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Issues to be discussed

Remarks on deterministic versus stochastic system
identification.

Deterministic SYSID via the notion of the most
powerful unfalsified model (MPUM)

What is subspace identification?

Algorithms for state construction

e by past/future intersection
o (by oblique projection)
¢ by recursive annihilator computation






SYSID

MODEL CLASS

OBSERVED DATA

MATHEMATICAL MODEL

Basic difficulties:
trade-off between overfitting and predictability
learning essential features / rejecting non-essential ones



SYSID

Data: an ‘observed’ vector time-series

w(1),w(2),...,W(T) w(t) € RY

T finite, infinite,or T — o©

U

A dynamical model from a model class , e.g. a LTIDS

[Row(t) + Ruw(t +1) + -+ + Row(t + L) = 0]
or

’Row(t)+R1w(t + 1)+ +RW(t +L) = Moe(t) + - -+ + Me(t +L)‘




SYSID

‘deterministic’ ID

MODEL e variables

Model class:

Row (t) + Riw(t +1)+---+Rw(t+L)=0
SYSID algorithm:

‘W(l),VV(Z),...,VV(T)‘H Ro, R, ..., R;




SYSID

‘deterministic’ ID : /O form

N E MODEL 5 yvarin bles

Model class (with i/o partition):

Poy(t) +---+Puy(t +L) = Qou(t) +---+ Quu(t +L),
w=1"n B] , M permutation , P(£)~1Q(¢&) proper

SYSID algorithm:

‘le(l),vT/(Z),...,vT/(T)‘H’ﬁo,lsl,--- P Qo, 01, - - - ,Qﬁ\




SYSID

ID with unobserved latent inputs

observed
observed

variables | variables
.

v MODEL ty

—>
[
latent
| ¢ variables

—>
Model class: (unobserved)

Row (t) + Riw(t +1) +--- 4+ Row(t + L)
= Moe(t) + Mie(t +1) +--- + Me(t + L)

Poy (t) 4+ -+ + Puy(t +1)
= Qou(t) +---+Quu(t +L) +Moe(t) +--- + Me(t +1L)
SYSID algorithm (e.g. PEM):

W (1), (2), ., W (T) [ | (R(€), NI(£))

Usual assumption: w, e stochastic.



SYSID

ID with unobserved latent inputs

observed
N — observed
variables | variables

Why (unobserved) stochastic inputs?

.
[
latent
| € variables
b

Model class: (unobserved)

Why stochastics?
RoW(t)+R1W(t+4.,—r T LWt T =y

= Moe(t) + Mie(t +1) +--- + Me(t + L)

Poy(t) + -+ Py (t+L)
= () {Is this physics? )+ + Mt +1)
SYSID algorithm (e.g. PEM):

W (1), (2), ., W (T) [ | (R(€), NI(£))

Usual assumption: w, e stochastic.



SYSID
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SYSID

Assumptions:
e Data:

w(1),w(2),...,w(t),... w(t) € RY T infinite
e Deterministic SYSID

e Exact modeling with an eye towards  approximation

From the simple to the complex!

— = Approximate

/ Deterministic \

Exact — Approximate

Deterministic \ / = Stochastic
— Exact >

Stochastic



The MPUM

The exact deterministic SYSID principle



Most Powerful & Unfalsified

e A model := a subset 2 C (R")Y, the ‘behavior
A family of (vector) time series
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e A model := a subset 2 C (R")Y, the ‘behavior
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Most Powerful & Unfalsified

e A model := a subset B C (R%)Y, the ‘behavior’
e B is unfalsifiedby w < w € B

e B, is more powerful than 2B, < B, C B»

Every model is prohibition.
The more a model forbids, the better it is.

Karl Popper
(1902-1994)
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Most Powerful & Unfalsified

A model := a subset B C (RY)Y, the ‘behavior’
B is unfalsifiedby w &< w € B

B, is more powerful than 2B, < B, C B»
A model class: a family, B, of models, e.g. £Y.

The | MPUM | ‘most powerful unfalsified model’

W, denoted 237 :
1. 8% B MPUM

Y, * Unfalsified
2. W e B

3. BWeBand W € B
= B; CB

OBSERVED DATA

in B for

Falsified



Most Powerful & Unfalsified

A model := a subset B C (RW)Y, the ‘behavior’
B is unfalsifiedby w :< w € B

9B, is more powerful than 9B, :< B; C B>
A model class: a family, B, of models, e.g. £V.

The | MPUM | ‘most powerful unfalsified model’

W, denoted B
1. BL €B

2. W € B

3. B cBandw € 8
= B; CB

Given W and B, does BT exist?

‘Exact’ SYSID: Construct algorithms =~ W +— 87

in B for



The Model Class

Exceedingly familiar:  The model 23 C (R")" belongsto £ :&

e B is linear, shift-invariant, and closed

e B is linear, time-invariant, and complete  :< ‘prefix
determined’



The Model Class

Exceedingly familiar:  The model 23 C (R")" belongsto £ :&

e B is linear, shift-invariant, and closed

e B is linear, time-invariant, and complete  :< ‘prefix

determined’
e 3 matrices Rp,R1,...,R_ suchthat 925: all w that satisfy
RoW(t)+R1W(t+1)+"‘+R|_W(t+|_)=0 VvVt eN

In the obvious polynomial matrix notation
R(e)w =0

¢ Including input/output partition

P(e)y =Q(o)u, w = [y] det(P)#0



The Model Class

Exceedingly familiar:  The model 23 C (R")" belongsto £ :&

e B is linear, shift-invariant, and closed

B is linear, time-invariant, and complete ;< ‘prefix
determined’

R(o)w =0

P(e)y =Q(o)u, w = [J]

3 matrices A, B, C, D such that
B consists of all w’s generated by

x(t +1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), w =[y]



The Model Class

Exceedingly familiar:  The model 23 C (R")" belongsto £ :&

e B is linear, shift-invariant, and closed

B is linear, time-invariant, and complete  :< ‘prefix
determined’

R(o)w =0

P(e)y =Q(a)u, w = [}]

ox =AX +BuU,y =Cx +Du, w[¥]

3 a matrix of rational functions G such that 28 = sol'ns of

G(o)w =0

without LOG strictly proper
with LOG (stabilizability) proper stable rational.



The lag

L: g% — Zy,
L(28) = smallest L such that there is a kernel repr.:

RoW(t)-l-R]_W(t +1) + ... +R|_W(t +L) =0.

Polynomial matrixin  R(o)w = 0 has degreqR) < L.

One the important ‘integer invariants’: maps eV — 7.
Others:

m p, n: number of inputs, outputs, states,

v, -+ ,vp: (kernel) lag indices, observability indices,

K1,- -+, km (image) lag indices, controllability indices.



The MPUM in £%

Theorem: For infinite obs. interval, T = oo (our case),
the MPUM for w in £% exists.
In fact,
* = span ({W, oW, o?W, . ..})olosure
Same is true for model class £%with lag < £.

We are looking for effective computational algorithms to go
from W to (a representation of) B%,

e.g., a kernel representation ~-» the corresponding R;
e.g. a generating set of annihilators
e.g., the matrices [%‘%] of an i/s/o representation of B .



The Hankel matrix of the data

The key role is played by the
‘Hankel matrix’ of the data

Hermann Hankel
1839-1873

W (1) W(2) - W (t")
W (2) W (3) W(t" + 1)
W (3) W (4) W (t"” +2)
H(W) := : : : :
w(t')y w'+1) .- W' +t"-1)
w(t'+1) w(t’'+2) --- wW(t" +t")




Persistency of excitation
Data: W = (W (1), W(2),...,W(T)) w(t) € R

Question: Is it possible to recover the system that gener-
ated the data? ‘ldentifiability’.



Persistency of excitation

Assume that
1. W e %[LT]
2. B eV
3. B controllable
4

. A>L(B)

5 W = [;] U persistently exciting  of order A + n(2)

This means that

a() i(2) oo QT —A—n(B)—1)
W(2) W (3) cee W(T — A—n(B))
W(A+n(B) W(A+n(B)+1) --- W(T)

has full row rank.



Persistency of excitation

Assume that
1. W e B1,1)
. Beg?
. B controllable

A > L(B)

2 W N

5 W = [;] U persistently exciting  of order A + n(2)

Then the left kernel of the data Hankel matrix

W)  W(@) - W(T—A+1)
W) W) - W(T —A)
W(A) W(A+1) --- W(T)

is a set of generators of mﬂgﬂ < its column span = By 1



The problem

Given the observed (infinite horizon) vector time-series
w =w(1),w(2),...,w(t),... w(t) € RY

compute the MPUM in  £" that generated these data.

‘Exact’, ‘deterministic’ system ID
(with an eye to approximation).



Subspace Identification



W [f+]

Once we have (an estimate of) the MPUM, the system that
produced the data W , we can analyze it, make an i/o parti-
tion, an observable state representation

x(t +1) = Ax(t) + Bu(t),
y(t)= Cx() +Du@),  w(t)[:0)]

and compute the (unique) state trajectory
X(1),X(2)y...,X(t),...
corresponding to

W (1), W(2), ..., W(t),...



W [f+]

Once we have (an estimate of) the MPUM, the system that
produced the data W , we can analyze it, make an i/o parti-
tion, an observable state representation

x(t +1) = Ax(t) + Bu(t),
y(t)= Cx() +Du@),  w(t)[:0)]

and compute the (unique) state trajectory

%(1),%(2),...,%(t), ...

Of course,

%(2) %(3) --- K(t+1) }_ {A B} {)Z(l) R(2) - R(t)
y() v@ --- ¥ ~[€ DJ [G(@) W@ --- G



W [f+]

Of course,

%(2) X(3) --- K(t+1) }_ {A B} {)?(l) %(2) --- X(t)
§1) ¥ - @) = lc o] i) @@ - G

But if we could go the other way:

first compute the state trajectory X , directly from w ,
then this equation provides a way of

identifying the system parameters  [c{5-]

Classical realization special case: impulse response data.



W [f+]

y@ y@ - () C D] [G(1) G2 --- df()
Yields an attractive SYSID procedure:

e Truncation at suff. large t; copes with missing data :
cancel columns; extends to more than one observed
time series, ...

e SVD model reduce by first lowering row dim. of

%(2) %(3) --- RK(t+1) :--}= {A B} {)Z(l) R(2) - K(t)

the matrix X = [K(1) X(2) --- X(t) ---]

e Solve for [-&t5-] using Least Squares

~» What has come to be known as  ‘subspace ID’ .

Algorithms compare favorably compared to PEM, etc.



W — [f5]

%(2) %(3) --- RK(t+1) }_ {A B} [)Z(l) R(2) - K(t)
y(1 y@ ---  y@ -] [C D] [G(1) G2 --- d(t)

Has been generalized to stochastic systems.

Bl QR 1
DERTFEAT
L]

LEFEAR FYRTEME







=
1
X

How does this work?

W (1), W (2), ..., W(t),...

U

%(1),%(2),...,%X(t), ...

This is a very nice system theoretic question.



W — X

Henceforth, A sufficiently large (> the lag of the MPUM).

Identify somehow, directly from the data , state map

’vT/(l),vT/(Z),...,vT/(A)‘ —
W (2),W(3), -, W (A +1)] —

or
W(l),vT/(Z),...,vT/(A)‘ —

]W(Z),v"v(s),...,W(AJrl)\ —

There are many algorithms. We discuss two.

X

(1)

X(A + 1)

X(A + 2)

X
. —_
~



~

W — X

W (1) W (2) W (t)
W (2) W (3) W(t+1) T
. : : T
W(A) W(A+1) Wit + A — 1) f
H- ‘PAST’
H+
W(A+1) wW(A+2) W(t + A) ‘FUTURE’
W(A+2) W(A+3) W(t+A+1) i
: : : L
W(24) W(2A + 1) W(t + 24 — 1)




~

W — X

W (1) T¢) I W (t)
W(2)  W(3) e W(t+1) 1
. . . . T
W(A) W(A+1) --- W(t+A-—1) f
[H_ }_ ‘PAST’
Hy |~
W(A+1) W(A+2) .- W(t+4) ... | FUTURE
W(A+2) W(A+3) .- W(E+A+IL) .- i
: E : : !
W(28) WA +1) .- W(t+2A - 1)

The intersection of the span of the rows of H_ with those
of H 4 = state space. The common linear combinations

L(A+1) X(A+2) .-+ R(t+A4) - | [PRESENT STATE |

State = what is common between past and future.
Existing algorithms (N4SID, MOESP,...): past/future part.



How can we compute this intersection?

[Zz ' m;]T =0 = a; M; = —a, M, : common linear combinations. ]
w (1) W (2) W (t)
W) W@ e W(t+1)
W(A) W(A+1) --- W(t+A-1)
-
ap
0= { az }
W(A+1) WA+2) ---  W(+A)
W(A+2) wW(A+3) --- W(t+A+1)
W(2B) WA +1) --- W(t+24—1)




How can we compute this intersection?

[Z: ' m;]T = 0 = a; M; = —a, M, : common linear combinations. ]
w (1) W (2) W (t)
wE) W) e W(t+1)
W(A) W(A+1) --- W(t+A-1)
-
ap
0= { az }
W(A+1) WA+2) ---  W(+A)
W(A+2) wW(A+3) --- W(t+A+1)
W(28) WEA+1) --- i(t+24—1)

Hankel structure = the left kernel of the whole matrix can
be computed from the kernel of the upper part  ~» following
algorithm



~

W — X
Compute ‘the’ left annihilators of the Hankel matrix:

W) W@ .- W(t)
W(2)  W() - W(t+1)
[Ny No Ni --- Na] [FG®) W@ -0 W(t+2) ) _g

VV(.A) VT/(A.+1) vv(t+A—1)



~

W +— X
Compute ‘the’ left annihilators of the Hankel matrix:

W (1) W (2) W (t)
W(2) W@ - W(t+1)
[Nl N2 Nz --- NA} W (3) W (4) W(t +2) 'l =0
W(A) W(A+1) --- W(t+A-—1)
Then [X(1) £(2) oo R(t) -]
No N - Na O] [W() W@ - @)
N3 Ng .- 0 O W (2) w(3) ... W(t+1)
S | wE) W@ e Wt +2)
Na:i Na - 0 0 : : : :
Na O 0 0] LW(A) W(A+1) - Wi(t+A—1)

7

‘shift-and-cut’



~

W +— X
Compute ‘the’ left annihilators of the Hankel matrix:

W (1) W (2) W (t)
W(2) W@ - W(t+1)
[Nl N2 Nz --- NA} W (3) W (4) W(t +2) 'l =0
W(A) W(A+1) --- W(t+A-—1)
Then [X(1) £(2) oo R(t) -]
No N - Na O] [W() W@ - @)
N3 Ng .- 0 O W (2) w(3) ... W(t+1)
: : c W (3) W(4) - W(t+2)
Na:i Na - 0 0 : : : :
Na O 0 0] LW(A) W(A+1) - Wi(t+A—1)

7

‘shift-and-cut’ ] anon-minimal state \ thou




Computing the kernel of a Hankel matrix



Hankel kernel

Leads to the problem:

Compute the left kernel of a (block) Hankel matrix

\Kl(l) W(Z) oo V’\"I(tll)

W (2) W (3) W(t" + 1)

W (3) W (4) W(t" +2)

W(t’) \K/(t’-‘l- 1) . .-. W(t/ +tl/ _ 1)
W(t’ +1) W(t' +2) e VT/(t’ +t")




Hankel kernel

Identify each left annihilator with a vector polynomial

[ao a---aan 0 }

[

(W (1)
W (2)
W (3)

W (2)
W(3)
W (4)

W(t') W(t +1)

W (t")
W(t” + 1)
W (t"” + 2)

W(t 17 —1)

a(f) =ap+ai&+---+aatd e R[EIPY € left kernel



Hankel kernel
This kernel is closed under a(jc(liltion
W .

W (t")

w(2) --- W(t” +1)

[aO e aa 0 "'} W(g) .. W(t//+2)
by +-- ba0---] . _ _
.U' . . .

[ao+bo---aan+ba O -] W(t) .- W(t'+t” 1)




Hankel kernel

and under shifting W) - W(t")
w(2) --.. W(t” + 1)
[oa---aa 0 0-.--] w(3) --- W (t"” +2)
4 : : : =0
[an <. an_1 aAO...] W(tl) W(tl+t'l—l)

a(€) =ap+a1€+---+ant® € leftkernel
b(§) =bo + b€+ ---+bat® € left kernel

= a(&)+b(&) and ga(&) € leftkernel.



Hankel kernel

a() =ap+ar&+---+ an&l € left kernel
b(§) =bg + b1&+---+bat® € left kernel

= a(f) +b(&) and ga(&) € leftkernel.

= The left kernel hence formsa R [¢]-module .

! Finitely generated: 3 annihilators a(&),b(&),--- ,c(&)
that yield all annihilators under  + and shifts.

Left kernel is in a real sense always  finite dim. (dim. p < w).




State from generators

[ao ag - anl]
Generators [bo bi «-- -+ byl

[CO C1 +-- Cnp]



Generators

State from generators

a0 a1 -+ an]
[bo bi «-- -+ byl

[CO C1 +-- Cnp]

0 -l [R(M) K@ - K@ o]

0 ...lrwa W@ o - ()
W(2) W@ .- W(t+1)
W(3) W) .- W(t+2)

Cnp—1  Cnp
Cn, O
© | LW(Cn)W(Cny +1) +-W(t+Cny — 1) -
0 0|



Then
fay
az

an, O
C1
C2

Cn 0

State from generators

* Cnp—1

Cnp

[ %)

W (1)
W (2)
W (3)

W (Cn,)W(Cn, +1) -+ W (t+Cnp —1) ---

Suitable conditions on generators

X(2)
W (2)

W (3)
W (4)

~» minimal

X(t)
W (t)

W (t + 1)
W (t + 2)

state.



Recursive computation



Recursive computation

Suppose we found a left annihilator of

W(l) W@ .- Wi (t)
W(2)  W(3) e W(t+1)

W (3) W (4) W (t + 2)

W(A) W(A+1) --- W(t+A-—1)



Recursive computation

Suppose we found a left annihilator of

W (1) w2 - W (t)
W) W@ - W(t+1)
WE) W) - w(t+2)
W(A) W(A+1) --- W(t+A—1)

Use this to simplify finding other left annihilators of

W (1) W) .- Wi (t)
Wi (2) W(3)  -ee W(t+1)

W (3) W (4) W (t +2)

W(A)  W(A41) .- W(t4A-—1)




Completion lemma

Key question: Given 2B € £% 3 a complement?
i.e. B’ € £¥suchthat B @ B’ = (RN ?

Meaning in terms of kernel or image representations?



Completion lemma

Key question: Given 2B € £% 3 a complement?
i.e. B’ € £¥suchthat B @ B’ = (RN ?
Meaning in terms of kernel or image representations?

There exists a complement iff 23 is controllable.



Completion lemma

Key question: Given 2B € £% 3 a complement?
i.e. B’ € £¥suchthat B @ B’ = (RN ?
Meaning in terms of kernel or image representations?

There exists a complement iff 23 is controllable.

Given R, complete with R’ such that [g,] is unimodular.

Given M, complete with M’,s.t. [M  M’] is unimodular.

Given basis of rat. annihilators, find complementary basis.



Recursive computation

Let R(£) € RPX"[¢] be left prime. Then 3 E (&) € RW—P)XV[¢]

such that
[R(ﬁ)
E()

meaning det = non-zero constant, inv. as a pol. matrix.

} is unimodular



Recursive computation

Let R(£) € RPX"[¢] be left prime. Then 3 E (&) € RW—P)XV[¢]

such that
[R(ﬁ)
E()

meaning det = non-zero constant, inv. as a pol. matrix.

} is unimodular

Ex. p=1,w=2,R(§) = [r1(&) r2(§),E(&) =[-y(£) x(8)]
Given ry(&),r2(€) € R[€], find x(&),y (&) € R[] such that
X(&)r1(&) +y(&)ra(¢) =1 Bézout equation

Solvable iff rq,r, coprime. 3 algorithms, etc. 5\%
N

Bézout



Recursive computation

Let R(£) € RPX"[¢] be left prime. Then 3 E (&) € RW—P)XV[¢]

such that
[R(ﬁ)
E()

} is unimodular



Assume

[ao ai

Recursive computation

W (1) w(2) - W (t)
W (2) W(3) - W(t+1)
al | W@ W@ W(+2) | g

W +1) W(n+2) - W(t+m)



Assume

[ao ai

Recursive computation

W (1) W(2) - W(t)
W (2) W) - W(t+1)

al | W@ W@ - W42 | g
W +1) W(i42) --- W(t+n)

Complete a(¢) ~ Ea(&) such that {;] unimodular.
a



Recursive computation

Assume W (1) w(2) - W (t)
W (2) W (3) S W(t+1)
a0 ai --- an) | WG W(4) e W(t+2)
W +1) W(n+2) - W(t+m)

Complete a(¢) ~ Ea(&)
Compute the ‘error’ € = Ea(o)w

Note that €& is (w— 1) -dimensional.



Recursive computation

Assume W (1) W (2) e W (t)
W (2) W (3) cee W(t41) e

[ao a; e anll W(S) W(4) W(t+2) Tl =0
W +1) W(i42) --- W(t+n)

Complete a(¢) ~ Ea(&)

Compute é(1) é(2) e é(t)
3(2) 8(3) .-+ B(t+1)
[bo by -+- bn] €(3) €(4) e B(t+2) -] _
8Nz +1) 8(N2+2) --- 8(t+ns)

€ annihilator b(&)Ea(&) ~ 2 generators: a(&),b(&€)Ea(€)

Complete b ~» E,. Compute €’ = E,(o)€.
Proceed recursively...



Recursive computation

Assume W (1) W (2) e W (t)
W (2) W (3) cee W(t41) e

[ao a; e anll W(S) W(4) W(t+2) Tl =0
W +1) W(i42) --- W(t+n)

Complete a(¢) ~ Ea(&)

Compute é(1) é(2) e é(t)
3(2) 8(3) .-+ B(t+1)
[bo by -+- bn] €(3) €(4) e B(t+2) -] _
8Nz +1) 8(N2+2) --- 8(t+ns)

Recursively 2(§), P(&)Ea(§), ---, c(&):--Ep(§)Ea(€)

yields, assuming MPUM contr., left kernel by computing p
times a left kernel vector.
Recursion can be combined with the state computation.






Summary

e Approximation in SYSID is cloesr to the physics that
stochasticity
e Subspace ID :
w(1),w(2),...,w(t),...
1
X = [X(1),X(2),...,X(t),...]
i

Row reduce X

LS solve

%(2) %(3) --- K(t+1) }_ {A B} {)?(1) R(2) .- R(t)
y@a) vy@ --- oy ~[€ DJ [d@@) W@ --- G

!
Model [-&f5-]
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Central pbm: computation of generators of left kernel
of Hankel matrix
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Summary

Approximation in SYSID is cloesr to the physics that
stochasticity
Subspace ID

State construction

e Past/future intersection

e Oblique projection

e Generators left kernel of Hankel + cut-and-shift
Central pbm: computation of generators of left kernel
of Hankel matrix

Computation can be carried out recursively in the case
that the MPUM is controllable.

Key step: completion lemma. Given 8 ¢ £V, find
B’ € £%such that B @ B’ = everything.



