 - @(t+2)
B(A) BA+L) - BE+ A1)

Then [5,(1) #(2) e (1)

N2 Ns - Na 0| [@1) @2 - @)
N3 Ny --- 0 0 w(2) w(3) w(t+ 1)
— 5 S R ET6) W(4) - wW(t+2)

| Na 0o -~ 0 o [w(A) w(A+]1) .- DE+A-1)

—p.20/24

It actually suffices to compute a set of generators for the

R [£]-module generated by the left kernel.

Open question:
Construct a balanced state trajectory directly from the data.

—p.21/24

Conclusions

—p.22/24

Conclusions

A| B
® Subspace ID: data = state trajectory = [= } 5]

® Copes well with approximation, model reduction.

® We have reviewed 3 algorithms:
1. past/future intersection
2. oblique projection

3. cut-and-shift : most attractive;
uses Hankel structure & module structure of left kernel.

Tomorrow: how to compute the left annihilators of H recursively...

—p.23/24

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat .kuleuven.be/~Jjwillems

—p.24/24

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat .kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you

—p.24/24

	
	
	small hfill yb {SYSID}
	small hfill yb {SYSID}
	small hfill yb {SYSID}
	small yb {Case of interest}
	
	small hfill �oldmath yb {The model class $Lw $}
	small hfill �oldmath yb {The lag}
	small hfill �oldmath yb {The MPUM}
	
	small yb {$hw mapsto sABCD $}
	small yb {$hw mapsto sABCD $}
	
	small yb {$hw mapsto sABCD $}
	small yb {$hw mapsto sABCD $ by past/future intersection}
	small yb {$hw mapsto sABCD $ by oblique projection}
	small yb {$hw mapsto sABCD $ }
	small hfill �oldmath yb {$hw mapsto {	iny �mat A&B\C&Demat }$ via left annihilators}
	small hfill �oldmath yb {$hw mapsto {	iny �mat A&B\C&Demat }$}
	
	small yb {Conclusions}
	

