DISSIPATIVE SYSTEMS:

Where do we stand?

Jan Willems
K.U. Leuven, Belgium

GlanniFest October 27, 2006

—-n. 1/



On the occasion of the 70-th birthday of

Glanni Marchesini



On the occasion of the 70-th birthday of

Glanni Marchesini
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Open systems

‘Open’ systemsare an appropriate starting point for the
study of dynamics. For example,

inputs e /O SYSTEM s outputs

~ the dynamical system
5. X= f(x,u), y=h(x,u).
ucecU=R"yeY=RP x e X=R" Input, output, state.

Behavior %6 = allsol'ns (u,y,X):R—-UxY x X.
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Dissipative dynamical systems

s:UxY—R called the supply rate,

V:X—=R called the storage functon.

2 Is said to be
dissipative w.r.t. the supply rate sand with storageV
If

% V(X(-) <s(u(-),y(+))

forall (u,y,x) € ‘B.



Dissipation inequality

%V(X()) < S(U(‘)?y('))
forall (u,y,x) € ‘B.

This inequality is called the dissipation inequality.

Equivalent to

VE (x,U) := OV (X) - f (x,u) < s(x,h(x,u))
for all (u,x) € U x X.

If equality holds: ‘conservative’ system.
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Dissipation inequality

SUPPLY

STORAGE

supply

yyyvy

DISSIPATION

s(u,y) models something like thepower delivered to the
system when the input value is1 and output value isy.

V (x) then models the internally stored energy.

Dissipativity <
rate of increase of internal energy < power delivered
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Lyapunov function

Special case: ‘closed’ system:
SiX= f(x) and

then dissipativity with VX —> R

~» Lyapunov function

S

LV (x(-) <

0

0

SEAWKHI PYCCKMH MATEMATHK
ik IIVHOB
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Lyapunov function

Special case: ‘closed’ system:

Z:)?:f(x) and s=0

then dissipativity with VX —> R

~+ Lyapunovfunction | SV (x(-)) <0

dissipativity < V is a Lyapunov function.

Dissipativity is the natural generalization to open systers of
Lyapunov theory.

Stability for closedsystems~ Dissipativity for opensystems.
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The construction of storage functions

Basic question:

Given (a representation of )z, the dynamics,
and givens, the supply rate,
does there exist storage functionV such that
the dissipation inequality holds?
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The construction of storage functions

Basic question:

Given (a representation of )z, the dynamics,
and givens, the supply rate,
does there exist storage functionV such that
the dissipation inequality holds?

SYSTEM =

supply

Monitor power in, known dynamics, what is the stored energy?
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The construction of storage functions

The construction of storage f'ns is very well understood,
particularly for finite dimensional linear systems and
gquadratic supply rates.
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The construction of storage functions

The construction of storage f'ns is very well understood,

particularly for finite dimensional linear systems and
gquadratic supply rates.

Leads to LMI's , ARIneq, ARE, robust control, ...

—n. 10/



The construction of storage functions

The construction of storage f'ns is very well understood,
particularly for finite dimensional linear systems and
gquadratic supply rates.

Leads to LMI's , ARIneq, ARE, robust control, ...

The storage functionV is in general far from unigue. There
are two ‘canonical’ storage functions:
the available storage and the required supply .

For conservativesystemsy is unigue.
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2

From storage to LMI's

ax=Ax+Bu,y=Cx+Du, s(u,y)= quadratic
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From storage to LMI's

Y gX=Ax+Buy=Cx s(uy)=Iull*—Iy|]

If storage f'n exists, quadratic one exists V(x) = %XTKX
WLOG K =K', possiblyK > 0.

ATK +AK+CT KB

solvable?
& A'K+AK+KBB'K+C'C<0 solvable?
& A'K+HAK+KBB'K+C'C=0 solvable?

ARIneq, ARE, ...



ATK+AK+CTC

B'K

From storage to LMI's

KB
—|

<0 and, possibly,K >0~

Ag+X1A1 XA+ - X, A, >0  feasible?, etc.

LMI's, SDP, ...
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How good is this notion?
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Circuit synthesis

Is GeR(&) realizableas the driving point impedance of an
electrical circuit containing (positive) resistors, capaitors,
Inductors, and transformers?

Interconnected
RLCT's




Circuit synthesis

Is GeR(&) realizableas the driving point impedance of an
electrical circuit containing (positive) resistors, capaitors,
Inductors, and transformers?

Interconnected
RLCT's

Iff Gis ‘positive real’

[Re(s) > 0= Re(G(s)) > (]

Otto Brune, 1932
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Circuit synthesis

Is GeR(&) realizableas the driving point impedance of an
electrical circuit containing (positive) resistors, capaitors,
Inductors, and transformers?

Interconnected
RLCT's

Iff Gis ‘positive real’

[Re(s) > 0= Re(G(s)) > (O] Otto Brune, 1932
Trafos not needed Raoul Bott & Richard Duffin, 1949
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Circuit synthesis

Central idea of proof, using storage functions:

Let %x = AXx+ Bu, y=Cx+ Du be a minimal realization of G.
G p.r. « dissipative w.r.t. u"y, storage f'n 3x"Kx, K =K' > 0.

Choice of basis= K =1.~ $ix'x<u'y s
- 1T 1T
—A —B —-A —B
+ >0
C D C D
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Circuit synthesis

Central idea of proof, using storage functions:

| vl [=-a —B] 1] .
Now, interconnect — with %I —_V
y C D |u

The storage f'n and the LMI takes the dynamics out.
Terminate a memoryless system with unit capacitors.

ul
y

Enforce reciprocity, etc.

— — Unit capacitors
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Stability of dissipative interconnections

W
- .
Bl Uncertain
- System
-

M Interconnected

System

Is this uncertain system stable?

—n. 15/



Stability of dissipative interconnections

W
- .
Bl Uncertain
- System
-

M Interconnected

System

Is this uncertain system stable?

w w
Uncertain
Plant System

Sp Su

X

Yes, If both systems are dissipative ansp+5; =0

~ Lyapunov f'n = sum of storage f'ns. = stability.
This requires the state, also for the uncertain system.
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Conservative w.r.t.

Dissipative w.r.t.

Thermodynamics

work
terminal

Thermodynamic
Engine
thermal

\terminals

work 1

E

(heat—flow, temperature)

- WOrK + 2heat terminals Ne€at flow

heat flow
temperature

'Zheat terminals
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Thermodynamics

work
terminal

Thermodynamic
Engine
thermal

\terminals

work 1

.

(heat—flow, temperature)

Conservative w.r.t. - work + 2heat terminals Neat flow

heat flow
temperature

Dissipative W.r.t.  -2heat terminals

Input/output setting is hopeless!



Back to basics
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Behaviors

Dynamical system: 2 = (T, W,9), with T C R the time-set,
W the signal space, and3 C W' the behavior .

Latent variable dynamical system is a refinement,
with behavior represented with the aid oflatent variables.

2 = (T, W,L,Bsq, ) with LL the space of latent variables,
and B C (W xL)" the full behavior .

2| inducesZ = (T, W, B) with manifest behavior
B={w:T—W|3¢:T— L such that (w,¢) € B } .

Example: $¢=A¢+Bu, y=C¢+Du.

The behavior is all there Is . Linearity, time-invariance, ..
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Dissipativity & Behaviors

S
SYSTEM rate of supply

absorbed
by the system

Dissipativeness restricts the wa' supply goes in and out .
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Dissipativity & Behaviors

S
SYSTEM rate of supply

absorbed
by the system

Dissipativeness restricts the wa' supply goes in and out .

2 = (R,R,) dynamical system.
s:R — R, se B, models rate of supplyabsorbed.

2. = (R,R,R By ) a latent variable representation.
(s,V) € B, V : R — R models the supplystored.
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Dissipativity & Behaviors

V is said to be astorageif V (s,V) € By and Vig <ty,
the dissipation ineguality holds

V (1) =V (to) < Jets(t) dt

S
ate of supply

absorbed
by the system

2 = (R,R,), time-invariant, is said to be dissipative if

there exists>)] = (R,R,R, By ), time-invariant,
such that the dissipation inequality holds.
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Nonnegative storage

Simple existence result for non-negative storage functian
THEOREM

2 Is dissipative with non-negative storage <

VseBandVipe R, dK e R,

such that — /i s(t) dt <K for T >t

‘Available storage’ is finite. N.a.s.c.!
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Nonnegative storage

Simple existence result for non-negative storage functian
THEOREM

2 Is dissipative with non-negative storage <

vseBandVipe R, dK e R,
such that — /i s(t) dt <K for T >t
‘Available storage’ is finite. N.a.s.c.!
A n.a.s.c. for the existence of3¢,; andV (in terms of *B) is ?

3 sufficient conditions in terms of periodic trajectories
assumingobservability of V from s.
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Quadratic supply rates



QDF's

A gquadratic differential form (QDF) is a quadratic expression
in the components ofw € €% (R, R¥) and its derivatives:

-
dk d?
2y ¢ (_dtk W) Dy (_dteW)

with the @, , € R**¥. Map from ¢% (R,R") to €* (R, R).
Compact notation and a convenient calculus.

D((,n)=2xy CDk,eanf
Notation QDF Qg (W).

Qo IS said to benon-negative (denotedQq > 0) (<
Qo (W) > 0forall we ¢ (R,RY).
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Dissipativity of QDF’s

The systemZo = (R,R,im(Qo) ) : supply rate is QDF.

Quite general, ‘LQ’:
1. Linear time-invariant differential system

R($)w—0

perhaps including latent variables.
2. Controllable (in the behavioral sense: patchabillity).
3. QDF for the supply rate.
Extendable to rat. f'ns, both in system eqg’ns and supply rate

Examples: linear circuits, t'f f'n with supply rate quadrat ic
form in input and output, linear mechanical systems, ...
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Dissipativity of Z¢ = (R,R,im(Qo) )

6 statements concerning a supply rate defined by a QDF.
() 2o Is dissipative d storage)

() 2¢ admits a ... with a QDF as storage

(i) 2¢ admits a ... with a memoryless state f’'n as storage

(Iv) 2o admits a ... with a m’ess quadr. state f'n as storage

V) [[2Qo (W) dt>0 VYwe ¢®(R,R¥) compact support

(Vi) ®(iw,—iw)+P' (—iw,iw)>0 VweR

() <= (i) (i) < (iv) = (V)= (Vi)

Under certain ‘signature conditions’ (1)< (li).
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Dissipativity of Z¢ = (R,R,im(Qo) )

With a non-negative storage function, we obtain instead
(1) Avallable storage for 2o Is finite

() ¢ admits a latent var. with non-negative storage

(i) 2o ... wit
(V) 2o ... wit
(V) Zog ... Wit

N a non-negative QDF as storage
N a > 0 memoryless state f'n as storage

na > 0... quadr. state f'n as storage

vi) [°,Qp(W)dt>0 VYwe ¢ (R,RY) of compact support

(vi) RHP frequency-domain & Pick matrix condition on @

() <(11) <=(il) < (V)< (V)< (Vi) <(vi)

Under certain ‘signature conditions’ (i) <(lii).
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Dissipativity of Z¢ = (R,R,im(Qo) )

The existence of a QDF as storage is an LMI.

® e R™¥|{,n|is given,W € R"*¥ |, n] is unknown.

%Qw(w) < Qo(w) Ywe €”(R,R")
0

(+n)¥W(,n)<D(,n)

Remains LMI if W > 01s added.

In 1-D case storage f’'n ofw ‘observability’.
Not so in n-D case, as Maxwell’'s eq'ns.
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Some open problems
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Intrinsic characterization of dissipativity

Let > = (R,R,B) be time-invariant. When is it dissipative?

|.e., when does there exists a time-invariant latent variale
representationZ; = (R,R,RR,Bg ), time-invariant,
such that the dissipation inequality holds?

3 sufficient conditions in terms of periodic behavior,
controllablility, observability, equilibrium points, ...
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Characterization of QDF’s

Given B C ¢* (R,R), shift-invariant.

When doesd @ € R"*¥|{,n| such that B = image(Qq) ?
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Characterization of positive storage f'ns for QDF’s

Conjecture:

The following are equivalent for ® € R*"*¥[{, n]:
1. [°. Qo (W) dt>0 VYwe ¢*(R,R") of compact support,
2. Ywe €*(R,R¥), 4K € R,

such that— [} Qo (W) dt <K VT >0.

1. = 2. Is easy.
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Characterization of quadratic storage functions

Conjecture:

A QDF has a storage iff it has a QDF as a storage

Without signature conditions (as small gain, positive opedator,
conicity).
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Passive behavior synthesis

Stated for single input/single output systems. Consider

p( SV =a( 5.

When realizable as behavior of the port var. of a circuit with
(positive) resistors, capacitors, inductors, and transfomers?

Interconnected
RLCT's

Necess.ary:—p p.I. p.r. n.a.s.c. whenp and g co-prime.

g

What conditions does dissipativity impose on common fact@?
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Transformerless synthesis

Bott-Duffin synthesis realizes the impedance, not the behaw.
They do not use minimal realization, common factors are
Introduced. Uncontrollable parts are added in the behavior

Is a synthesizable SISO behavior ... without transformers?

Suspect: NOT.
Transformerless synthesis of behaviors more open than ever
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Conclusion

Let us get the physics right!

The rest iIs mathematics

Also for dissipative systems, this means backing off from
Input/output thinking!
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Conclusion

Let us get the physics right!

The rest iIs mathematics

Also for dissipative systems, this means backing off from
Input/output thinking!

Prima la fisica, poi la matematica
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Thank you for your attention




Thank you for your attention

&
Happy Birthday, Gianni
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