## The Behavioral Approach to Systems Theory

Paolo Rapisarda, Un. of Southampton, U.K. \&

Jan C. Willems, K.U.Leuven, Belgium

MTNS 2006
Kyoto, Japan, July 24-28, 2006

# Lecture 3: State and state construction 

## Lecturer: Paolo Rapisarda

## Outline

The axiom of state

Discrete-time systems
First-order representations
State maps
The shift-and-cut map
Algebraic characterization

Continuous-time systems

Computation of state-space representations

## Questions

- Are state representations "natural"?


## Questions

- Are state representations "natural"?
- First principles and "tearing and zooming" modelling $\sim$ systems of high-order differential equations


## Questions

- Are state representations "natural"?
- First principles and "tearing and zooming" modelling $\leadsto$ systems of high-order differential equations
- Algebraic constraints among variables


## Questions

- Are state representations "natural"?
- First principles and "tearing and zooming" modelling $\leadsto$ systems of high-order differential equations
- Algebraic constraints among variables
- What makes a latent variable a "state"?


## Questions

- Are state representations "natural"?
- First principles and "tearing and zooming" modelling $\leadsto$ systems of high-order differential equations
- Algebraic constraints among variables
- What makes a latent variable a "state"?
- What does that imply for the equations?


## Questions

- Are state representations "natural"?
- First principles and "tearing and zooming" modelling $\leadsto$ systems of high-order differential equations
- Algebraic constraints among variables
- What makes a latent variable a "state"?
- What does that imply for the equations?
- How to construct a state from the equations?


## Questions

- Are state representations "natural"?
- First principles and "tearing and zooming" modelling $\sim$ systems of high-order differential equations
- Algebraic constraints among variables
- What makes a latent variable a "state"?
- What does that imply for the equations?
- How to construct a state from the equations?
- How to construct a state representation from the equations?


## The basic idea

It's the Mariners' final game in the World Series. You're late...


The current score is what matters...

## The basic idea

- The state contains all the relevant information about the future behavior of the system
- The state is the memory of the system
- Independence of past and future given the state


## The axiom of state

## $\Sigma=\left(\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{\text {full }}\right)$ is a state system if

$$
\begin{gathered}
\left(w_{1}, x_{1}\right),\left(w_{2}, x_{2}\right) \in \underset{\mathfrak{B}_{\text {full }}}{ } \text { and } x_{1}(T)=x_{2}(T) \\
\Downarrow \\
\left(w_{1}, x_{1}\right) \underset{T}{\wedge}\left(w_{2}, x_{2}\right) \in \mathfrak{B}_{\text {full }}
\end{gathered}
$$

$\hat{T}$ is concatenation at $T$ :

$$
\left(f_{1} \wedge f_{2}\right)(t):=\left\{\begin{array}{l}
f_{1}(t) \text { for } t<T \\
f_{2}(t) \text { for } t \geq T
\end{array}\right.
$$

## Graphically...

$$
\begin{gathered}
\left(w_{1}, x_{1}\right),\left(w_{2}, x_{2}\right) \in \mathfrak{B}_{\text {full }} \text { and } x_{1}(T)=x_{2}(T) \\
\Downarrow \\
\left(w_{1}, x_{1}\right) \underset{T}{ }\left(w_{2}, x_{2}\right) \in \mathfrak{B}_{\text {full }}
\end{gathered}
$$

## Graphically...

$$
\begin{gathered}
\left(w_{1}, x_{1}\right),\left(w_{2}, x_{2}\right) \in \mathfrak{B}_{\text {full }} \text { and } x_{1}(T)=x_{2}(T) \\
\Downarrow \\
\left(w_{1}, x_{1}\right) \stackrel{\uparrow}{T}\left(w_{2}, x_{2}\right) \in \mathfrak{B}_{\text {full }}
\end{gathered}
$$



## Graphically...

$$
\begin{gathered}
\left(w_{1}, x_{1}\right),\left(w_{2}, x_{2}\right) \in \mathfrak{B}_{\text {full }} \text { and } x_{1}(T)=x_{2}(T) \\
\Downarrow \\
\left(w_{1}, x_{1}\right) \underset{T}{ }\left(w_{2}, x_{2}\right) \in \mathfrak{B}_{\text {full }}
\end{gathered}
$$



## Example 1: discrete-time system

## $\boldsymbol{\Sigma}=\left(\mathbb{Z}, \mathbb{R}^{\mathbf{w}}, \mathbb{R}^{\mathbf{1}}, \mathfrak{B}_{\text {full }}\right)$, with

$$
\mathfrak{B}_{\text {full }}:=\{(w, \ell) \mid F \circ(\sigma \ell, \ell, w)=0\}
$$

where

$$
\begin{aligned}
& \sigma:\left(\mathbb{R}^{1}\right)^{\mathbb{Z}} \rightarrow\left(\mathbb{R}^{1}\right)^{\mathbb{Z}} \\
& (\sigma(\ell))(k):=\ell(k+1)
\end{aligned}
$$

## Example 1: discrete-time system

$$
\boldsymbol{\Sigma}=\left(\mathbb{Z}, \mathbb{R}^{\mathbf{w}}, \mathbb{R}^{1}, \mathfrak{B}_{\text {full }}\right) \text {, with }
$$

$$
\mathfrak{B}_{\text {full }}:=\{(w, \ell) \mid F \circ(\sigma \ell, \ell, w)=0\}
$$

Special case: input-state-output equations

$$
\begin{aligned}
\sigma x & =f(x, u) \\
y & =h(x, u) \\
w & =(u, y)
\end{aligned}
$$

## Example 2: continuous-time system

$\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}, \mathbb{R}^{1}, \mathfrak{B}_{\text {full }}\right)$, with

$$
\mathfrak{B}_{\text {full }}:=\left\{(w, \ell) \left\lvert\, F \circ\left(\frac{d}{d t} \ell, \ell, w\right)=0\right.\right\}
$$

Special case: input-state-output equations

$$
\begin{aligned}
\frac{d}{d t} x & =f(x, u) \\
y & =h(x, u) \\
w & =(u, y)
\end{aligned}
$$

## Outline

## The axiom of state

Discrete-time systems
First-order representations
State maps
The shift-and-cut map
Algebraic characterization

## Continuous-time systems

Computation of state-space representations

## First-order discrete-time representations

Theorem: A 'complete' latent variable system

$$
\boldsymbol{\Sigma}=\left(\mathbb{Z}, \mathbb{R}^{\mathbf{w}}, \mathbb{R}^{\mathbf{x}}, \mathfrak{B}_{\text {full }}\right)
$$

is a state system iff $\mathfrak{B}_{\text {full }}$ can be described by

$$
F \circ(\sigma x, x, w)=0
$$

## First-order discrete-time representations

Theorem: A 'complete' latent variable system

$$
\boldsymbol{\Sigma}=\left(\mathbb{Z}, \mathbb{R}^{\mathbf{w}}, \mathbb{R}^{\mathbf{x}}, \mathfrak{B}_{\text {full }}\right)
$$

is a state system iff $\mathfrak{B}_{\text {full }}$ can be described by

$$
F \circ(\sigma x, x, w)=0
$$

0 -th order in $w, 1$ st order in $x$

## First-order discrete-time representations

Theorem: A 'complete' latent variable system

$$
\boldsymbol{\Sigma}=\left(\mathbb{Z}, \mathbb{R}^{\mathbf{w}}, \mathbb{R}^{\mathbf{x}}, \mathfrak{B}_{\text {full }}\right)
$$

is a state system iff $\mathfrak{B}_{\text {full }}$ can be described by

$$
F \circ(\sigma x, x, w)=0
$$

Linear case:

$$
E \sigma x+F x+G w=0
$$

## First-order discrete-time representations

Theorem: A 'complete' latent variable system

$$
\boldsymbol{\Sigma}=\left(\mathbb{Z}, \mathbb{R}^{\mathbf{w}}, \mathbb{R}^{\mathbf{x}}, \mathfrak{B}_{\text {full }}\right)
$$

is a state system iff $\mathfrak{B}_{\text {full }}$ can be described by

$$
F \circ(\sigma x, x, w)=0
$$

Linear case:

$$
E \sigma x+F x+G w=0
$$

1st order in $x$ is consequence of state property!

## Proof (linear case)

$\mathcal{V}:=\left\{\left.\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \right\rvert\, \exists(x, w) \in \mathfrak{B}_{\text {full }}\right.$ s. $\left.\mathrm{t} .\left[\begin{array}{l}x(1) \\ x(0) \\ w(0)\end{array}\right]=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right\}$
$\mathcal{V}$ linear $\Rightarrow \exists E, F, G$ s.t. $\mathcal{V}=\operatorname{ker}\left(\left[\begin{array}{lll}E & F & G\end{array}\right]\right)$

## Proof (linear case)

$$
\mathcal{V}:=\left\{\left.\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \right\rvert\, \exists(x, w) \in \mathfrak{B}_{\text {full }} \text { s. t. }\left[\begin{array}{l}
x(1) \\
x(0) \\
w(0)
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right\}
$$

$\mathcal{V}$ linear $\Rightarrow \exists E, F, G$ s.t. $\mathcal{V}=\operatorname{ker}\left(\left[\begin{array}{lll}E & F & G\end{array}\right]\right)$
$\Downarrow$
$\left[(x, w) \in \mathfrak{B}_{\text {full }} \Longrightarrow E \sigma x+F x+G w=0\right]$

## Proof (linear case)

$\mathcal{V}:=\left\{\left.\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \right\rvert\, \exists(x, w) \in \mathfrak{B}_{\text {full }}\right.$ s. $\left.\mathrm{t} .\left[\begin{array}{l}x(1) \\ x(0) \\ w(0)\end{array}\right]=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right\}$
$\mathcal{V}$ linear $\Rightarrow \exists E, F, G$ s.t. $\mathcal{V}=\operatorname{ker}\left(\left[\begin{array}{lll}E & F & G\end{array}\right]\right)$

Converse by induction, using axiom of state:
$E \sigma x+F x+G w=0$ on $[0, k] \Longrightarrow(w, x)_{[0, k]} \in \mathfrak{B}_{\text {full| }[0, k]}$
Then apply completeness of $\mathfrak{B}$

## State construction: basic idea

Problem: Given kernel or hybrid description, find a state representation

$$
E \sigma x+F x+G w=0
$$

## State construction: basic idea

Problem: Given kernel or hybrid description, find a state representation

$$
E \sigma x+F x+G w=0
$$

First compute polynomial operator in the shift acting on system variables, inducing a state variable:

$$
X(\sigma) w=x
$$

$$
X(\sigma)\left[\begin{array}{c}
w \\
\ell
\end{array}\right]=x
$$

## State construction: basic idea

Problem: Given kernel or hybrid description, find a state representation

$$
E \sigma x+F x+G w=0
$$

First compute polynomial operator in the shift acting on system variables, inducing a state variable:

$$
X(\sigma) w=x
$$

$$
X(\sigma)\left[\begin{array}{c}
w \\
\ell
\end{array}\right]=x
$$

Then use original eqs. and $X$ to obtain 1st order representation.

## State maps for kernel representations

$X \in \mathbb{R}^{\bullet \times \mathrm{w}}[\xi]$ induces a state map $X(\sigma)$ for $\operatorname{ker}(R(\sigma))$ if the behavior $\mathfrak{B}_{\text {full }}$ with latent variable $\boldsymbol{x}$, described by

$$
\begin{aligned}
& R(\sigma) w=0 \\
& \boldsymbol{X}(\sigma) w=\boldsymbol{w}
\end{aligned}
$$

satisfies the axiom of state.

## Example

$$
\mathfrak{B}=\{\boldsymbol{w} \mid r(\sigma) w=0\}
$$

where $r \in \mathbb{R}[\xi], \operatorname{deg}(r)=\boldsymbol{n}$.
(Minimal) state map induced by

$$
\left[\begin{array}{c}
1 \\
\xi \\
\vdots \\
\xi^{n-1}
\end{array}\right] \leadsto\left[\begin{array}{c}
w \\
\sigma w \\
\vdots \\
\sigma^{n-1} w
\end{array}\right]
$$

## The axiom of state revisited

A linear system $\Sigma=\left(\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{\text {full }}\right)$ with latent variable $\boldsymbol{x}$ is a state system if

$$
\begin{gathered}
(w, x) \in \mathfrak{B}_{\text {full }} \text { and } x(T)=0 \\
\Downarrow \\
(0,0) \underset{T}{(w, x) \in \mathfrak{B}_{\text {full }}}
\end{gathered}
$$

## The axiom of state revisited

A linear system $\Sigma=\left(\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{\text {full }}\right)$ with latent variable $x$ is a state system if

$$
\begin{gathered}
(w, x) \in \mathfrak{B}_{\text {full }} \text { and } x(T)=0 \\
\Downarrow \\
(0,0) \underset{T}{(w, x) \in \mathfrak{B}_{\text {full }}}
\end{gathered}
$$

- Time-invariance $\Longrightarrow$ can choose $T=0$;


## The axiom of state revisited

A linear system $\Sigma=\left(\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{\text {full }}\right)$ with latent variable $x$ is a state system if

$$
\begin{gathered}
(w, x) \in \mathfrak{B}_{\text {full }} \text { and } x(T)=0 \\
\Downarrow \\
(0,0) \underset{T}{(w, x) \in \mathfrak{B}_{\text {full }}}
\end{gathered}
$$

- Time-invariance $\Longrightarrow$ can choose $T=0$;
- Concatenability with zero trajectory is key.

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?
$R_{0} w+R_{1} \sigma w+\ldots+R_{L} \sigma^{L} w=0$

| $\cdots$ | 0 | $\mathbf{O}$ | $\boldsymbol{W}(\mathbf{0})$ | $\boldsymbol{W}(1)$ | $\boldsymbol{W}(2)$ | $W(3)$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ | $k=-2$ | $k=-1$ | $k=0$ | $k=1$ | $k=2$ | $k=3$ | $\ldots$ |

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?
$R_{0} w+R_{1} \sigma w+\ldots+R_{L} \sigma^{L} w=0$

|  | 0 | 0 | $R_{0}$ | $R_{1}$ | $\mathrm{R}_{2}$ | $R_{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ldots$ | 0 | 0 | w(0) | $w(1)$ | $w(2)$ | w(3) |  |
|  | $=-2$ | $k=-1$ | $k=0$ | $k=1$ | $k=2$ | $k=3$ |  |

$$
R_{0} w(0)+R_{1} w(1)+\ldots+R_{L} w(L)=0
$$

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?
$R_{0} w+R_{1} \sigma w+\ldots+R_{L} \sigma^{L} w=0$

|  | 0 | $\mathrm{R}_{0}$ | $R_{1}$ | $\mathrm{R}_{2}$ | $R_{3}$ | $\mathrm{R}_{4}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ldots$ | 0 | 0 | w(0) | w(1) | W(2) | w(3) |  |
| $\ldots$ | $k=-2$ | $k=-1$ | $k=0$ | $k=1$ | $k=2$ | $k=3$ | $\ldots$ |

$R_{0} w(0)+R_{1} w(1)+\ldots+R_{L} w(L)=0$
$R_{1} w(0)+R_{2} w(1)+\ldots+R_{L} w(L-1)=0$

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?
$R_{0} w+R_{1} \sigma w+\ldots+R_{L} \sigma^{L} w=0$

|  | $R_{0}$ | $\mathrm{R}_{1}$ | $R_{2}$ | $R_{3}$ | $R_{4}$ | $R_{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | w(0) | W(1) | $w(2)$ | W(3) |  |
|  | = | $k=-1$ | $k=0$ | $k=1$ | $k=$ | $k=3$ |  |

$$
R_{0} w(0)+R_{1} w(1)+\ldots+R_{L} w(L)=0
$$

$R_{1} w(0)+R_{2} w(1)+\ldots+R_{L} w(L-1)=0$
$R_{2} w(0)+R_{3} w(1)+\ldots+R_{L} w(L-2)=0$

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?

$$
R_{0} w+R_{1} \sigma w+\ldots+R_{L} \sigma^{L} w=0
$$

| $\cdots$ | $\mathbf{0}$ | $\mathbf{0}$ | $\boldsymbol{W}(\mathbf{0})$ | $\boldsymbol{W}(\mathbf{1})$ | $\boldsymbol{W}(\mathbf{2})$ | $\boldsymbol{W}(\mathbf{3})$ | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ | $k=-2$ | $k=-1$ | $k=0$ | $k=1$ | $k=2$ | $k=3$ | $\cdots$ |

$$
R_{0} w(0)+R_{1} w(1)+\ldots+R_{L} w(L)=0
$$

$R_{1} w(0)+R_{2} w(1)+\ldots+R_{L} w(L-1)=0$
$R_{2} w(0)+R_{3} w(1)+\ldots+R_{L} w(L-2)=0$

$$
\vdots \quad=\vdots
$$

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?
$R_{0} w+R_{1} \sigma w+\ldots+R_{L} \sigma^{L} w=0$
$\ldots R_{L-3} \quad \boldsymbol{R}_{L-2} \quad R_{L-1} \quad R_{L} \quad 0 \quad 0 \quad \ldots$

| $\ldots$ | 0 | $\mathbf{O}$ | $\boldsymbol{W}(\mathbf{0})$ | $\boldsymbol{W}(1)$ | $\boldsymbol{W}(2)$ | $\boldsymbol{W}(3)$ | $\ldots$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ | $k=-2$ | $k=-1$ | $k=0$ | $k=1$ | $k=2$ | $k=3$ | $\ldots$ |

$R_{0} w(0)+R_{1} w(1)+\ldots+R_{L} w(L)=0$
$R_{1} w(0)+R_{2} w(1)+\ldots+R_{L} w(L-1)=0$
$R_{2} w(0)+R_{3} w(1)+\ldots+R_{L} w(L-2)=0$

$$
\begin{array}{cc}
\vdots & =\vdots \\
R_{L-1} w(0)+R_{L} w(1) & =0
\end{array}
$$

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?
$R_{0} w+R_{1} \sigma w+\ldots+R_{L} \sigma^{L} w=0$
$\ldots R_{L-2} \quad \boldsymbol{R}_{L-1} \quad \boldsymbol{R}_{L} \quad 0 \quad 0 \quad 0 \quad \ldots$

| $\ldots$ | 0 | $\mathbf{O}$ | $\boldsymbol{W}(\mathbf{0})$ | $\boldsymbol{W}(1)$ | $\boldsymbol{W}(2)$ | $\boldsymbol{W}(3)$ | $\ldots$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ | $k=-2$ | $k=-1$ | $k=0$ | $k=1$ | $k=2$ | $k=3$ | $\ldots$ |

$R_{0} w(0)+R_{1} w(1)+\ldots+R_{L} w(L)=0$
$R_{1} w(0)+R_{2} w(1)+\ldots+R_{L} w(L-1)=0$
$R_{2} w(0)+R_{3} w(1)+\ldots+R_{L} w(L-2)=0$

$$
\begin{aligned}
\vdots & =\vdots \\
R_{L-1} w(0)+R_{L} w(1) & =0 \\
R_{L} w(0) & =0
\end{aligned}
$$

## The shift-and-cut map

$$
\begin{gathered}
\sigma_{+}: \mathbb{R}[\xi] \rightarrow \mathbb{R}[\xi] \\
\sigma_{+}\left(\sum_{i=0}^{n} p_{i} \xi^{\prime}\right):=\sum_{i=0}^{n-1} p_{i+1} \xi^{i}
\end{gathered}
$$

"Divide by $\xi$ and take polynomial part"

## Extended componentwise to vectors and matrices

## Example

$$
R(\xi)=R_{0}+R_{1} \xi+\ldots+R_{L-1} \xi^{L-1}+R_{L} \xi^{L}
$$

## Example

$$
R(\xi)=R_{0}+R_{1} \xi+\ldots+R_{L-1} \xi^{L-1}+R_{L} \xi^{L}
$$

$$
\sigma_{+}(R(\xi))=R_{1}+\ldots+R_{L-1} \xi^{L-2}+R_{L} \xi^{L-1}
$$

## Example

$$
R(\xi)=R_{0}+R_{1} \xi+\ldots+R_{L-1} \xi^{L-1}+R_{L} \xi^{L}
$$

$$
\begin{aligned}
\sigma_{+}(R(\xi)) & =R_{1}+\ldots+R_{L-1} \xi^{L-2}+R_{L} \xi^{L-1} \\
\sigma_{+}^{2}(R(\xi)) & =R_{2}+\ldots+R_{L-1} \xi^{L-3}+R_{L} \xi^{L-2}
\end{aligned}
$$

## Example

$$
R(\xi)=R_{0}+R_{1} \xi+\ldots+R_{L-1} \xi^{L-1}+R_{L} \xi^{L}
$$

$$
\begin{aligned}
\sigma_{+}(R(\xi)) & =R_{1}+\ldots+R_{L-1} \xi^{L-2}+R_{L} \xi^{L-1} \\
\sigma_{+}^{2}(R(\xi)) & =R_{2}+\ldots+R_{L-1} \xi^{L-3}+R_{L} \xi^{L-2} \\
\vdots & =\vdots
\end{aligned}
$$

## Example

$$
R(\xi)=R_{0}+R_{1} \xi+\ldots+R_{L-1} \xi^{L-1}+R_{L} \xi^{L}
$$

$$
\begin{aligned}
\sigma_{+}(R(\xi)) & =R_{1}+\cdots+R_{L-1} \xi^{L-2}+R_{L} \xi^{L-1} \\
\sigma_{+}^{2}(R(\xi)) & =R_{2}+\ldots+R_{L-1} \xi^{L-3}+R_{L} \xi^{L-2} \\
\vdots & =\vdots \\
\sigma_{+}^{L}(R(\xi)) & =R_{L}
\end{aligned}
$$

## Shift-and-cut and concatenability with zero

$$
\begin{array}{cc}
\left(\sigma_{+}(R)(\sigma) w\right)(0) & =0 \\
\left(\sigma_{+}^{2}(R)(\sigma) w\right)(0) & =0 \\
\vdots & =\vdots \\
\left(\sigma_{+}^{L}(R)(\sigma) w\right)(0) & =0
\end{array}
$$

concatenable $\Leftrightarrow$ with zero
$\operatorname{col}\left(\left(\sigma_{+}^{i}(R)\right)_{i=1, \ldots, L}(\sigma)\right.$ is a state map!

Shift-and-cut and concatenability with zero
$w$ is
concatenable $\Leftrightarrow$
with zero

$$
\begin{array}{cc}
\left(\sigma_{+}(R)(\sigma) w\right)(0) & =0 \\
\left(\sigma_{+}^{2}(R)(\sigma) w\right)(0) & =0 \\
\vdots & =\vdots \\
\left(\sigma_{+}^{L}(R)(\sigma) w\right)(0) & =0
\end{array}
$$

## $\operatorname{col}\left(\left(\sigma_{+}^{i}(R)\right)_{i=1, \ldots, L}(\sigma)\right.$ is a state map!

Other equations equivalent to shift-and-cut ones $\Longrightarrow$ different state maps are possible!

Shift-and-cut and concatenability with zero
$w$ is
concatenable $\Leftrightarrow$
with zero

$$
\begin{array}{cc}
\left(\sigma_{+}(R)(\sigma) w\right)(0) & =0 \\
\left(\sigma_{+}^{2}(R)(\sigma) w\right)(0) & =0 \\
\vdots & =\vdots \\
\left(\sigma_{+}^{L}(R)(\sigma) w\right)(0) & =0
\end{array}
$$

## $\operatorname{col}\left(\left(\sigma_{+}^{i}(R)\right)_{i=1, \ldots, L}(\sigma)\right.$ is a state map!

Other equations equivalent to shift-and-cut ones $\Longrightarrow$ different state maps are possible!

## Example: scalar systems

$$
r_{0} w+r_{1} \sigma w+\ldots+\sigma^{n} w=0
$$

## Example: scalar systems

$$
r_{0} w+r_{1} \sigma w+\ldots+\sigma^{n} w=0
$$

Observe $\boldsymbol{w}$ concatenable with zero iff $\boldsymbol{w}=0$. Indeed,

$$
\begin{aligned}
\sigma_{+}^{n}(r)(\sigma) w & =w \\
\sigma_{+}^{n-1}(r)(\sigma) w & =r_{n-1} w+\sigma w \\
\vdots & = \\
\sigma_{+}(r)(\sigma) w & =r_{1} w+\ldots+\sigma^{n-1} w
\end{aligned}
$$

## Example: scalar systems

$$
r_{0} w+r_{1} \sigma w+\ldots+\sigma^{n} w=0
$$

Observe $\boldsymbol{w}$ concatenable with zero iff $\boldsymbol{w}=0$. Indeed,

$$
\begin{aligned}
\sigma_{+}^{n}(r)(\sigma) w & =w \\
\sigma_{+}^{n-1}(r)(\sigma) w & =r_{n-1} w+\sigma w \\
\vdots & = \\
\sigma_{+}(r)(\sigma) w & =r_{1} w+\ldots+\sigma^{n-1} w
\end{aligned}
$$

Zero at $t=0$ iff $\left(\sigma^{k} w\right)(0)=0$ for $k=0, \ldots, n-1$.

## From kernel representation to state map

Denote $\operatorname{col}\left(\left(\sigma_{+}^{i}(R)\right)\right)_{i=1, \ldots, L}=: \Sigma_{R}$.

Theorem: Let $\mathfrak{B}=\operatorname{ker}(\boldsymbol{R}(\sigma))$. Then

$$
\begin{aligned}
R(\sigma) w & =0 \\
\Sigma_{R}(\sigma) w & =x
\end{aligned}
$$

is a state representation of $\mathfrak{B}$ with state variable $\boldsymbol{x}$.

## Algebraic characterization

Theorem: Let $\mathfrak{B}=\operatorname{ker}(\boldsymbol{R}(\sigma))$, and define $\Sigma_{R}$ as above. Then

$$
\begin{array}{r}
\Xi_{R}:=\left\{f \in \mathbb{R}^{1 \times w}[\xi] \quad \mid \exists g \in \mathbb{R}^{1 \times} \cdot[\xi], \alpha \in \mathbb{R}^{1 \times \bullet}\right. \\
\text { s.t. } \left.f=\alpha \Sigma_{R}+g R\right\}
\end{array}
$$

is a vector space over $\mathbb{R}$.

## Algebraic characterization

Theorem: Let $\mathfrak{B}=\operatorname{ker}(\boldsymbol{R}(\sigma))$, and define $\Sigma_{R}$ as above. Then

$$
\begin{array}{r}
\Xi_{R}:=\left\{f \in \mathbb{R}^{1 \times w}[\xi] \quad \mid \exists g \in \mathbb{R}^{1 \times} \cdot[\xi], \alpha \in \mathbb{R}^{1 \times \bullet}\right. \\
\text { s.t. } \left.f=\alpha \Sigma_{R}+g R\right\}
\end{array}
$$

is a vector space over $\mathbb{R}$.
$X \in \mathbb{R}^{\bullet \times w}[\xi]$ is state map for $\mathfrak{B}$ iff row $\operatorname{span}(X)=\Xi_{R}$

## Algebraic characterization

Theorem: Let $\mathfrak{B}=\operatorname{ker}(\boldsymbol{R}(\sigma))$, and define $\Sigma_{R}$ as above. Then

$$
\begin{array}{r}
\Xi_{R}:=\left\{f \in \mathbb{R}^{1 \times w}[\xi] \quad \mid \exists g \in \mathbb{R}^{1 \times} \cdot[\xi], \alpha \in \mathbb{R}^{1 \times \bullet}\right. \\
\text { s.t. } \left.f=\alpha \Sigma_{R}+g R\right\}
\end{array}
$$

is a vector space over $\mathbb{R}$.
$X \in \mathbb{R}^{\bullet \times w}[\xi]$ is state map for $\mathfrak{B}$ iff row span $(X)=\bar{E}_{\boldsymbol{R}}$
$X$ is minimal if and only if its rows are a basis for $\Xi_{R}$.

## Example

$$
\left(\sigma^{2}+2 \sigma+3\right) y=(\sigma+3) u \quad\left[\xi^{2}+2 \xi+3-\xi-3\right]
$$

## Example

$$
\begin{gathered}
\left(\sigma^{2}+2 \sigma+3\right) y=(\sigma+3) u \quad\left[\begin{array}{ll}
\xi^{2}+2 \xi+3 & -\xi-3
\end{array}\right] \\
\sigma_{+} \leadsto\left[\begin{array}{ll}
\xi+2 & -1
\end{array}\right] \leadsto\left[\begin{array}{ll}
\sigma+2 & -1
\end{array}\right]
\end{gathered}
$$

## Example

$\left(\sigma^{2}+2 \sigma+3\right) y=(\sigma+3) u \quad\left[\begin{array}{l}\left.\xi^{2}+2 \xi+3-\xi-3\right]\end{array}\right.$

$$
\sigma_{+} \leadsto\left[\begin{array}{ll}
\xi+2 & -1
\end{array}\right] \leadsto\left[\begin{array}{ll}
\sigma+2 & -1
\end{array}\right]
$$

If $(\boldsymbol{y}, u) \in \mathfrak{B}$, then for all $g \in \mathbb{R}[\xi]$

$$
\begin{aligned}
{\left[\begin{array}{ll}
\sigma+2 & -1
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] } & =\left[\begin{array}{ll}
\sigma+2 & -1
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] \\
& +\underbrace{g(\sigma)\left[\sigma^{2}+2 \sigma+3-\sigma-3\right.}_{=0 \text { on } \mathfrak{B}}]
\end{aligned}\left[\begin{array}{l}
y \\
u
\end{array}\right]
$$

## Example

$\left(\sigma^{2}+2 \sigma+3\right) y=(\sigma+3) u \quad\left[\xi^{2}+2 \xi+3-\xi-3\right]$

$$
\sigma_{+} \leadsto\left[\begin{array}{ll}
\xi+2 & -1
\end{array}\right] \leadsto\left[\begin{array}{ll}
\sigma+2 & -1
\end{array}\right]
$$

If $(\boldsymbol{y}, u) \in \mathfrak{B}$, then for all $g \in \mathbb{R}[\xi]$

$$
\begin{aligned}
{\left[\begin{array}{ll}
\sigma+2 & -1
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] } & =\left[\begin{array}{ll}
\sigma+2 & -1
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] \\
& +\underbrace{g(\sigma)\left[\sigma^{2}+2 \sigma+3\right.}_{=0 \text { on } \mathfrak{B}}-\sigma-3]
\end{aligned}\left[\begin{array}{l}
y \\
u
\end{array}\right]
$$

## Example

$$
\begin{gathered}
\left(\sigma^{2}+2 \sigma+3\right) y=(\sigma+3) u \quad\left[\begin{array}{ll}
\xi^{2}+2 \xi+3 & -\xi-3
\end{array}\right] \\
\sigma_{+} \\
\leadsto\left[\begin{array}{ll}
\xi+2 & -1
\end{array}\right] \\
\sigma_{+}^{2}
\end{gathered} \sim\left[\begin{array}{ll}
1 & 0+2
\end{array}\right] \leadsto\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & \leadsto\left[\begin{array}{ll}
1 &
\end{array}\right]
\end{array}\right.
$$

## Example

$$
\left(\sigma^{2}+2 \sigma+3\right) y=(\sigma+3) u \quad\left[\xi^{2}+2 \xi+3-\xi-3\right]
$$

$$
\begin{aligned}
& \sigma_{+} \leadsto\left[\begin{array}{ll}
\xi+2 & -1
\end{array}\right] \leadsto\left[\begin{array}{cc}
\sigma+2 & -1
\end{array}\right] \\
& \sigma_{+}^{2} \leadsto\left[\begin{array}{ll}
1 & 0
\end{array}\right] \leadsto\left[\begin{array}{ll}
1 & 0
\end{array}\right]
\end{aligned}
$$

If $(\boldsymbol{y}, u) \in \mathfrak{B}$, then for all $g \in \mathbb{R}[\xi]$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right] \\
& +\underbrace{g(\sigma)\left[\sigma^{2}+2 \sigma+3-\sigma-3\right]}_{=0 \text { on } \mathfrak{B}}\left[\begin{array}{l}
y \\
u
\end{array}\right]
\end{aligned}
$$

## Example

$$
\left(\sigma^{2}+2 \sigma+3\right) y=(\sigma+3) u \quad\left[\begin{array}{l} 
\\
2
\end{array}+2 \xi+3-\xi-3\right]
$$

$$
\begin{aligned}
& \sigma_{+} \leadsto\left[\begin{array}{ll}
\xi+2 & -1
\end{array}\right] \leadsto\left[\begin{array}{ll}
\sigma+2 & -1
\end{array}\right] \\
& \sigma_{+}^{2} \leadsto\left[\begin{array}{ll}
1 & 0
\end{array}\right] \leadsto\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
& \Xi_{R}=\left\{\alpha[\xi+2-1]+g(\xi)\left[\xi^{2}+2 \xi+3-\xi-3\right],\right. \\
& \beta\left[\begin{array}{ll}
1 & 0
\end{array}\right]+f(\xi)\left[\begin{array}{ll}
\xi^{2}+2 \xi+3 & -\xi-3
\end{array}\right] \\
& \alpha, \beta \in \mathbb{R}, \boldsymbol{f}, \boldsymbol{g} \in \mathbb{R}[\xi]\}
\end{aligned}
$$

## Example

$$
\left(\sigma^{2}+2 \sigma+3\right) y=(\sigma+3) u \quad\left[\xi^{2}+2 \xi+3-\xi-3\right]
$$

$$
\begin{aligned}
& \sigma_{+} \leadsto\left[\begin{array}{ll}
\xi+2 & -1
\end{array}\right] \leadsto\left[\begin{array}{ll}
\sigma+2 & -1
\end{array}\right] \\
& \sigma_{+}^{2} \leadsto\left[\begin{array}{ll}
1 & 0
\end{array}\right] \leadsto\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
& \Xi_{R}=\left\{\alpha\left[\begin{array}{ll}
\xi+2 & -1
\end{array}\right]+g(\xi)\left[\xi^{2}+2 \xi+3-\xi-3\right],\right. \\
& \beta\left[\begin{array}{ll}
1 & 0
\end{array}\right]+f(\xi)\left[\begin{array}{ll}
\xi^{2}+2 \xi+3 & -\xi-3
\end{array}\right] \\
& \alpha, \boldsymbol{\beta} \in \mathbb{R}, \boldsymbol{f}, \boldsymbol{g} \in \mathbb{R}[\xi]\}
\end{aligned}
$$

Any set of generators of $\bar{E}_{R} \leadsto$ a state map

## Outline

The axiom of state
Discrete-time systems
First-order representations
State maps
The shift-and-cut map
Algebraic characterization

Continuous-time systems

Computation of state-space representations

## On the space of solutions

$\mathfrak{C}^{\infty}$-solutions to $R\left(\frac{d}{d t}\right) w=0$ too small $\sim \mathcal{L}_{1}^{\text {loc }}$

Equality in the sense of distributions:
$R\left(\frac{d}{d t}\right) w=0 \quad \Leftrightarrow \quad \begin{aligned} & \int_{-\infty}^{+\infty} w(t)^{\top}\left(R\left(-\frac{d}{d t}\right)^{\top} f\right)(t) d t=0 \\ & \text { for all testing functions } f .\end{aligned}$

## The axiom of state revisited

$\Sigma=\left(\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{\text {full }}\right)$ is a state system if

$$
\begin{gathered}
\left(w_{1}, x_{1}\right),\left(w_{2}, x_{2}\right) \in \mathfrak{B}_{\text {full }} \text { and } x_{1}(T)=x_{2}(T) \\
\text { and } x_{1}, x_{2} \text { continuous at } T \\
\Downarrow \\
\left(w_{1}, x_{1}\right) \wedge_{T}\left(w_{2}, x_{2}\right) \in \mathfrak{B}_{\text {full }}
\end{gathered}
$$

'State map' $\rightsquigarrow X\left(\frac{d}{d t}\right)$

## From kernel representation to state map

Denote $\operatorname{col}\left(\left(\sigma_{+}^{i}(R)\right)\right)_{i=1, \ldots, L}=: \Sigma_{R}$.
Theorem: Let $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$. Then

$$
\begin{aligned}
R\left(\frac{d}{d t}\right) w & =0 \\
\Sigma_{R}\left(\frac{d}{d t}\right) w & =x
\end{aligned}
$$

is a state representation of $\mathfrak{B}$ with state variable $\boldsymbol{x}$.
¿How to prove it?

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?

$$
\begin{aligned}
\mathbf{0} \hat{o}^{w} \in \mathfrak{B} & \Longleftrightarrow \int_{-\infty}^{+\infty}(0 \hat{o} w)(t)^{\top}\left(R\left(-\frac{d}{d t}\right)^{\top} f\right)(t) d t=0 \\
& \Longleftrightarrow \int_{0}^{+\infty} w(t)^{\top}\left(R\left(-\frac{d}{d t}\right)^{\top} f\right)(t) d t=0
\end{aligned}
$$

for all testing functions $\boldsymbol{f}$

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?

$$
\begin{aligned}
\mathbf{0} \hat{o}^{w} \in \mathfrak{B} & \Longleftrightarrow \int_{-\infty}^{+\infty}(0 \hat{o} w)(t)^{\top}\left(R\left(-\frac{d}{d t}\right)^{\top} f\right)(t) d t=0 \\
& \Longleftrightarrow \int_{0}^{+\infty} w(t)^{\top}\left(R\left(-\frac{d}{d t}\right)^{\top} f\right)(t) d t=0
\end{aligned}
$$

for all testing functions $\boldsymbol{f}$
Integrating repeatedly by parts on $\boldsymbol{f}$ yields:

$$
\begin{gathered}
\sum_{k=1}^{\operatorname{deg}(R)} \sum_{j=k}^{\operatorname{deg}(R)}(-1)^{k-1}\left(\frac{d^{i-k}}{d t i-k} w\right)(0)^{\top} R_{j}^{\top}\left(\frac{d^{k-1}}{\left(d t^{k-1}\right.} f\right)(0) \\
+\int_{0}^{+\infty}\left(R\left(\frac{d}{d t}\right) w\right)(t)^{\top} f(t) d t=0
\end{gathered}
$$

When is $\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero?

$$
\begin{aligned}
\mathbf{0}_{\hat{o}} w \in \mathfrak{B} & \Longleftrightarrow \int_{-\infty}^{+\infty}(0 \hat{o} w)(t)^{\top}\left(R\left(-\frac{d}{d t}\right)^{\top} f\right)(t) d t=0 \\
& \Longleftrightarrow \int_{0}^{+\infty} w(t)^{\top}\left(R\left(-\frac{d}{d t}\right)^{\top} f\right)(t) d t=0
\end{aligned}
$$

for all testing functions $\boldsymbol{f}$
Integrating repeatedly by parts on $\boldsymbol{f}$ yields:

$$
\begin{aligned}
& \sum_{k=1}^{\operatorname{deg}(R)} \sum_{j=k}^{\operatorname{deg}(R)}(-1)^{k-1}\left(\frac{d^{j-k}}{d t i-k} w\right)(0)^{\top} R_{j}^{\top}\left(\frac{d^{k-1}}{d t^{k-1}} f\right)(0) \\
& \left.+\int_{0}^{+\infty}\left(R\left(\frac{d}{d i}\right) w\right)(t)\right)^{\top} f(t) d t=0
\end{aligned}
$$

$\boldsymbol{w} \in \mathfrak{B}$ concatenable with zero if and only if...

$$
\sum_{k=1}^{\operatorname{deg}(R)} \sum_{j=k}^{\operatorname{deg}(R)}(-1)^{k-1}\left(\frac{d^{j-k}}{d t^{j-k}} w\right)(0)^{\top} R_{j}^{\top}\left(\frac{d^{k-1}}{d t^{k-1}} f\right)(0)=0
$$

i

$$
\left[\begin{array}{c}
f(0) \\
\left(\frac{d}{d t} f\right)(0) \\
\vdots \\
(-1)^{\operatorname{deg}(R)-1}\left(\frac{d^{\operatorname{deg}(R)-1}}{d t^{\operatorname{deg}(R)-1}} f\right)(0)
\end{array}\right]^{\top}\left(\Sigma_{R}\left(\frac{d}{d t}\right) w\right)(0)=0
$$

$$
\left(\Sigma_{R}\left(\frac{d}{d t}\right) w\right)(0)=0
$$

The shift-and-cut state map!

## Outline

## The axiom of state

## Discrete-time systems

First-order representations
State maps
The shift-and-cut map
Algebraic characterization

Continuous-time systems

Computation of state-space representations

From kernel representation to state representation

$$
\boldsymbol{R} \in \mathbb{R}^{\boldsymbol{g} \times w}[\xi] \sim \text { state map } X \in \mathbb{R}^{\mathbf{n} \times w}[\xi]
$$

Find:

$$
\begin{aligned}
& E, F \in \mathbb{R}^{(\mathrm{n}+\mathrm{g}) \times \mathrm{n}}, G \in \mathbb{R}^{(\mathrm{n}+\mathrm{g}) \times \mathrm{w}} \\
& T \in \mathbb{R}^{(\mathrm{n}+\mathrm{g}) \times \mathrm{g}}[\xi] \text { with } \operatorname{rank}(T(\lambda))=\mathrm{g} \forall \lambda \in \mathbb{C}
\end{aligned}
$$

satisfying

$$
E \xi X(\xi)+F X(\xi)+G=T(\xi) R(\xi)
$$

Linear equations, Gröbner bases computations!

From I/O representation to I/O/S representation

$$
\left.\begin{array}{l}
\text { I/O representation } \\
R=\left[\begin{array}{ll}
P & -Q
\end{array}\right]
\end{array} \quad \leadsto \quad \begin{array}{l}
\text { state map } \\
X_{y} \\
X_{u}
\end{array}\right]
$$

Find:

$$
\begin{aligned}
& A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}, B \in \mathbb{R}^{\mathrm{n} \times \mathrm{m}}, C \in \mathbb{R}^{\mathrm{p} \times \mathrm{p}}, D \in \mathbb{R}^{\mathrm{p} \times \mathrm{m}} \\
& T \in \mathbb{R}^{(\mathrm{n}+\mathrm{p}) \times \mathrm{p}}[\xi] \text { with } \operatorname{rank}(T(\lambda))=\mathrm{g} \forall \lambda \in \mathbb{C}
\end{aligned}
$$

satisfying

$$
\left[\begin{array}{cc}
\xi X_{y}(\xi) & \xi X_{u}(\xi) \\
I_{\mathrm{p}} & 0
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
X_{y}(\xi) & X_{u}(\xi) \\
0 & I_{\mathrm{m}}
\end{array}\right]+T(\xi) R(\xi)
$$

## On the choice of state map

## State map <br> + <br> system equations <br> state-space equations

## On the choice of state map

## State map <br> + <br> system equations <br> state-space equations

## On the choice of state map

## State map <br> $+$ <br> system equations <br> state-space equations

$$
\left(\frac{d^{2}}{d t^{2}}+2 \frac{d}{d t}+3\right) y=\left(\frac{d}{d t}+3\right) u \quad\left[\xi^{2}+2 \xi+3-\xi-3\right]
$$

## On the choice of state map

State map
system equations
state-space equations
$\left(\frac{d^{2}}{d t^{2}}+2 \frac{d}{d t}+3\right) y=\left(\frac{d}{d t}+3\right) u \quad\left[\begin{array}{ll}\xi^{2}+2 \xi+3 & -\xi-3\end{array}\right]$
Take $X(\xi)=\left[\begin{array}{cc}1 & 0 \\ \xi+2 & -1\end{array}\right]$ ('reverse shift-and-cut'). Then

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-2 & 1 \\
-3 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
-1 \\
-3
\end{array}\right] \\
C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad D=[0]
\end{gathered}
$$

'observer canonical form'

## On the choice of state map

State map
system equations
state-space equations
$\left(\frac{d^{2}}{d t^{2}}+2 \frac{d}{d t}+3\right) y=\left(\frac{d}{d t}+3\right) u \quad\left[\begin{array}{ll}\xi^{2}+2 \xi+3 & -\xi-3\end{array}\right]$
Take $X(\xi)=\left[\begin{array}{cc}1 & 0 \\ \xi & -1\end{array}\right]$. Then

$$
\begin{aligned}
A=\left[\begin{array}{cc}
0 & 1 \\
-3 & -2
\end{array}\right] & B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] & D=[0]
\end{aligned}
$$

‘observable canonical form'

## Summary

## Summary

- The state is constructed!


## Summary

- The state is constructed!
- Axiom of state


## Summary

- The state is constructed!
- Axiom of state
- Concatenability with zero


## Summary

- The state is constructed!
- Axiom of state
- Concatenability with zero
- State maps


## Summary

- The state is constructed!
- Axiom of state
- Concatenability with zero
- State maps
- State maps $\sim$ state-space equations


## Summary

- The state is constructed!
- Axiom of state
- Concatenability with zero
- State maps
- State maps $\sim$ state-space equations
- Algorithms!

