The Behavioral Approach to Systems Theory

Paolo Rapisarda, Un. of Southampton, U.K. & Jan C. Willems, K.U. Leuven, Belgium

> MTNS 2006 Kyoto, Japan, July 24–28, 2006

Lecture 6: System Identification

Lecturer: Jan C. Willems

Issues to be discussed

• Remarks on deterministic versus stochastic system identification.

Issues to be discussed

- Remarks on deterministic versus stochastic system identification.
- Deterministic SYSID via the notion of the most powerful unfalsified model (MPUM)

Issues to be discussed

- Remarks on deterministic versus stochastic system identification.
- Deterministic SYSID via the notion of the most powerful unfalsified model (MPUM)
- What is subspace identification?
- Algorithms for state construction
 - by past/future intersection
 - (by oblique projection)
 - by recursive annihilator computation

General Introduction

Basic difficulties:

trade-off between overfitting and predictability learning essential features / rejecting non-essential ones

Data: an 'observed' vector time-series

 $\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T)$ $w(t) \in \mathbb{R}^{w}$

T finite, infinite, or $T
ightarrow \infty$

A dynamical model from a model class, e.g. a LTIDS

 $R_0 \mathbf{w}(t) + R_1 \mathbf{w}(t+1) + \cdots + R_L \mathbf{w}(t+L) = \mathbf{0}$

or

 $R_0 w(t) + R_1 w(t+1) + \cdots + R_L w(t+L) = M_0 \varepsilon(t) + \cdots + M_L \varepsilon(t+L)$

'deterministic' ID

Model class:

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_L w(t+L) = 0$$

SYSID algorithm:

$$\widetilde{w}(1), \widetilde{w}(2), \ldots, \widetilde{w}(T) \mapsto \hat{R}_0, \hat{R}_1, \ldots, \hat{R}_{\hat{L}}$$

'deterministic' ID: I/O form

Model class (with i/o partition):

$$P_0 \mathbf{y}(t) + \dots + P_L \mathbf{y}(t+L) = Q_0 \mathbf{u}(t) + \dots + Q_L \mathbf{u}(t+L),$$
$$w = \Pi \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \end{bmatrix}, \Pi \text{ permutation }, P(\xi)^{-1} Q(\xi) \text{ proper}$$

SYSID algorithm:

$$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \mapsto \hat{P}_0, \hat{P}_1, \cdots, \hat{P}_{\hat{L}}; \hat{Q}_0, \hat{Q}_1, \cdots, \hat{Q}_{\hat{L}}$$

ID with unobserved latent inputs

Model class:

$$R_0 w(t) + R_1 w(t+1) + \dots + R_L w(t+L)$$

= $M_0 \varepsilon(t) + M_1 \varepsilon(t+1) + \dots + M_L \varepsilon(t+L)$
 $P_0 y(t) + \dots + P_L y(t+L)$
= $Q_0 u(t) + \dots + Q_L u(t+L) + M_0 \varepsilon(t) + \dots + M_L \varepsilon(t+L)$

SYSID algorithm (e.g. PEM):

$$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \mapsto (\hat{R}(\xi), \hat{M}(\xi))$$

Usual assumption: w, ε stochastic.

ID with unobserved latent inputs

Usual assumption: w, ε stochastic.

Assumptions:

• Data:

 $ilde{w}(1), ilde{w}(2), \dots, ilde{w}(t), \dots \qquad w(t) \in \mathbb{R}^{\mathsf{w}} \qquad T \text{ infinite}$

Assumptions:

• Data:

 $ilde{w}(1), ilde{w}(2), \dots, ilde{w}(t), \dots \qquad w(t) \in \mathbb{R}^{w} \qquad T ext{ infinite}$

Deterministic SYSID

Assumptions:

• Data:

$$ilde{w}(1), ilde{w}(2), \dots, ilde{w}(t), \dots \qquad w(t) \in \mathbb{R}^{w} \qquad \overline{T}$$
 infinite

- Deterministic SYSID
- Exact modeling with an eye towards approximation

Assumptions:

• Data:

$$ilde{w}(1), ilde{w}(2), \dots, ilde{w}(t), \dots \qquad w(t) \in \mathbb{R}^{w} \qquad \overline{T}$$
 infinite

- Deterministic SYSID
- Exact modeling with an eye towards approximation

From the simple to the complex!

The MPUM

The exact deterministic SYSID principle

 A model:= a subset 𝔅 ⊆ (𝔅^w)^ℕ, the 'behavior' A family of (vector) time series

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^w)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{w} : \Leftrightarrow \tilde{w} \in \mathfrak{B}$ $\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(t), \dots)$

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^w)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{w} : \Leftrightarrow \tilde{w} \in \mathfrak{B}$
- \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$

Every model is prohibition. The more a model forbids, the better it is.

Karl Popper (1902-1994)

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{w} : \Leftrightarrow \tilde{w} \in \mathfrak{B}$
- \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$
- A model class: a family, \mathbb{B} , of models, e.g. \mathfrak{L}^{w} .

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^w)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{w} : \Leftrightarrow \tilde{w} \in \mathfrak{B}$
- \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$
- A model class: a family, B, of models, e.g. ℒ^w.
- The MPUM 'most powerful unfalsified model' in B for *w*, denoted 𝔅^{*}/_w:
 - 1. $\mathfrak{B}^*_{\tilde{w}} \in \mathbb{B}$
 - 2. $\tilde{w} \in \mathfrak{B}_{\tilde{w}}^*$
 - 3. $\mathfrak{B} \in \mathbb{B}$ and $\tilde{w} \in \mathfrak{B}$ $\Rightarrow \mathfrak{B}^*_{\tilde{w}} \subseteq \mathfrak{B}$

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^w)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{w} : \Leftrightarrow \tilde{w} \in \mathfrak{B}$
- \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$
- A model class: a family, B, of models, e.g. L^w.
- The MPUM 'most powerful unfalsified model' in B for *w̃*, denoted 𝔅^{*}/_{w̃}:
 - 1. $\mathfrak{B}^*_{\tilde{w}} \in \mathbb{B}$

2.
$$\tilde{w} \in \mathfrak{B}_{\tilde{w}}^*$$

3. $\mathfrak{B} \in \mathbb{B}$ and $\tilde{w} \in \mathfrak{B}$ $\Rightarrow \mathfrak{B}^*_{\tilde{w}} \subseteq \mathfrak{B}$

- A model:= a subset $\mathfrak{B} \subseteq (\mathbb{R}^w)^{\mathbb{N}}$, the 'behavior'
- \mathfrak{B} is unfalsified by $\tilde{w} : \Leftrightarrow \tilde{w} \in \mathfrak{B}$
- \mathfrak{B}_1 is more powerful than \mathfrak{B}_2 : $\Leftrightarrow \mathfrak{B}_1 \subset \mathfrak{B}_2$
- A model class: a family, B, of models, e.g. L^w.
- The MPUM 'most powerful unfalsified model' in \mathbb{B} for \tilde{w} , denoted $\mathfrak{B}_{\tilde{w}}^*$:
 - 1. $\mathfrak{B}^*_{\tilde{w}} \in \mathbb{B}$
 - 2. $\tilde{w} \in \mathfrak{B}_{\tilde{w}}^*$
 - 3. $\mathfrak{B} \in \mathbb{B}$ and $\tilde{w} \in \mathfrak{B}$ $\Rightarrow \mathfrak{B}^*_{\tilde{w}} \subseteq \mathfrak{B}$
- Given \tilde{w} and \mathbb{B} , does $\mathfrak{B}^*_{\tilde{w}}$ exist?

• 'Exact' SYSID: Construct algorithms $\tilde{w} \mapsto \mathfrak{B}^*_{\tilde{w}}$

Exceedingly familiar: The model $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ belongs to \mathfrak{L}^{w} : \Leftrightarrow

- 38 is linear, shift-invariant, and closed
- ℬ is linear, time-invariant, and complete :⇔ 'prefix determined'

Exceedingly familiar: The model $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ belongs to \mathfrak{L}^{w} : \Leftrightarrow

- \mathfrak{B} is linear, shift-invariant, and closed
- 𝔅 is linear, time-invariant, and complete :⇔ 'prefix determined'
- \exists matrices R_0, R_1, \ldots, R_L such that \mathfrak{B} : all w that satisfy

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_L w(t+L) = 0 \qquad \forall t \in \mathbb{N}$$

In the obvious polynomial matrix notation

$$R(\sigma) \mathbf{w} = \mathbf{0}$$

Including input/output partition

$$P(\sigma)y = Q(\sigma)u$$
, $w \cong \begin{bmatrix} u \\ y \end{bmatrix}$ det $(P) \neq 0$

Exceedingly familiar: The model $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ belongs to \mathfrak{L}^{w} : \Leftrightarrow

- 38 is linear, shift-invariant, and closed
- ℬ is linear, time-invariant, and complete :⇔ 'prefix determined'
- $R(\sigma)w = 0$
- $P(\sigma)y = Q(\sigma)u$, $w \cong \begin{bmatrix} u \\ y \end{bmatrix}$

 ∃ matrices A, B, C, D such that ^B consists of all w's generated by

 $\mathbf{x}(t+1) = A\mathbf{x}(t) + B\mathbf{u}(t), \ \mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t), \qquad \mathbf{w} \cong \begin{bmatrix} u \\ y \end{bmatrix}$

Exceedingly familiar: The model $\mathfrak{B} \subseteq (\mathbb{R}^{w})^{\mathbb{N}}$ belongs to \mathfrak{L}^{w} : \Leftrightarrow

- \mathfrak{B} is linear, shift-invariant, and closed
- ℬ is linear, time-invariant, and complete :⇔ 'prefix determined'
- $R(\sigma)\mathbf{w} = \mathbf{0}$
- $P(\sigma)y = Q(\sigma)u$, $w \cong \begin{bmatrix} u\\ y \end{bmatrix}$
- $\sigma x = Ax + Bu, y = Cx + Du, w \cong \begin{bmatrix} u \\ y \end{bmatrix}$
- \exists a matrix of rational functions G such that $\mathfrak{B} =$ sol'ns of

$$G(\sigma)\mathbf{w} = \mathbf{0}$$

without LOG strictly proper with LOG (stabilizability) proper stable rational.

The lag

L: $\mathfrak{L}^{\mathsf{w}} \to \mathbb{Z}_+$, L(\mathfrak{B}) = smallest *L* such that there is a kernel repr.: $R_0 w(t) + R_1 w(t+1) + \cdots + R_L w(t+L) = 0$. Polynomial matrix in $R(\sigma) w = 0$ has degree(R) < L.

One the important 'integer invariants': maps : $\mathfrak{L}^{w} \to \mathbb{Z}_{+}$,.

Others:

m, p, n: number of inputs, outputs, states, ν_1, \dots, ν_p : (kernel) lag indices, observability indices, $\kappa_1, \dots, \kappa_m$: (image) lag indices, controllability indices.

The MPUM in $\mathfrak{L}^{\mathtt{w}}$

Theorem: For infinite obs. interval, $T = \infty$ (our case),

the MPUM for \tilde{w} in \mathfrak{L}^{w} exists.

In fact,

$$\mathfrak{B}_{\tilde{w}}^* = \operatorname{span}(\{\tilde{w}, \sigma \tilde{w}, \sigma^2 \tilde{w}, \ldots\})^{\operatorname{closure}}$$

Same is true for model class \mathfrak{L}^{w} with lag $\leq \ell.$

We are looking for effective computational algorithms to go from \tilde{w} to (a representation of) $\mathfrak{B}^*_{\tilde{w}}$,

e.g., a kernel representation \rightsquigarrow the corresponding R; e.g. a generating set of annihilators e.g., the matrices $\left[\frac{A}{C} + \frac{B}{D}\right]$ of an i/s/o representation of $\mathfrak{B}_{\tilde{w}}^*$.

The Hankel matrix of the data

The key role is played by the 'Hankel matrix' of the data

Hermann Hankel 1839-1873

$$\mathcal{H}(\tilde{w}) := \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t'') & \cdots \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t''+1) & \cdots \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(t') & \tilde{w}(t'+1) & \cdots & \tilde{w}(t'+t''-1) & \cdots \\ \tilde{w}(t'+1) & \tilde{w}(t'+2) & \cdots & \tilde{w}(t'+t'') & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Persistency of excitation

Data:
$$\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(T))$$
 $w(t) \in \mathbb{R}^{w}$.

Question: Is it possible to recover the system that generated the data? 'Identifiability'.

Persistency of excitation

Assume that

- 1. $\tilde{w} \in \mathfrak{B}_{[1,T]}$
- **2**. $\mathfrak{B} \in \mathfrak{L}^{w}$
- 3. 33 controllable
- 4. $\Delta > L(\mathfrak{B})$

5.
$$\tilde{w} = \begin{bmatrix} \tilde{u} \\ \tilde{y} \end{bmatrix}$$
, \tilde{u} persistently exciting of order $\Delta + n(\mathfrak{B})$

This means that

$$\begin{bmatrix} \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(T - \Delta - n(\mathfrak{B}) - 1) \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - \Delta - n(\mathfrak{B})) \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta + n(\mathfrak{B})) & \tilde{w}(\Delta + n(\mathfrak{B}) + 1) & \cdots & \tilde{w}(T) \end{bmatrix}$$

has full row rank.

Persistency of excitation

Assume that

- 1. $\tilde{w} \in \mathfrak{B}_{[1,T]}$
- **2**. $\mathfrak{B} \in \mathfrak{L}^{w}$
- 3. 33 controllable
- 4. $\Delta > L(\mathfrak{B})$

5. $\tilde{w} = \begin{bmatrix} \tilde{u} \\ \tilde{y} \end{bmatrix}$, \tilde{u} persistently exciting of order $\Delta + n(\mathfrak{B})$

Then the left kernel of the data Hankel matrix

$$\begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T-\Delta+1) \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T-\Delta) \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(T) \end{bmatrix}$$

is a set of generators of $\mathfrak{N}_{\mathfrak{B}}^{\mathbb{R}[\xi]} \Leftrightarrow$ its column span = $\mathfrak{B}_{[1,L]}$

The problem

Given the observed (infinite horizon) vector time-series

$$ilde{w} = ilde{w}(1), ilde{w}(2), \ldots, ilde{w}(t), \ldots ilde{w}(t) \in \mathbb{R}^w$$

compute the MPUM in \mathcal{L}^{w} that generated these data.

'Exact', 'deterministic' system ID (with an eye to approximation). Subspace Identification
$$\tilde{W} \mapsto \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$$

Once we have (an estimate of) the MPUM, the system that produced the data \tilde{w} , we can analyze it, make an i/o partition, an observable state representation

$$\begin{aligned} \mathbf{x}(t+1) &= & \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) &= & \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t), \qquad \mathbf{w}(t) \cong \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) \end{bmatrix} \end{aligned}$$

and compute the (unique) state trajectory

 $\tilde{x}(1), \tilde{x}(2), \ldots, \tilde{x}(t), \ldots$

corresponding to

$$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots$$

$$\tilde{W} \mapsto \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$$

Once we have (an estimate of) the MPUM, the system that produced the data \tilde{w} , we can analyze it, make an i/o partition, an observable state representation

$$\begin{aligned} \mathbf{x}(t+1) &= & \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) &= & \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t), \qquad \mathbf{w}(t) \cong \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) \end{bmatrix} \end{aligned}$$

and compute the (unique) state trajectory

 $\tilde{x}(1), \tilde{x}(2), \ldots, \tilde{x}(t), \ldots$

Of course,

$$\begin{bmatrix} \tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots \end{bmatrix}$$

 $\tilde{W} \mapsto \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$

Of course,

$$\begin{bmatrix} \tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots \end{bmatrix}$$

But if we could go the other way:

first compute the state trajectory \tilde{x} , directly from \tilde{w} , then this equation provides a way of

identifying the system parameters $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$

Classical realization special case: impulse response data.

 $\tilde{W} \mapsto \begin{bmatrix} A & B \\ C & D \end{bmatrix}$

- $\begin{bmatrix} \tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots \end{bmatrix}$ Yields an attractive SYSID procedure:
 - **Truncation** at suff. large *t*; copes with missing data : cancel columns; extends to more than one observed time series, ...
 - SVD model reduce by first lowering row dim. of

the matrix
$$\tilde{X} = [\tilde{x}(1) \ \tilde{x}(2) \ \cdots \ \tilde{x}(t) \ \cdots]$$

• Solve for $\left[\frac{A}{C}\right] = \frac{B}{D}$ using Least Squares

 \rightsquigarrow what has come to be known as 'subspace ID'.

Algorithms compare favorably compared to PEM, etc.

 $\tilde{W} \mapsto \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$

$$\begin{bmatrix} \tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(t+1) & \cdots \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(t) & \cdots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(t) & \cdots \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(t) & \cdots \end{bmatrix}$$

Has been generalized to stochastic systems.

From data to state

How does this work?

$$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(t), \ldots$$

∜

 $\tilde{x}(1), \tilde{x}(2), \ldots, \tilde{x}(t), \ldots$

This is a very nice system theoretic question.

Henceforth, Δ sufficiently large (> the lag of the MPUM). Identify somehow, directly from the data, state map

$$\begin{split} & \tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(\Delta) & \longmapsto & \tilde{x}(1) \\ & \tilde{w}(2), \tilde{w}(3), \dots, \tilde{w}(\Delta+1) & \longmapsto & \tilde{x}(2) \\ & \vdots & \vdots & \vdots \\ & \tilde{w}(1), \tilde{w}(2), \dots, \tilde{w}(\Delta) & \longmapsto & \tilde{x}(\Delta+1) \\ & \tilde{w}(2), \tilde{w}(3), \dots, \tilde{w}(\Delta+1) & \longmapsto & \tilde{x}(\Delta+2) \\ & \vdots & \vdots & \vdots \\ \end{split}$$

There are many algorithms. We discuss two.

$$\begin{bmatrix} \mathcal{H}_{-} \\ \mathcal{H}_{+} \end{bmatrix} = \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta-1) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta+2) & \tilde{w}(\Delta+3) & \cdots & \tilde{w}(t+\Delta+1) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(2\Delta) & \tilde{w}(2\Delta+1) & \cdots & \tilde{w}(t+2\Delta-1) & \cdots \\ \end{bmatrix} \begin{pmatrix} \uparrow \\ \mathsf{PAST'} \\ \mathsf{FUTURE'} \\ \downarrow \\ \downarrow \end{pmatrix}$$

The intersection of the span of the rows of \mathcal{H}_{-} with those of \mathcal{H}_{+} = state space. The common linear combinations

 $\tilde{x}(\Delta + 1)$ $\tilde{x}(\Delta + 2)$ \cdots $\tilde{x}(t + \Delta)$ \cdots \leftarrow 'PRESENT' STATE

State = what is common between past and future. Existing algorithms (N4SID, MOESP,...): past/future part.

How can we compute this intersection?

$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} =$	$= 0 \Rightarrow a_1^\top M$	$h_1 = -\boldsymbol{a}_2^\top \boldsymbol{M}_2:$	comn	non linear combin	ations
	<i>w̃</i> (1)	<i>w̃</i> (2)	•••	ῶ(t)	•••
	ŵ(2)	ŵ(3)	•••	$\tilde{w}(t+1)$	
		1	1		
_	 w(Δ)	ῶ(Δ + 1)	•••	$\tilde{w}(t + \Delta - 1)$	•••
$0 = \begin{bmatrix} a_1 \end{bmatrix}^{\dagger}$					
• — [a ₂]					
	$\tilde{w}(\Delta + 1)$	$\tilde{w}(\Delta + 2)$	•••	$\tilde{w}(t + \Delta)$	• • •
	$\tilde{w}(\Delta + 2)$	$\tilde{w}(\Delta + 3)$	•••	$\tilde{w}(t + \Delta + 1)$	•••
	<mark>w̃(2∆)</mark>	ῶ(2Δ + 1)		$\tilde{w}(t+2\Delta-1)$	•••

How can we compute this intersection?

Hankel structure \Rightarrow the left kernel of the whole matrix can be computed from the kernel of the upper part \rightsquigarrow following algorithm

Compute 'the' left annihilators of the Hankel matrix:

Compute 'the' left annihilators of the Hankel matrix:

Compute 'the' left annihilators of the Hankel matrix:

Computing the kernel of a Hankel matrix

Leads to the problem:

Compute the left kernel of a (block) Hankel matrix

Identify each left annihilator with a vector polynomial

$$\begin{bmatrix} a_0 & a_1 \cdots a_\Delta & 0 & \dots \end{bmatrix} \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t'') & \cdots \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t''+1) & \cdots \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(t') & \tilde{w}(t'+1) & \cdots & \tilde{w}(t'+t''-1) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} = 0$$

 $\cong a(\xi) = a_0 + a_1 \xi + \dots + a_\Delta \xi^\Delta \in \mathbb{R}[\xi]^{1 \times w} \in \text{left kernel}$

This kernel is closed under addition

 $a(\xi) = a_0 + a_1\xi + \dots + a_\Delta\xi^\Delta \quad \in \text{left kernel}$ $b(\xi) = b_0 + b_1\xi + \dots + b_\Delta\xi^\Delta \quad \in \text{left kernel}$

 \Rightarrow $a(\xi) + b(\xi)$ and $\xi a(\xi) \in$ left kernel.

 \Rightarrow The left kernel hence forms a $\mathbb{R}[\xi]$ -module.

! Finitely generated: \exists annihilators $a(\xi), b(\xi), \dots, c(\xi)$ that yield all annihilators under + and shifts.

Left kernel is in a real sense always finite dim. (dim. $p \le w$).

State from generators

Generators

State from generators

State from generators

Then

Suitable conditions on generators \rightarrow minimal state.

Suppose we found a left annihilator of

Γ ῶ (1)	<i></i> w(2)	•••	$\widetilde{w}(t)$	•••	-
w (2)	<i>w̃</i> (3)	•••	$\tilde{w}(t+1)$	•••	
<i>w</i> (3)	<i>w</i> (4)	•••	$\tilde{w}(t+2)$	•••	
:	:	:			
_ w(Δ)	ŵ(Δ+1)	•	$\tilde{w}(t + \Delta - 1)$	•••	_

Suppose we found a left annihilator of

$$\begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \cdots \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+2) & \cdots \\ \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(t+\Delta-1) & \cdots \end{bmatrix}$$

Use this to simplify finding other left annihilators of

Completion lemma

Key question: Given $\mathfrak{B} \in \mathfrak{L}^{w}$, \exists a complement?

i.e. $\mathfrak{B}' \in \mathfrak{L}^{w}$ such that $\mathfrak{B} \oplus \mathfrak{B}' = (\mathbb{R}^{w})^{\mathbb{N}}$?

Meaning in terms of kernel or image representations?

Completion lemma

Key question: Given $\mathfrak{B} \in \mathfrak{L}^{w}$, \exists a complement?

i.e. $\mathfrak{B}' \in \mathfrak{L}^{w}$ such that $\mathfrak{B} \oplus \mathfrak{B}' = (\mathbb{R}^{w})^{\mathbb{N}}$?

Meaning in terms of kernel or image representations?

There exists a complement iff \mathfrak{B} is controllable.

Completion lemma

Key question: Given $\mathfrak{B} \in \mathfrak{L}^{w}$, \exists a complement?

i.e. $\mathfrak{B}' \in \mathfrak{L}^{w}$ such that $\mathfrak{B} \oplus \mathfrak{B}' = (\mathbb{R}^{w})^{\mathbb{N}}$?

Meaning in terms of kernel or image representations?

There exists a complement iff \mathfrak{B} is controllable.

Given *R*, complete with *R'* such that $\begin{bmatrix} R \\ R' \end{bmatrix}$ is unimodular. Given *M*, complete with *M'*, s.t. $\begin{bmatrix} M & M' \end{bmatrix}$ is unimodular. Given basis of rat. annihilators, find complementary basis.

Let $R(\xi) \in \mathbb{R}^{p \times w}[\xi]$ be left prime. Then $\exists E(\xi) \in \mathbb{R}^{(w-p) \times w}[\xi]$ such that

$$\begin{vmatrix} R(\xi) \\ E(\xi) \end{vmatrix}$$
 is unimodular

meaning det = non-zero constant, inv. as a pol. matrix.

Let $R(\xi) \in \mathbb{R}^{p \times w}[\xi]$ be left prime. Then $\exists E(\xi) \in \mathbb{R}^{(w-p) \times w}[\xi]$ such that

 $\begin{bmatrix} R(\xi) \\ E(\xi) \end{bmatrix}$ is unimodular

meaning det = non-zero constant, inv. as a pol. matrix.

Ex. $p = 1, w = 2, R(\xi) = [r_1(\xi) \ r_2(\xi)], E(\xi) = [-y(\xi) \ x(\xi)]$

Given $r_1(\xi), r_2(\xi) \in \mathbb{R}[\xi]$, find $x(\xi), y(\xi) \in \mathbb{R}[\xi]$ such that

 $x(\xi)r_1(\xi) + y(\xi)r_2(\xi) = 1$ Bézout equation

Solvable iff r_1 , r_2 coprime. \exists algorithms, etc.

Bézout

Let $R(\xi) \in \mathbb{R}^{p \times w}[\xi]$ be left prime. Then $\exists E(\xi) \in \mathbb{R}^{(w-p) \times w}[\xi]$ such that

$$\begin{bmatrix} R(\xi) \\ E(\xi) \end{bmatrix}$$
 is unimodular

Complete $a(\xi) \rightsquigarrow E_a(\xi)$

Compute the 'error' $\tilde{\mathbf{e}} = \mathbf{E}_{\mathbf{a}}(\sigma)\tilde{\mathbf{w}}$

Note that \tilde{e} is (w - 1)-dimensional.
Recursive computation

 \tilde{e} annihilator $b(\xi)E_a(\xi) \rightsquigarrow 2$ generators: $a(\xi), b(\xi)E_a(\xi)$ Complete $b \rightsquigarrow E_b$. Compute $\tilde{e}' = E_b(\sigma)\tilde{e}$. Proceed recursively...

Recursive computation

yields, assuming MPUM contr., left kernel by computing p times a left kernel vector.

Recursion can be combined with the state computation.

- Approximation in SYSID is cloesr to the physics that stochasticity
- Subspace ID :

$$\widetilde{w}(1), \widetilde{w}(2), \dots, \widetilde{w}(t), \dots \\
\downarrow \\
\widetilde{X} = \begin{bmatrix} \widetilde{x}(1), \widetilde{x}(2), \dots, \widetilde{x}(t), \dots \end{bmatrix} \\
\downarrow \\
\text{Row reduce } \widetilde{X} \\
\downarrow \\
\text{LS solve} \\
\widetilde{x}(2) \quad \widetilde{x}(3) \quad \cdots \quad \widetilde{x}(t+1) \quad \cdots \\
\widetilde{y}(1) \quad \widetilde{y}(2) \quad \cdots \quad \widetilde{y}(t) \quad \cdots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \widetilde{x}(1) \quad \widetilde{x}(2) \quad \cdots \quad \widetilde{x}(t) \quad \cdots \\ \widetilde{u}(1) \quad \widetilde{u}(2) \quad \cdots \quad \widetilde{u}(t) \quad \cdots \end{bmatrix} \\
\downarrow \\
\text{Model } \begin{bmatrix} \frac{A}{C} & \frac{B}{D} \\ \end{bmatrix}$$

- Approximation in SYSID is cloesr to the physics that stochasticity
- Subspace ID
- State construction
 - Past/future intersection
 - Oblique projection
 - Generators left kernel of Hankel + cut-and-shift
- Central pbm: computation of generators of left kernel of Hankel matrix

- Approximation in SYSID is cloesr to the physics that stochasticity
- Subspace ID
- State construction
 - Past/future intersection
 - Oblique projection
 - Generators left kernel of Hankel + cut-and-shift
- Central pbm: computation of generators of left kernel of Hankel matrix
- Computation can be carried out recursively in the case that the MPUM is controllable.

- Approximation in SYSID is cloesr to the physics that stochasticity
- Subspace ID
- State construction
 - Past/future intersection
 - Oblique projection
 - Generators left kernel of Hankel + cut-and-shift
- Central pbm: computation of generators of left kernel of Hankel matrix
- Computation can be carried out recursively in the case that the MPUM is controllable.
- Key step: completion lemma. Given $\mathfrak{B} \in \mathfrak{L}^{w}$, find $\mathfrak{B}' \in \mathfrak{L}^{w}$ such that $\mathfrak{B} \oplus \mathfrak{B}' = everything$.