
The Behavioral Approach
to

Systems Theory

Paolo Rapisarda, Un. of Southampton, U.K.
&

Jan C. Willems, K.U.Leuven, Belgium

MTNS 2006
Kyoto, Japan, July 24–28, 2006

Lecture 3: State and state construction

Lecturer: Paolo Rapisarda

Outline

The axiom of state

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

Continuous-time systems

Computation of state-space representations

Questions

• Are state representations “natural"?

• First principles and “tearing and zooming" modelling
; systems of high-order differential equations

• Algebraic constraints among variables

• What makes a latent variable a “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?

Questions

• Are state representations “natural"?

• First principles and “tearing and zooming" modelling
; systems of high-order differential equations

• Algebraic constraints among variables

• What makes a latent variable a “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?

Questions

• Are state representations “natural"?

• First principles and “tearing and zooming" modelling
; systems of high-order differential equations

• Algebraic constraints among variables

• What makes a latent variable a “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?

Questions

• Are state representations “natural"?

• First principles and “tearing and zooming" modelling
; systems of high-order differential equations

• Algebraic constraints among variables

• What makes a latent variable a “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?

Questions

• Are state representations “natural"?

• First principles and “tearing and zooming" modelling
; systems of high-order differential equations

• Algebraic constraints among variables

• What makes a latent variable a “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?

Questions

• Are state representations “natural"?

• First principles and “tearing and zooming" modelling
; systems of high-order differential equations

• Algebraic constraints among variables

• What makes a latent variable a “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?

Questions

• Are state representations “natural"?

• First principles and “tearing and zooming" modelling
; systems of high-order differential equations

• Algebraic constraints among variables

• What makes a latent variable a “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?

The basic idea

It’s the Mariners’ final game in the World Series. You’re
late...

The current score is what matters...

• The state contains all the relevant information
about the future behavior of the system

• The state is the memory of the system

• Independence of past and future given the state

The basic idea

• The state contains all the relevant information
about the future behavior of the system

• The state is the memory of the system

• Independence of past and future given the state

The axiom of state

Σ = (T, W, X, Bfull) is a state system if

(w1, x1), (w2, x2) ∈ Bfull and x1(T) = x2(T)

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull

∧
T

is concatenation at T :

(f1 ∧
T

f2)(t) :=

{
f1(t) for t < T
f2(t) for t ≥ T

Graphically...

(w1, x1), (w2, x2) ∈ Bfull and x1(T) = x2(T)

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull

(w ,x)
1 1

X

W

2
(w ,x)

2

time

(w ,x) (w ,x)

W

1 20^1 2X

time

Graphically...

(w1, x1), (w2, x2) ∈ Bfull and x1(T) = x2(T)

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull

(w ,x)
1 1

X

W

2
(w ,x)

2

time

(w ,x) (w ,x)

W

1 20^1 2X

time

Graphically...

(w1, x1), (w2, x2) ∈ Bfull and x1(T) = x2(T)

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull

(w ,x)
1 1

X

W

2
(w ,x)

2

time

(w ,x) (w ,x)

W

1 20^1 2X

time

Example 1: discrete-time system

Σ = (Z, Rw, Rl, Bfull), with

Bfull := {(w , `) | F ◦(σ`, `, w) = 0}

where

σ : (Rl)Z → (Rl)Z

(σ(`))(k) := `(k + 1)

Special case: input-state-output equations

σx = f (x, u)

y = h(x, u)

w = (u, y)

Example 1: discrete-time system

Σ = (Z, Rw, Rl, Bfull), with

Bfull := {(w , `) | F ◦(σ`, `, w) = 0}

where

σ : (Rl)Z → (Rl)Z

(σ(`))(k) := `(k + 1)

Special case: input-state-output equations

σx = f (x, u)

y = h(x, u)

w = (u, y)

Example 2: continuous-time system

Σ = (R, Rw, Rl, Bfull), with

Bfull := {(w , `) | F ◦ (d
dt `, `, w) = 0}

Special case: input-state-output equations

d
dt

x = f (x, u)

y = h(x, u)

w = (u, y)

Outline

The axiom of state

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

Continuous-time systems

Computation of state-space representations

First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z, Rw, Rx, Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x, w) = 0

0-th order in w , 1st order in xLinear case:

Eσx+Fx+Gw = 0

1st order in x is consequence of state property!

First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z, Rw, Rx, Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x, w) = 0

0-th order in w , 1st order in x

Linear case:

Eσx+Fx+Gw = 0

1st order in x is consequence of state property!

First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z, Rw, Rx, Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x, w) = 0

0-th order in w , 1st order in x

Linear case:

Eσx+Fx+Gw = 0

1st order in x is consequence of state property!

First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z, Rw, Rx, Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x, w) = 0

0-th order in w , 1st order in x

Linear case:

Eσx+Fx+Gw = 0

1st order in x is consequence of state property!

Proof (linear case)

V :=


 a

b
c

 | ∃(x, w) ∈ Bfull s. t.

 x(1)
x(0)
w(0)

 =

 a
b
c


V linear ⇒ ∃ E, F , G s.t. V = ker(

[
E F G

]
)

⇓

[(x, w) ∈ Bfull =⇒ Eσx + Fx + Gw = 0]

Converse by induction, using axiom of state:

Eσx + Fx + Gw = 0 on [0, k] =⇒ (w , x)|[0,k] ∈ Bfull|[0,k]

Then apply completeness of B

Proof (linear case)

V :=


 a

b
c

 | ∃(x, w) ∈ Bfull s. t.

 x(1)
x(0)
w(0)

 =

 a
b
c


V linear ⇒ ∃ E, F , G s.t. V = ker(

[
E F G

]
)

⇓

[(x, w) ∈ Bfull =⇒ Eσx + Fx + Gw = 0]

Converse by induction, using axiom of state:

Eσx + Fx + Gw = 0 on [0, k] =⇒ (w , x)|[0,k] ∈ Bfull|[0,k]

Then apply completeness of B

Proof (linear case)

V :=


 a

b
c

 | ∃(x, w) ∈ Bfull s. t.

 x(1)
x(0)
w(0)

 =

 a
b
c


V linear ⇒ ∃ E, F , G s.t. V = ker(

[
E F G

]
)

⇓

[(x, w) ∈ Bfull =⇒ Eσx + Fx + Gw = 0]

Converse by induction, using axiom of state:

Eσx + Fx + Gw = 0 on [0, k] =⇒ (w , x)|[0,k] ∈ Bfull|[0,k]

Then apply completeness of B

State construction: basic idea

Problem: Given kernel or hybrid description, find a
state representation

Eσx + Fx + Gw = 0

First compute polynomial operator in the shift acting
on system variables, inducing a state variable:

X(σ)w = x X(σ)

[
w
`

]
= x

Then use original eqs. and X to obtain 1st order
representation.

State construction: basic idea

Problem: Given kernel or hybrid description, find a
state representation

Eσx + Fx + Gw = 0

First compute polynomial operator in the shift acting
on system variables, inducing a state variable:

X(σ)w = x X(σ)

[
w
`

]
= x

Then use original eqs. and X to obtain 1st order
representation.

State construction: basic idea

Problem: Given kernel or hybrid description, find a
state representation

Eσx + Fx + Gw = 0

First compute polynomial operator in the shift acting
on system variables, inducing a state variable:

X(σ)w = x X(σ)

[
w
`

]
= x

Then use original eqs. and X to obtain 1st order
representation.

State maps for kernel representations

X ∈ R•×w[ξ] induces a state map X(σ) for ker(R(σ))

if the behavior Bfull with latent variable x , described
by

R(σ)w = 0
X(σ)w = x

satisfies the axiom of state.

Example

B = {w | r(σ)w = 0}

where r ∈ R[ξ], deg(r) = n.

(Minimal) state map induced by


1
ξ
...

ξn−1

 ;


w

σw
...

σn−1w



The axiom of state revisited

A linear system Σ = (T, W, X, Bfull) with latent
variable x is a state system if

(w , x) ∈ Bfull and x(T) = 0
⇓

(0, 0) ∧
T

(w , x) ∈ Bfull

• Time-invariance =⇒ can choose T = 0;
• Concatenability with zero trajectory is key.

The axiom of state revisited

A linear system Σ = (T, W, X, Bfull) with latent
variable x is a state system if

(w , x) ∈ Bfull and x(T) = 0
⇓

(0, 0) ∧
T

(w , x) ∈ Bfull

• Time-invariance =⇒ can choose T = 0;

• Concatenability with zero trajectory is key.

The axiom of state revisited

A linear system Σ = (T, W, X, Bfull) with latent
variable x is a state system if

(w , x) ∈ Bfull and x(T) = 0
⇓

(0, 0) ∧
T

(w , x) ∈ Bfull

• Time-invariance =⇒ can choose T = 0;
• Concatenability with zero trajectory is key.

When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L − 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L − 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0

When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . 0 0 R0 R1 R2 R3 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L − 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L − 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0

When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . 0 R0 R1 R2 R3 R4 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L − 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L − 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0

When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . R0 R1 R2 R3 R4 R5 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L − 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L − 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0

When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L − 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L − 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0

When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . RL−3 RL−2 RL−1 RL 0 0 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L − 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L − 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0

When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . RL−2 RL−1 RL 0 0 0 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L − 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L − 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0

The shift-and-cut map

σ+ : R[ξ] → R[ξ]

σ+(
∑n

i=0 piξ
i) :=

∑n−1
i=0 pi+1ξ

i

“Divide by ξ and take polynomial part"

Extended componentwise to vectors and matrices

Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL

Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL

Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL

Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL

Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL

Shift-and-cut and concatenability with zero

w is
concatenable

with zero
⇔

(σ+(R)(σ)w)(0) = 0
(σ2

+(R)(σ)w)(0) = 0
... =

...
(σL

+(R)(σ)w)(0) = 0

col((σi
+(R))i=1,...,L(σ) is a state map!

Other equations equivalent to shift-and-cut ones
=⇒ different state maps are possible!

Shift-and-cut and concatenability with zero

w is
concatenable

with zero
⇔

(σ+(R)(σ)w)(0) = 0
(σ2

+(R)(σ)w)(0) = 0
... =

...
(σL

+(R)(σ)w)(0) = 0

col((σi
+(R))i=1,...,L(σ) is a state map!

Other equations equivalent to shift-and-cut ones
=⇒ different state maps are possible!

Shift-and-cut and concatenability with zero

w is
concatenable

with zero
⇔

(σ+(R)(σ)w)(0) = 0
(σ2

+(R)(σ)w)(0) = 0
... =

...
(σL

+(R)(σ)w)(0) = 0

col((σi
+(R))i=1,...,L(σ) is a state map!

Other equations equivalent to shift-and-cut ones
=⇒ different state maps are possible!

Example: scalar systems

r0w + r1σw + . . . + σnw = 0

Observe w concatenable with zero iff w = 0. Indeed,

σn
+(r)(σ)w = w

σn−1
+ (r)(σ)w = rn−1w + σw

... =
...

σ+(r)(σ)w = r1w + . . . + σn−1w

Zero at t = 0 iff (σk w)(0) = 0 for k = 0, . . . , n − 1.

Example: scalar systems

r0w + r1σw + . . . + σnw = 0

Observe w concatenable with zero iff w = 0. Indeed,

σn
+(r)(σ)w = w

σn−1
+ (r)(σ)w = rn−1w + σw

... =
...

σ+(r)(σ)w = r1w + . . . + σn−1w

Zero at t = 0 iff (σk w)(0) = 0 for k = 0, . . . , n − 1.

Example: scalar systems

r0w + r1σw + . . . + σnw = 0

Observe w concatenable with zero iff w = 0. Indeed,

σn
+(r)(σ)w = w

σn−1
+ (r)(σ)w = rn−1w + σw

... =
...

σ+(r)(σ)w = r1w + . . . + σn−1w

Zero at t = 0 iff (σk w)(0) = 0 for k = 0, . . . , n − 1.

From kernel representation to state map

Denote col((σi
+(R)))i=1,...,L =: ΣR .

Theorem: Let B = ker(R(σ)). Then

R(σ)w = 0
ΣR(σ)w = x

is a state representation of B with state variable x .

Algebraic characterization

Theorem: Let B = ker(R(σ)), and define ΣR as
above. Then

ΞR := {f ∈ R1×w[ξ] | ∃ g ∈ R1×•[ξ], α ∈ R1×•

s.t. f = αΣR + gR}

is a vector space over R.

X ∈ R•×w[ξ] is state map for B iff row span(X) = ΞR

X is minimal if and only if its rows are a basis for ΞR.

Algebraic characterization

Theorem: Let B = ker(R(σ)), and define ΣR as
above. Then

ΞR := {f ∈ R1×w[ξ] | ∃ g ∈ R1×•[ξ], α ∈ R1×•

s.t. f = αΣR + gR}

is a vector space over R.

X ∈ R•×w[ξ] is state map for B iff row span(X) = ΞR

X is minimal if and only if its rows are a basis for ΞR.

Algebraic characterization

Theorem: Let B = ker(R(σ)), and define ΣR as
above. Then

ΞR := {f ∈ R1×w[ξ] | ∃ g ∈ R1×•[ξ], α ∈ R1×•

s.t. f = αΣR + gR}

is a vector space over R.

X ∈ R•×w[ξ] is state map for B iff row span(X) = ΞR

X is minimal if and only if its rows are a basis for ΞR.

Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]

σ+ ;
[
ξ + 2 −1

]
;

[
σ + 2 −1

]
σ2

+ ;
[
1 0

]
;

[
1 0

]
ΞR = {α

[
ξ + 2 −1

]
+ g(ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
,

β
[
1 0

]
+ f (ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
α, β ∈ R, f , g ∈ R[ξ]}

Any set of generators of ΞR ; a state map

Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
σ+ ;

[
ξ + 2 −1

]
;

[
σ + 2 −1

]

σ2
+ ;

[
1 0

]
;

[
1 0

]
ΞR = {α

[
ξ + 2 −1

]
+ g(ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
,

β
[
1 0

]
+ f (ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
α, β ∈ R, f , g ∈ R[ξ]}

Any set of generators of ΞR ; a state map

Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
σ+ ;

[
ξ + 2 −1

]
;

[
σ + 2 −1

]
If (y , u) ∈ B, then for all g ∈ R[ξ]

[
σ + 2 −1

] [
y
u

]
=

[
σ + 2 −1

] [
y
u

]
+ g(σ)

[
σ2 + 2σ + 3 −σ − 3

]︸ ︷︷ ︸
=0 on B

[
y
u

]

σ2
+ ;

[
1 0

]
;

[
1 0

]
ΞR = {α

[
ξ + 2 −1

]
+ g(ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
,

β
[
1 0

]
+ f (ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
α, β ∈ R, f , g ∈ R[ξ]}

Any set of generators of ΞR ; a state map

Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
σ+ ;

[
ξ + 2 −1

]
;

[
σ + 2 −1

]
If (y , u) ∈ B, then for all g ∈ R[ξ]

[
σ + 2 −1

] [
y
u

]
=

[
σ + 2 −1

] [
y
u

]
+ g(σ)

[
σ2 + 2σ + 3 −σ − 3

]︸ ︷︷ ︸
=0 on B

[
y
u

]

‘equivalence modulo R’

σ2
+ ;

[
1 0

]
;

[
1 0

]
ΞR = {α

[
ξ + 2 −1

]
+ g(ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
,

β
[
1 0

]
+ f (ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
α, β ∈ R, f , g ∈ R[ξ]}

Any set of generators of ΞR ; a state map

Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
σ+ ;

[
ξ + 2 −1

]
;

[
σ + 2 −1

]
σ2

+ ;
[
1 0

]
;

[
1 0

]

ΞR = {α
[
ξ + 2 −1

]
+ g(ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
,

β
[
1 0

]
+ f (ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
α, β ∈ R, f , g ∈ R[ξ]}

Any set of generators of ΞR ; a state map

Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
σ+ ;

[
ξ + 2 −1

]
;

[
σ + 2 −1

]
σ2

+ ;
[
1 0

]
;

[
1 0

]
If (y , u) ∈ B, then for all g ∈ R[ξ]

[
1 0

] [
y
u

]
=

[
1 0

] [
y
u

]
+ g(σ)

[
σ2 + 2σ + 3 −σ − 3

]︸ ︷︷ ︸
=0 on B

[
y
u

]

ΞR = {α
[
ξ + 2 −1

]
+ g(ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
,

β
[
1 0

]
+ f (ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
α, β ∈ R, f , g ∈ R[ξ]}

Any set of generators of ΞR ; a state map

Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
σ+ ;

[
ξ + 2 −1

]
;

[
σ + 2 −1

]
σ2

+ ;
[
1 0

]
;

[
1 0

]
ΞR = {α

[
ξ + 2 −1

]
+ g(ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
,

β
[
1 0

]
+ f (ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
α, β ∈ R, f , g ∈ R[ξ]}

Any set of generators of ΞR ; a state map

Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
σ+ ;

[
ξ + 2 −1

]
;

[
σ + 2 −1

]
σ2

+ ;
[
1 0

]
;

[
1 0

]
ΞR = {α

[
ξ + 2 −1

]
+ g(ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
,

β
[
1 0

]
+ f (ξ)

[
ξ2 + 2ξ + 3 −ξ − 3

]
α, β ∈ R, f , g ∈ R[ξ]}

Any set of generators of ΞR ; a state map

Outline

The axiom of state

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

Continuous-time systems

Computation of state-space representations

On the space of solutions

C∞-solutions to R(d
dt)w = 0 too small ; Lloc

1

Equality in the sense of distributions:

R(d
dt)w = 0 ⇔

∫ +∞
−∞ w(t)>(R(− d

dt)
>f)(t)dt = 0

for all testing functions f .

The axiom of state revisited

Σ = (T, W, X, Bfull) is a state system if

(w1, x1), (w2, x2) ∈ Bfull and x1(T) = x2(T)

and x1, x2 continuous at T
⇓

(w1, x1) ∧
T

(w2, x2) ∈ Bfull

‘State map’ X(d
dt)

From kernel representation to state map

Denote col((σi
+(R)))i=1,...,L =: ΣR .

Theorem: Let B = ker(R(d
dt)). Then

R(
d
dt

)w = 0

ΣR(
d
dt

)w = x

is a state representation of B with state variable x .

¿How to prove it?

When is w ∈ B concatenable with zero?

0 ∧
0

w ∈ B ⇐⇒
∫ +∞

−∞
(0 ∧

0
w)(t)>(R(−

d
dt

)>f)(t)dt = 0

⇐⇒
∫ +∞

0
w(t)>(R(−

d
dt

)>f)(t)dt = 0

for all testing functions f

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1(d j−k

dt j−k w)(0)>R>
j (dk−1

dtk−1 f)(0)

+
∫ +∞

0 (R(d
dt)w)(t)>f (t)dt = 0

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1(d j−k

dt j−k w)(0)>R>
j (dk−1

dtk−1 f)(0)

+
∫ +∞

0 (R(d
dt)w)(t)>f (t)dt = 0

When is w ∈ B concatenable with zero?

0 ∧
0

w ∈ B ⇐⇒
∫ +∞

−∞
(0 ∧

0
w)(t)>(R(−

d
dt

)>f)(t)dt = 0

⇐⇒
∫ +∞

0
w(t)>(R(−

d
dt

)>f)(t)dt = 0

for all testing functions f

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1(d j−k

dt j−k w)(0)>R>
j (dk−1

dtk−1 f)(0)

+
∫ +∞

0 (R(d
dt)w)(t)>f (t)dt = 0

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1(d j−k

dt j−k w)(0)>R>
j (dk−1

dtk−1 f)(0)

+
∫ +∞

0 (R(d
dt)w)(t)>f (t)dt = 0

When is w ∈ B concatenable with zero?

0 ∧
0

w ∈ B ⇐⇒
∫ +∞

−∞
(0 ∧

0
w)(t)>(R(−

d
dt

)>f)(t)dt = 0

⇐⇒
∫ +∞

0
w(t)>(R(−

d
dt

)>f)(t)dt = 0

for all testing functions f

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1(d j−k

dt j−k w)(0)>R>
j (dk−1

dtk−1 f)(0)

+
∫ +∞

0 (R(d
dt)w)(t)>f (t)dt = 0

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1(d j−k

dt j−k w)(0)>R>
j (dk−1

dtk−1 f)(0)

+
∫ +∞

0 (R(d
dt)w)(t)>f (t)dt = 0

w ∈ B concatenable with zero if and only if...

∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1(d j−k

dt j−k w)(0)>R>
j (dk−1

dtk−1 f)(0) = 0
m

f (0)
(d

dt f)(0)
...

(−1)deg(R)−1(ddeg(R)−1

dtdeg(R)−1 f)(0)


>

(ΣR(d
dt)w)(0) = 0

m

(ΣR(d
dt)w)(0) = 0

The shift-and-cut state map!

Outline

The axiom of state

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

Continuous-time systems

Computation of state-space representations

From kernel representation to state representation

R ∈ Rg×w[ξ] ; state map X ∈ Rn×w[ξ]

Find:

E, F ∈ R(n+g)×n, G ∈ R(n+g)×w

T ∈ R(n+g)×g[ξ] with rank(T (λ)) = g ∀λ ∈ C

satisfying

EξX(ξ) + FX(ξ) + G = T (ξ)R(ξ)

Linear equations, Gröbner bases computations!

From I/O representation to I/O/S representation

I/O representation
R =

[
P −Q

] ;
state map[
Xy Xu

]
Find:

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×p, D ∈ Rp×m

T ∈ R(n+p)×p[ξ] with rank(T (λ)) = g ∀λ ∈ C

satisfying

[
ξXy(ξ) ξXu(ξ)

Ip 0

]
=

[
A B
C D

] [
Xy(ξ) Xu(ξ)

0 Im

]
+ T (ξ)R(ξ)

On the choice of state map

State map
+

system equations

; state-space
equations

(d2

dt2 + 2 d
dt + 3)y = (d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1

−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’

On the choice of state map

State map
+

system equations

; state-space
equations

(d2

dt2 + 2 d
dt + 3)y = (d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1

−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’

On the choice of state map

State map
+

system equations

; state-space
equations

(d2

dt2 + 2 d
dt + 3)y = (d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]

Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1

−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’

On the choice of state map

State map
+

system equations

; state-space
equations

(d2

dt2 + 2 d
dt + 3)y = (d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
Take X(ξ) =

[
1 0

ξ + 2 −1

]
(‘reverse shift-and-cut’).

Then

A =

[
−2 1
−3 0

]
B =

[
−1
−3

]
C =

[
1 0

]
D =

[
0
]

‘observer canonical form’

Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1

−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’

On the choice of state map

State map
+

system equations

; state-space
equations

(d2

dt2 + 2 d
dt + 3)y = (d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1

−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’

Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!

Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!

Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!

Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!

Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!

Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!

Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!

	The axiom of state
	Discrete-time systems
	
	
	
	

	Continuous-time systems
	Computation of state-space representations

