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Open systems

‘Open’ systemsare an appropriate starting point for the
study of dynamics. For example,

inputs outputsI/O SYSTEM

; the dynamical system

Σ :
•
x = f (x,u) , y = h(x,u) .

u∈ U = R
m,y ∈ Y = R

p,x ∈ X = R
n: input, output, state.

Behavior B = all sol’ns (u,y,x) : R → U×Y×X.
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Dissipative dynamical systems

s : U×Y → R called the supply rate,

V : X → R called the storage functon.

Σ is said to be
dissipative w.r.t. the supply rate s and with storageV

if
d
dt V (x(·)) ≤ s(u(·) ,y(·))

for all (u,y,x) ∈ B.
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Dissipation inequality

d
dt V (x(·)) ≤ s(u(·) ,y(·))

for all (u,y,x) ∈ B.

This inequality is called the dissipation inequality.

Equivalent to

•
VΣ (x,u) := ∇V (x) · f (x,u) ≤ s(x,h(x,u))

for all (u,x) ∈ U×X.

If equality holds: ‘conservative’ system.
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Dissipation inequality

supply
SYSTEM

DISSIPATION

SUPPLY

STORAGE

s(u,y) models something like thepower delivered to the
system when the input value isu and output value isy.

V (x) then models the internallystored energy.

Dissipativity :⇔
rate of increase of internal energy ≤ power delivered

– p. 7/33



Lyapunov function

Special case: ‘closed’ system:

Σ :
•
x = f (x) and s= 0

then dissipativity with V : X → R

; Lyapunov function d
dt V (x(·)) ≤ 0
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Lyapunov function

Special case: ‘closed’ system:

Σ :
•
x = f (x) and s= 0

then dissipativity with V : X → R

; Lyapunov function d
dt V (x(·)) ≤ 0

dissipativity ↔ V is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closedsystems≃ Dissipativity for opensystems.
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The construction of storage functions

Basic question:

Given (a representation of )Σ, the dynamics,
and givens, the supply rate,

does there exista storage functionV such that
the dissipation inequality holds?
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The construction of storage functions

Basic question:

Given (a representation of )Σ, the dynamics,
and givens, the supply rate,

does there exista storage functionV such that
the dissipation inequality holds?

supply
SYSTEM

Monitor power in, known dynamics, what is the stored energy?
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to LMI’s , ARIneq, ARE, robust control, ...
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to LMI’s , ARIneq, ARE, robust control, ...

The storage functionV is in general far from unique. There
are two ‘canonical’ storage functions:

the available storage and therequired supply .

For conservativesystems,V is unique.
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From storage to LMI’s

Σ : d
dtx = Ax+Bu,y = Cx+Du, s(u,y) = quadratic
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From storage to LMI’s

Σ : d
dtx = Ax+Bu,y = Cx, s(u,y) = ||u||2−||y||2

If storage f’n exists, quadratic one exists V(x) = 1
2x⊤Kx

WLOG K = K⊤, possiblyK ≥ 0.

d
dtV(x) ≤ s(u,y) ;

[

A⊤K +AK+C⊤C KB
B⊤K −I

]

≤ 0

solvable?

⇔ A⊤K +AK+KBB⊤K +C⊤C≤ 0 solvable?

⇔ A⊤K +AK+KBB⊤K +C⊤C = 0 solvable?

ARIneq, ARE, ...
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From storage to LMI’s

[

A⊤K +AK+C⊤C KB
B⊤K −I

]

≤ 0 and, possibly,K ≥ 0 ;

A0 +x1A1 +x2A2 + · · ·xnAn ≥ 0 feasible?, etc.

LMI’s, SDP, ...
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How good is this notion?
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Circuit synthesis

Is G∈ R(ξ ) realizableas the driving point impedance of an
electrical circuit containing (positive) resistors, capacitors,
inductors, and transformers?

RLCT’s

2

V
1

1I

I 2

Interconnected

V
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Circuit synthesis

Is G∈ R(ξ ) realizableas the driving point impedance of an
electrical circuit containing (positive) resistors, capacitors,
inductors, and transformers?

RLCT’s

2

V
1

1I

I 2

Interconnected

V

Iff G is ‘positive real’

[Re(s) > 0⇒ Re(G(s)) > 0] Otto Brune, 1932
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Circuit synthesis

Is G∈ R(ξ ) realizableas the driving point impedance of an
electrical circuit containing (positive) resistors, capacitors,
inductors, and transformers?

RLCT’s

2

V
1

1I

I 2

Interconnected

V

Iff G is ‘positive real’

[Re(s) > 0⇒ Re(G(s)) > 0] Otto Brune, 1932
Trafos not needed Raoul Bott & Richard Duffin, 1949
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Circuit synthesis

Central idea of proof, using storage functions:

Let d
dtx = Ax+Bu, y = Cx+Du be a minimal realization of G.

G p.r. ⇔ dissipative w.r.t. u⊤y, storage f’n 1
2x⊤Kx, K = K⊤ > 0.

Choice of basis⇒ K = I . ;
d
dt

1
2x⊤x≤ u⊤y⇔

[

−A −B
C D

]

+

[

−A −B
C D

]⊤

≥ 0
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Circuit synthesis

Central idea of proof, using storage functions:

Now, interconnect

[

V
y

]

=

[

−A −B
C D

][

I
u

]

with d
dt I = −V

The storage f’n and the LMI takes the dynamics out.
Terminate a memoryless system with unit capacitors.

−

u
+

−

y Unit capacitors    Memoryless

Enforce reciprocity, etc.
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Stability of dissipative interconnections

x

w

System

Interconnected
System

Plant Uncertain

Is this uncertain system stable?
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Stability of dissipative interconnections

x

w

System

Interconnected
System

Plant Uncertain

Is this uncertain system stable?

x

w w

sP
sU

System
Uncertain

Plant

Yes, if both systems are dissipative andsP +sU = 0

; Lyapunov f’n = sum of storage f’ns.⇒ stability.
This requires the state, also for the uncertain system.
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Thermodynamics

terminal
work

terminals
thermal

work

(heat−flow, temperature)

Engine
Thermodynamic

Conservative w.r.t. - work + Σheat terminals heat flow

Dissipative w.r.t. -Σheat terminals
heat flow

temperature
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Thermodynamics

terminal
work

terminals
thermal

work

(heat−flow, temperature)

Engine
Thermodynamic

Conservative w.r.t. - work + Σheat terminals heat flow

Dissipative w.r.t. -Σheat terminals
heat flow

temperature

Input/output setting is hopeless!
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Back to basics
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Behaviors

Dynamical system: Σ = (T,W,B), with T ⊆ R the time-set,
W the signal space, andB ⊆ W

T the behavior .

Latent variable dynamical system is a refinement,
with behavior represented with the aid oflatent variables.

ΣL = (T,W,L,Bfull ) with L the space of latent variables,
and Bfull ⊆ (W×L)T the full behavior .

ΣL inducesΣ = (T,W,B) with manifest behavior

B =
{

w : T → W
∣

∣ ∃ℓ : T → L such that (w, ℓ) ∈ Bfull
}

.

Example: d
dtℓ = Aℓ+Bu, y = Cℓ+Du.

The behavior is all there is . Linearity, time-invariance, ...
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Dissipativity & Behaviors

s
rate of supply   

absorbed
by the system 

SYSTEM

Dissipativeness restricts the waysupply goes in and out .

by the system 
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Dissipativity & Behaviors

s
rate of supply   

absorbed
by the system 

SYSTEM

Dissipativeness restricts the waysupply goes in and out .

Σ = (R ,R ,B) dynamical system.
s : R → R , s∈ B, models rate of supplyabsorbed.

ΣL = (R ,R ,R ,Bfull) a latent variable representation.
(s,V) ∈ Bfull , V : R → R models the supplystored.

by the system 
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Dissipativity & Behaviors

V is said to be astorage if ∀ (s,V) ∈ Bfull and ∀ t0 ≤ t1,
the dissipation inequality holds

V (t1)−V (t0) ≤
∫ t1
t0

s(t) dt

s
rate of supply   

absorbed
by the system 

V   STORAGE 

Σ = (R ,R ,B), time-invariant, is said to be dissipative if
there existsΣL = (R ,R ,R ,Bfull), time-invariant,
such that the dissipation inequality holds.

– p. 19/33



Nonnegative storage

Simple existence result for non-negative storage functions.

THEOREM

Σ is dissipative with non-negative storage ⇔

∀s∈ B and ∀ t0 ∈ R , ∃K ∈ R ,

such that −
∫ T
t0

s(t) dt ≤ K for T ≥ t0

‘Available storage’ is finite. N.a.s.c.!
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Nonnegative storage

Simple existence result for non-negative storage functions.

THEOREM

Σ is dissipative with non-negative storage ⇔

∀s∈ B and ∀ t0 ∈ R , ∃K ∈ R ,

such that −
∫ T
t0

s(t) dt ≤ K for T ≥ t0

‘Available storage’ is finite. N.a.s.c.!

A n.a.s.c. for the existence ofBfull andV (in terms of B) is ?
∃ sufficient conditions in terms of periodic trajectories
assumingobservability of V from s.
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Quadratic supply rates
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QDF’s

A quadratic differential form (QDF) is a quadratic expression
in the components ofw∈ C∞ (R,Rw) and its derivatives:

Σk,ℓ

(

dk

dtkw
)⊤

Φk,ℓ

(

dℓ

dt ℓ
w
)

with the Φk,ℓ ∈ R
w×w. Map from C∞ (R,Rw) to C∞ (R,R) .

Compact notation and a convenient calculus.

Φ(ζ ,η) = Σk,ℓ Φk,ℓζ kη ℓ

Notation QDF QΦ (w).

QΦ is said to benon-negative (denotedQΦ ≥ 0) :⇔
QΦ (w) ≥ 0 for all w∈ C∞ (R,Rw).
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Dissipativity of QDF’s

The system ΣΦ =
(

R ,R , im(QΦ)
)

: supply rate is QDF.

Quite general, ‘LQ’:

1. Linear time-invariant differential system

R
(

d
dt

)

w = 0

perhaps including latent variables.

2. Controllable (in the behavioral sense: patchability).

3. QDF for the supply rate.

Extendable to rat. f’ns, both in system eq’ns and supply rate.

Examples: linear circuits, t’f f’n with supply rate quadrat ic
form in input and output, linear mechanical systems, ...
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Dissipativity of ΣΦ =
(

R ,R , im (QΦ)
)

6 statements concerning a supply rate defined by a QDF.

(i) ΣΦ is dissipative (∃ storage)

(ii) ΣΦ admits a ... with a QDF as storage

(iii) ΣΦ admits a ... with a memoryless state f’n as storage

(iv) ΣΦ admits a ... with a m’ess quadr. state f’n as storage

(v)
∫ +∞
−∞ QΦ (w) dt ≥ 0 ∀w∈ C∞ (R,Rw) compact support

(vi) Φ(iω,−iω)+Φ⊤ (−iω, iω) ≥ 0 ∀ ω ∈ R

(i)⇐(ii)⇔(iii)⇔(iv)⇔(v)⇔(vi)

Under certain ‘signature conditions’ (i)⇔(ii).
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Dissipativity of ΣΦ =
(

R ,R , im (QΦ)
)

With a non-negative storage function, we obtain instead

(i) Available storage for ΣΦ is finite

(ii) ΣΦ admits a latent var. with non-negative storage

(iii) ΣΦ ... with a non-negative QDF as storage

(iv) ΣΦ ... with a ≥ 0 memoryless state f’n as storage

(v) ΣΦ ... with a ≥ 0 ... quadr. state f’n as storage

(vi)
∫ 0
−∞ QΦ (w) dt ≥ 0 ∀w∈ C∞ (R,Rw) of compact support

(vii) RHP frequency-domain & Pick matrix condition on Φ

(i)⇔(ii)⇐(iii)⇔(iv)⇔(v)⇔(vi)⇔(vii)

Under certain ‘signature conditions’ (ii)⇔(iii).
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Dissipativity of ΣΦ =
(

R ,R , im (QΦ)
)

The existence of a QDF as storage is an LMI.

Φ ∈ R
w×w [ζ ,η ] is given,Ψ ∈ R

w×w [ζ ,η ] is unknown.

d
dt

QΨ(w) ≤ QΦ(w) ∀w∈ C
∞ (R,Rw)

m

(ζ +η)Ψ(ζ ,η) ≤ Φ(ζ ,η)

Remains LMI if Ψ ≥ 0 is added.

In 1-D case storage f’n ofw ‘observability’.
Not so in n-D case, as Maxwell’s eq’ns.
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Some open problems
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Intrinsic characterization of dissipativity

Let Σ = (R ,R ,B) be time-invariant. When is it dissipative?

I.e., when does there exists a time-invariant latent variable
representationΣL = (R ,R ,R ,Bfull), time-invariant,
such that the dissipation inequality holds?

∃ sufficient conditions in terms of periodic behavior,
controllability, observability, equilibrium points, ...
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Characterization of QDF’s

Given B ⊆ C∞ (R,R), shift-invariant.

When does∃ Φ ∈ R
w×w [ζ ,η ] such that B = image(QΦ) ?
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Characterization of positive storage f’ns for QDF’s

Conjecture:

The following are equivalent for Φ ∈ R
w×w [ζ ,η ]:

1.
∫ 0
−∞ QΦ (w) dt ≥ 0 ∀w∈ C∞ (R,Rw) of compact support,

2. ∀w∈ C∞ (R,Rw) , ∃K ∈ R ,
such that−

∫ T
0 QΦ (w) dt ≤ K ∀T ≥ 0.

1. ⇒ 2. is easy.
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Characterization of quadratic storage functions

Conjecture:

A QDF has a storage iff it has a QDF as a storage

Without signature conditions (as small gain, positive operator,
conicity).
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Passive behavior synthesis

Stated for single input/single output systems. Consider

p(
d
dt

)V = q(
d
dt

)I .

When realizable as behavior of the port var. of a circuit with
(positive) resistors, capacitors, inductors, and transformers?

RLCT’s

2

V
1

1I

I 2

Interconnected

V

Necessary:
p
q

p.r. p.r. n.a.s.c. whenp and q co-prime.

What conditions does dissipativity impose on common factors?
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Transformerless synthesis

Bott-Duffin synthesis realizes the impedance, not the behavior.
They do not use minimal realization, common factors are
introduced. Uncontrollable parts are added in the behavior.

Is a synthesizable SISO behavior ... without transformers?

Suspect: NOT.
Transformerless synthesis of behaviors more open than ever.
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Conclusion

Let us get the physics right!

The rest is mathematics

Also for dissipative systems, this means backing off from
input/output thinking!
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Conclusion

Let us get the physics right!

The rest is mathematics

Also for dissipative systems, this means backing off from
input/output thinking!

Prima la fisica, poi la matematica
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Thank you for your attention
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Thank you for your attention

&
Happy Birthday, Gianni
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