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Dynamics and functionals in systems and control

Instances: Lyapunov theory, performance criteria, etc.

Linear case =⇒ quadratic and bilinear functionals.

Usually: state-space equations, constant functionals.

However, tearing and zooming =⇒ state space eq.s

¡High-order differential equations!

...involving also latent variables...
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Aim

An effective algebraic representation
of bilinear and quadratic functionals

of the system variables and their derivatives:

Operations/properties of functionals
m

algebraic operations/properties of representation

...a calculus of these functionals!



Outline

Motivation and aim

Definition

Two-variable polynomial matrices

The calculus of B/QDFs



Bilinear differential forms (BDFs)

Φ :=
{
Φk ,` ∈ Rw1×w2

}
k ,`=0,...,L

LΦ : C∞(R, Rw1) × C∞(R, Rw2) → C∞(R, R)

LΦ(w1, w2) :=
[
w>

1
dw1
dt

>
. . .

]


Φ0,0 Φ0,1 . . .
Φ1,0 Φ1,1 . . .

...
... · · ·

Φk ,0 Φk ,1 . . .
...

... · · ·


w2

dw2
dt
...



=
∑

k ,`

(
dk

dtk w1

)>
Φk ,`

(
d`

dt` w2

)



Quadratic differential forms (QDFs)

Φ :=
{
Φk ,` ∈ Rw×w

}
k ,`=0,...,L symmetric, i.e. Φk ,` = Φ>

`,k

QΦ : C∞(R, Rw) → C∞(R, R)

QΦ(w) :=
[
w> dw

dt
>

. . .
]


Φ0,0 Φ0,1 . . .
Φ1,0 Φ1,1 . . .

...
... · · ·

Φk ,0 Φk ,1 . . .
...

... · · ·


w

dw
dt
...



=
∑L

k ,`=0

(
dk

dtk w
)>

Φk ,`

(
d`

dt` w
)



Example: total energy in mechanical system

1
2

[(
d
dt

w1

)2

+

(
d
dt

w2

)2
]

+
1
2

[
k1w2

1 + k2w2
2

]

[
w1 w2

d
dt w1

d
dt w2

] 
1
2k1 0 0 0
0 1

2k2 0 0
0 0 1

2 0
0 0 0 1

2




w1
w2

d
dt w1
d
dt w2


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Two-variable polynomial matrices for BDFs

{
Φk ,` ∈ Rw1×w2

}
k ,`=0,...,L

LΦ(w1, w2) =
L∑

k ,`=0

(
dk

dtk
w1)

> Φk ,`

d`

dt`
w2

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

LΦ(w1, w2) =
L∑

k ,`=0

(
dk

dtk
w1)

> Φk ,`

d`

dt`
w2

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

2-variable polynomial matrix associated with LΦ
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Two-variable polynomial matrices for QDFs

{
Φk ,` ∈ Rw×w

}
k ,`=0,...,L symmetric (Φk ,` = Φ>

`,k)

QΦ(w) =
L∑

k ,`=0

(
dk

dtk
w)> Φk ,`

d`

dt`
w

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

symmetric: Φ(ζ, η) = Φ(η, ζ)>



Example: total energy in mechanical system

QE(w1, w2) =
[
w1 w2

d
dt w1

d
dt w2

] 
1
2 k1 0 0 0
0 1

2 k2 0 0
0 0 1

2 0
0 0 0 1

2




w1
w2

d
dt w1
d
dt w2



E(ζ, η) =

[1
2k1 0
0 1

2k2

]
+

[1
2ζη 0
0 1

2ζη

]
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The calculus of B/QDFs

Using powers of ζ and η as placeholders,

B/QDF ! two-variable polynomial matrix

Operations
and properties
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!
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on two-variable matrix
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Differentiation

Φ ∈ Rw×w
s [ζ, η].

•
Φ derivative of QΦ:

Q•
Φ

: C∞(R, Rw) → C∞(R, R)

Q•
Φ
(w) :=

d
dt

(QΦ(w))

•
Φ(ζ, η) = (ζ + η)Φ(ζ, η)

Two-variable version of Leibniz’s rule



Integration

D(R, R•) C∞-compact-support trajectories

LΦ : D(R, Rw1) × D(R, Rw2) → D(R, R)

∫
LΦ : D(R, Rw1) × D(R, Rw2) → R∫
LΦ(w1, w2) :=

∫ +∞
−∞ LΦ(w1, w2)dt

Analogous for QDFs



Part II: Applications
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Nonnegativity and positivity along a behavior

QΦ

B

≥ 0 if QΦ(w) ≥ 0 ∀ w ∈ B

QΦ

B
> 0 if QΦ

B

≥ 0, and [QΦ(w) = 0] =⇒ [w = 0]

Prop.: Let B = kerR( d
dt ). Then QΦ

B

≥ 0 iff there exist
D ∈ R•×w[ξ], X ∈ R•×w[ζ, η] such that

Φ(ζ, η) = D(ζ)>D(η)︸ ︷︷ ︸
≥0 for all w

+ R(ζ)>X(ζ, η) + X(η, ζ)>R(η)︸ ︷︷ ︸
=0 if evaluated onB
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Lyapunov theory

B autonomous is asymptotically stable
iflimt→∞ w(t) = 0 ∀ w ∈ B

B = kerR( d
dt ) stable ⇐⇒ det(R) Hurwitz

Theorem: B asymptotically stable iff

exists QΦ such that QΦ

B

≥ 0 andQ•
Φ

B
< 0



Lyapunov theory

B autonomous is asymptotically stable
iflimt→∞ w(t) = 0 ∀ w ∈ B

B = kerR( d
dt ) stable ⇐⇒ det(R) Hurwitz

Theorem: B asymptotically stable iff

exists QΦ such that QΦ

B

≥ 0 andQ•
Φ

B
< 0



Example
B = ker

(
d2

dt2 + 3 d
dt + 2

)
r(ξ) = ξ2 + 3ξ + 2

Choose Ψ(ζ, η) s.t. QΨ

B
< 0, e.g. Ψ(ζ, η) = −ζη;

Find Φ(ζ, η) s.t. d
dt QΦ(w) = QΨ(w) for all w ∈ B:

(ζ + η)Φ(ζ, η) = Ψ(ζ, η) + r(ζ)x(η) + x(ζ)R(η)︸ ︷︷ ︸
=0 on B

Φ(ζ, η) =
−ζη + (ζ2 + 3ζ + 2)1

6η + 1
6ζ(η2 + 3η + 2)

ζ + η

=
1
6
ζη +

1
3

> 0
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State-space case(
d
dt

Ix − A
)

x = 0 ; R(ξ) = ξIx − A

• Choose Q < 0;

• Solve polynomial Lyapunov equation

(ξIx − A)>P + P(ξIx − A) = −A>P − PA = Q

equivalent with matrix Lyapunov equation!

• Lyapunov functional is

x>(−P)x
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Dissipativity theory

supply
SYSTEM

Power is supplied

; energy is stored

RLC circuits Power V >I

Storage in capacitors and inductors

Mechanical system Power F >v + ( d
dt ϑ)>T

Potential+kinetic



Setting the stage

Controllable system

w = M( d
dt )` ; M(ξ)

Power (‘supply rate’)

QΦ(w) ; Φ(ζ, η)

QΦ(w) = QΦ(M( d
dt )`)

Φ′(ζ, η) := M(ζ)>Φ(ζ, η)M(η)

QΦ′ acts on free variable `, i.e. C∞
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Dissipation inequality

QΨ is storage function for the supply QΦ if

d
dt QΨ ≤ QΦ

Rate of storage increase ≤ supply

Q∆ is dissipation function for QΦ if

Q∆ ≥ 0 and
∫

Q∆dt =
∫

QΦdt

DISSIPATION

SUPPLY

STORAGE
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Characterizations of dissipativity

Theorem: The following conditions are equivalent:

•
∫ +∞

−∞ QΦ(`)dt ≥ 0 for all C∞ compact-support `;

• QΦ admits a storage function;

• QΦ admits a dissipation function

Also, storage and dissipation functions are one-one:

d
dt

QΨ = QΦ − Q∆

(ζ + η)Ψ(ζ, η) = Φ(ζ, η) − ∆(ζ, η)



Example: mechanical systems

M d2

dt2 q + D d
dt q + Kq = F

[
F
q

]
=

[
M d2

dt2 + D d
dt + K

Il

]
`

Φ(ζ, η) = 1
2(Mζ2 + Dζ + K )>η + 1

2ζ(Mη2 + Dη + K )

∆(ζ, η) = 1
2(D

> + D)ζη

Storage function

Ψ(ζ, η) =
Φ(ζ, η) − ∆(ζ, η)

ζ + η
=

1
2

Mζη +
1
2

K

Total energy
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F >
(

d
dt

q
)

=
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M

d2

dt2
` + D

d
dt

` + K`
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d
dt

`

)
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2
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F
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M d2

dt2 + D d
dt + K

Il

]
`

Φ(ζ, η) = 1
2(Mζ2 + Dζ + K )>η + 1

2ζ(Mη2 + Dη + K )

If dissipation inequality

Φ(ζ, η) = (ζ + η)Ψ(ζ, η) + ∆(ζ, η)

holds, then

Φ(−ξ, ξ) = −
1
2
ξ2(D> + D) = ∆(−ξ, ξ)
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1
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Dissipativity theory

Balancing and model reduction



Balancing

A minimal and stable realization (A, B, C, D)
is balanced if exist σi ∈ R such that
σ1 ≥ σ2 ≥ · · · ≥ σn > 0 and moreover

AΣ + ΣA> + BB> = 0
A>Σ + ΣA + C>C = 0

where Σ := diag(σ1, σ2, . . . , σn)

Balancing ≡ choice of basis of state space
diagonalizing the Gramians

≡ choice of state map!
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The controllability Gramian K

p( d
dt )y = q( d

dt )u
[
y
u

]
=

[
q( d

dt )
p( d

dt )

]
`

where GCD(p, q) = 1, p stable, deg(q) ≤ deg(p) =: n

In our framework: let ` ∈ C∞(R, R). Then QK is QDF
such that

inf`′

∫ 0

−∞

(
p(

d
dt

)`′
)

dt =: QK (`)(0)

where `′ ∈ C∞(R+, R) is such that `′
|[0,+∞) = `|[0,+∞)

¿How to compute K (ζ, η) ?
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Computation of K (ζ, η)

inf`′

∫ 0

−∞

(
p(

d
dt

)`′
)

dt =: QK (`)(0)

Since p(−ξ)p(ξ) = p(ξ)p(−ξ), exists K ′ ∈ R[ζ, η]
such that

p(ζ)p(η) − p(−ζ)p(−η) = (ζ + η)K (ζ, η)

Highest power of ζ and η in K is n − 1
=⇒ QK is quadratic function of d j`

dt j , j = 0, . . . , n−1

QK is quadratic function of the state:
for every state map X( d

dt ) there exists KX such that

QK (`) =

(
X(

d
dt

)`

)>

KX

(
X(

d
dt

)`

)
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The observability Gramian W

p( d
dt )y = q( d

dt )u
[
y
u

]
=

[
q( d

dt )
p( d

dt )

]
`

where GCD(p, q) = 1, p stable, deg(q) ≤ deg(p)

In our framework: let ` ∈ C∞(R, R). Then QW is

QW (`)(0) :=

∫ +∞

0

(
q(

d
dt

)`′
)

dt

where `′ ∈ C∞(R+, R) is such that
• `′

|(−∞,0] = `|(−∞,0]

• p( d
dt )`

′ = 0 on R+

•
(
q( d

dt )`
′, p( d

dt )`
′) ∈ B

¿How to compute W (ζ, η) ?



The observability Gramian W

p( d
dt )y = q( d

dt )u
[
y
u

]
=

[
q( d

dt )
p( d

dt )

]
`

where GCD(p, q) = 1, p stable, deg(q) ≤ deg(p)

In state-space framework, W is defined as∫ 0
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y(t)2dt =: x>
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Computation of W (ζ, η)

QW (`)(0) :=

∫ +∞

0

(
q(

d
dt

)`′
)

dt

Since p is Hurwitz, there exists solution f ∈ R[ξ] to

p(−ξ)f (ξ) + f (−ξ)p(ξ) = q(−ξ)q(ξ)

Define W from

(ζ + η)W (ζ, η) = q(ζ)q(η) − [p(ζ)f (η) + f (ζ)p(η)]

QW is quadratic function of the state:
for every state map X( d

dt ) there exists WX such that

QW (`) =

(
X(

d
dt

)`

)>

WX

(
X(

d
dt

)`

)
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Balanced state maps

State map X( d
dt ) is balanced if

• If `k is such that X(`k)(0) is the k-th canonical
basis vector, then

QK (`k)(0) =
1

QW (`k)(0)

‘difficult to reach ⇐⇒ difficult to observe’

• QW (`1)(0) ≥ QW (`2)(0) ≥ . . . ≥ QW (`n)(0) > 0

or equivalently

0 < QK (`1)(0) ≤ QK (`2)(0) ≤ . . . ≤ QK (`n)(0)

‘first who contributes most’
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Balancing with QDFs
Linear algebra =⇒ there is basis {xb

i ∈ Rn−1[ξ]}i=1,...,n
and σi ∈ R such that σ1 ≥ σ2 ≥ . . . σn such that

W (ζ, η) =
∑n

i=1 σixb
i (ζ)xb

i (η) K (ζ, η) =
∑n

i=1
1
σi

xb
i (ζ)xb

i (η)

Then
X b(ξ) := col(xb

i (ξ))i=1,...,n

is balanced state map.

(Classical) balanced state space representation: solve[
ξX b(ξ)

q(ξ)

]
=

[
Ab Bb
Cb Db

] [
X b(ξ)
p(ξ)

]
Model reduction by balancing follows
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Summary

• Working with functionals at most natural level;

• Two-variable polynomial representation;

• Operations/properties in time domain
; algebraic operations;

• Differentiation, integration, positivity;

• Lyapunov theory, dissipativity, model reduction
by balancing.
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