The Behavioral Approach to Systems Theory

Paolo Rapisarda, Un. of Southampton, U.K. & Jan C. Willems, K.U.Leuven, Belgium

MTNS 2006 Kyoto, Japan, July 24–28, 2006 Lecture 3: State and state construction

Lecturer: Paolo Rapisarda

Outline

The axiom of state

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

Continuous-time systems

Computation of state-space representations

• Are state representations "natural"?

- Are state representations "natural"?
 - First principles and "tearing and zooming" modelling
 → systems of high-order differential equations

- Are state representations "natural"?
 - First principles and "tearing and zooming" modelling
 → systems of high-order differential equations
 - Algebraic constraints among variables

- Are state representations "natural"?
 - First principles and "tearing and zooming" modelling
 → systems of high-order differential equations
 - Algebraic constraints among variables
- What makes a latent variable a "state"?

- Are state representations "natural"?
 - First principles and "tearing and zooming" modelling
 → systems of high-order differential equations
 - Algebraic constraints among variables
- What makes a latent variable a "state"?
- What does that imply for the equations?

- Are state representations "natural"?
 - First principles and "tearing and zooming" modelling
 → systems of high-order differential equations
 - Algebraic constraints among variables
- What makes a latent variable a "state"?
- What does that imply for the equations?
- How to construct a state from the equations?

- Are state representations "natural"?
 - First principles and "tearing and zooming" modelling
 → systems of high-order differential equations
 - Algebraic constraints among variables
- What makes a latent variable a "state"?
- What does that imply for the equations?
- How to construct a state from the equations?
- How to construct a state representation from the equations?

The basic idea

It's the Mariners' final game in the World Series. You're late...

The current score is what matters...

The basic idea

- The state contains all the relevant information about the future behavior of the system
- The state is the memory of the system
- Independence of past and future given the state

The axiom of state

$\boldsymbol{\Sigma} = (\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{full})$ is a *state system* if

$$(w_1, x_1), (w_2, x_2) \in \mathfrak{B}_{\mathrm{full}} \text{ and } x_1(T) = x_2(T) \
onumber \ (w_1, x_1) \bigwedge_T (w_2, x_2) \in \mathfrak{B}_{\mathrm{full}}$$

 \bigwedge_{T} is concatenation at T:

$$(f_1 \wedge f_2)(t) := \left\{ egin{array}{c} f_1(t) ext{ for } t < T \ f_2(t) ext{ for } t \geq T \end{array}
ight.$$

Graphically...

Graphically...

Graphically...

 $(w_1, x_1), (w_2, x_2) \in \mathfrak{B}_{\mathrm{full}} ext{ and } x_1(T) = x_2(T) \
onumber \ (w_1, x_1) \wedge (w_2, x_2) \in \mathfrak{B}_{\mathrm{full}}$

Example 1: discrete-time system

$\Sigma = (\mathbb{Z}, \mathbb{R}^{w}, \mathbb{R}^{1}, \mathfrak{B}_{full})$, with

$$\mathfrak{B}_{\text{full}} := \{ (\mathbf{W}, \ell) \mid \mathbf{F} \circ (\sigma \ell, \ell, \mathbf{W}) = \mathbf{0} \}$$

where

$$\sigma: (\mathbb{R}^1)^{\mathbb{Z}} \to (\mathbb{R}^1)^{\mathbb{Z}}$$

 $(\sigma(\ell))(k) := \ell(k+1)$

Example 1: discrete-time system

$\Sigma = (\mathbb{Z}, \mathbb{R}^{w}, \mathbb{R}^{1}, \mathfrak{B}_{full})$, with

$$\mathfrak{B}_{\mathrm{full}} := \{(\mathbf{W}, \ell) \mid \mathbf{F} \circ (\sigma \ell, \ell, \mathbf{W}) = \mathbf{0}\}$$

Special case: input-state-output equations

$$\sigma x = f(x, u)$$

$$y = h(x, u)$$

$$w = (u, y)$$

Example 2: continuous-time system

 $\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathbb{R}^{1}, \mathfrak{B}_{full})$, with

$$\mathfrak{B}_{\mathrm{full}} := \{(w, \ell) \mid F \circ (\frac{d}{dt}\ell, \ell, w) = 0\}$$

Special case: input-state-output equations

$$\frac{d}{dt}x = f(x, u)$$

$$y = h(x, u)$$

$$w = (u, y)$$

Outline

The axiom of state

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

Continuous-time systems

Computation of state-space representations

Theorem: A 'complete' latent variable system

$$\boldsymbol{\Sigma} = (\mathbb{Z}, \mathbb{R}^{\mathsf{w}}, \mathbb{R}^{\mathsf{x}}, \mathfrak{B}_{\mathrm{full}})$$

is a state system iff $\,\mathfrak{B}_{full}$ can be described by

$$\boldsymbol{F}\circ(\boldsymbol{\sigma}\boldsymbol{x},\boldsymbol{x},\boldsymbol{w})=\boldsymbol{0}$$

Theorem: A 'complete' latent variable system

$$\mathbf{\Sigma} = (\mathbb{Z}, \mathbb{R}^{\mathsf{w}}, \mathbb{R}^{\mathsf{x}}, \mathfrak{B}_{\mathsf{full}})$$

is a state system iff \mathfrak{B}_{full} can be described by

$$\boldsymbol{F}\circ(\boldsymbol{\sigma}\boldsymbol{X},\boldsymbol{X},\boldsymbol{W})=\boldsymbol{0}$$

0-th order in *w*, 1st order in *x*

Theorem: A 'complete' latent variable system

$$\mathbf{\Sigma} = (\mathbb{Z}, \mathbb{R}^{\mathsf{w}}, \mathbb{R}^{\mathsf{x}}, \mathfrak{B}_{\mathsf{full}})$$

is a state system iff $\,\mathfrak{B}_{full}\,$ can be described by

$$\boldsymbol{F}\circ(\boldsymbol{\sigma}\boldsymbol{X},\boldsymbol{X},\boldsymbol{W})=\boldsymbol{0}$$

Linear case:

$$\boldsymbol{E}\boldsymbol{\sigma}\boldsymbol{x} + \boldsymbol{F}\boldsymbol{x} + \boldsymbol{G}\boldsymbol{w} = \boldsymbol{0}$$

Theorem: A 'complete' latent variable system

$$\mathbf{\Sigma} = (\mathbb{Z}, \mathbb{R}^{\mathsf{w}}, \mathbb{R}^{\mathsf{x}}, \mathfrak{B}_{\mathsf{full}})$$

is a state system iff $\,\mathfrak{B}_{full}\,$ can be described by

$$\boldsymbol{F}\circ(\boldsymbol{\sigma}\boldsymbol{X},\boldsymbol{X},\boldsymbol{W})=\boldsymbol{0}$$

Linear case:

$$\boldsymbol{E}\boldsymbol{\sigma}\boldsymbol{x} + \boldsymbol{F}\boldsymbol{x} + \boldsymbol{G}\boldsymbol{w} = \boldsymbol{0}$$

1st order in x is consequence of state property!

Proof (linear case)

$$\mathcal{V} := \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mid \exists (x, w) \in \mathfrak{B}_{\text{full}} \text{ s. t. } \begin{bmatrix} x(1) \\ x(0) \\ w(0) \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right\}$$

 \mathcal{V} linear $\Rightarrow \exists E, F, G \text{ s.t. } \mathcal{V} = \text{ker}(\begin{bmatrix} E & F & G \end{bmatrix})$

Proof (linear case)

$$\mathcal{V} := \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mid \exists (x, w) \in \mathfrak{B}_{\text{full}} \text{ s. t. } \begin{bmatrix} x(1) \\ x(0) \\ w(0) \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right\}$$

 \mathcal{V} linear $\Rightarrow \exists E, F, G$ s.t. $\mathcal{V} = \text{ker}(\begin{bmatrix} E & F & G \end{bmatrix})$

 $[(\mathbf{x}, \mathbf{w}) \in \mathfrak{B}_{\text{full}} \Longrightarrow \mathbf{E}\sigma\mathbf{x} + \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{w} = \mathbf{0}]$

∜

Proof (linear case)

$$\mathcal{V} := \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mid \exists (x, w) \in \mathfrak{B}_{\text{full}} \text{ s. t. } \begin{bmatrix} x(1) \\ x(0) \\ w(0) \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right\}$$

 \mathcal{V} linear $\Rightarrow \exists E, F, G$ s.t. $\mathcal{V} = \text{ker}([E F G])$

Converse by induction, using axiom of state:

 $E\sigma x + Fx + Gw = 0$ on $[0, k] \Longrightarrow (w, x)_{|[0,k]} \in \mathfrak{B}_{\mathrm{full}|[0,k]}$

Then apply completeness of \mathfrak{B}

State construction: basic idea

Problem: Given kernel or hybrid description, find a state representation

 $\boldsymbol{E}\boldsymbol{\sigma}\boldsymbol{x} + \boldsymbol{F}\boldsymbol{x} + \boldsymbol{G}\boldsymbol{w} = \boldsymbol{0}$

State construction: basic idea

Problem: Given kernel or hybrid description, find a state representation

$$\boldsymbol{E}\boldsymbol{\sigma}\boldsymbol{x} + \boldsymbol{F}\boldsymbol{x} + \boldsymbol{G}\boldsymbol{w} = \boldsymbol{0}$$

First compute polynomial operator in the shift acting on system variables, inducing a state variable:

 $X(\sigma)w = x$

$$X(\sigma) \left[\begin{array}{c} \mathbf{w} \\ \ell \end{array} \right] = \mathbf{x}$$

State construction: basic idea

Problem: Given kernel or hybrid description, find a state representation

$$\boldsymbol{E}\boldsymbol{\sigma}\boldsymbol{x} + \boldsymbol{F}\boldsymbol{x} + \boldsymbol{G}\boldsymbol{w} = \boldsymbol{0}$$

First compute polynomial operator in the shift acting on system variables, inducing a state variable:

$$X(\sigma) W = x \qquad \qquad X(\sigma) \begin{bmatrix} W \\ \ell \end{bmatrix} = x$$

Then use original eqs. and *X* to obtain 1st order representation.

State maps for kernel representations

 $X \in \mathbb{R}^{\bullet \times w}[\xi]$ induces a state map $X(\sigma)$ for ker $(R(\sigma))$ if the behavior \mathfrak{B}_{full} with latent variable x, described by

$$\begin{array}{rcl} R(\sigma)w &=& 0\\ X(\sigma)w &=& x \end{array}$$

satisfies the axiom of state.

Example

$$\mathfrak{B} = \{ \mathbf{w} \mid \mathbf{r}(\sigma)\mathbf{w} = \mathbf{0} \}$$

where $r \in \mathbb{R}[\xi]$, deg(r) = n.

(Minimal) state map induced by

$$\begin{bmatrix} 1\\ \xi\\ \vdots\\ \xi^{n-1} \end{bmatrix} \rightsquigarrow \begin{bmatrix} w\\ \sigma W\\ \vdots\\ \sigma^{n-1}W \end{bmatrix}$$

The axiom of state revisited

A *linear* system $\Sigma = (\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{full})$ with latent variable *x* is a state system if

$$(w, x) \in \mathfrak{B}_{\mathrm{full}} \mathrm{and} x(T) = 0$$
 $\downarrow \downarrow$
 $(\mathbf{0}, \mathbf{0}) \bigwedge_{T} (w, x) \in \mathfrak{B}_{\mathrm{full}}$

The axiom of state revisited

A *linear* system $\Sigma = (\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{full})$ with latent variable *x* is a state system if

• Time-invariance \implies can choose T = 0;

The axiom of state revisited

A *linear* system $\Sigma = (\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{full})$ with latent variable *x* is a state system if

- Time-invariance \implies can choose T = 0;
- Concatenability with zero trajectory is key.

When is $w \in \mathfrak{B}$ concatenable with zero?

$$R_0 w + R_1 \sigma w + \ldots + R_L \sigma^L w = 0$$

•••	0	0	w(0)	w(1)	w(2)	w(3)	•••
	k = -2	k = -1	k = 0	<i>k</i> = 1	<i>k</i> = 2	<i>k</i> = 3	
$$R_0 w + R_1 \sigma w + \ldots + R_L \sigma^L w = 0$$

... 0 0 R_0 R_1 R_2 R_3 ...
... 0 0 w(0) w(1) w(2) w(3) ...
... k = -2 $k = -1$ $k = 0$ $k = 1$ $k = 2$ $k = 3$...

 $R_0w(0) + R_1w(1) + \ldots + R_Lw(L) = 0$

$$R_0 w + R_1 \sigma w + \ldots + R_L \sigma^L w = 0$$

•••	0	R 0	R 1	R ₂	R 3	R 4	•••
•••	0	0	w(0)	w(1)	w(2)	w(3)	•••
•••	k = -2	k = -1	k = 0	<i>k</i> = 1	k = 2	<i>k</i> = 3	•••

 $R_0w(0) + R_1w(1) + \ldots + R_Lw(L) = 0$ $R_1w(0) + R_2w(1) + \ldots + R_Lw(L-1) = 0$

$$R_0 w + R_1 \sigma w + \ldots + R_L \sigma^L w = 0$$

•••	R_0	R 1	R ₂	R 3	R ₄	R 5	•••
•••	0	0	w(0)	w(1)	w(2)	w(3)	
•••	k = -2	k = -1	<i>k</i> = 0	<i>k</i> = 1	<i>k</i> = 2	<i>k</i> = 3	•••

 $R_0w(0) + R_1w(1) + \ldots + R_Lw(L) = 0$ $R_1w(0) + R_2w(1) + \ldots + R_Lw(L-1) = 0$ $R_2w(0) + R_3w(1) + \ldots + R_Lw(L-2) = 0$

$$\mathbf{R}_0\mathbf{w} + \mathbf{R}_1\sigma\mathbf{w} + \ldots + \mathbf{R}_L\sigma^L\mathbf{w} = \mathbf{0}$$

•••	0	0	w(0)	w(1)	w(2)	w(3)	• • •
	k = -2	k = -1	k = 0	<i>k</i> = 1	<i>k</i> = 2	k = 3	•••

 $R_0w(0) + R_1w(1) + \ldots + R_Lw(L) = 0$ $R_1w(0) + R_2w(1) + \ldots + R_Lw(L-1) = 0$ $R_2w(0) + R_3w(1) + \ldots + R_Lw(L-2) = 0$

÷

= :

$$R_0 w + R_1 \sigma w + \ldots + R_L \sigma^L w = 0$$

•••	R _{L-3}	R _{L-2}	R _{L-1}	RL	0	0	•••
•••	0	0	<i>w</i> (0)	w(1)	w(2)	w(3)	•••
•••	k = -2	k = -1	k = 0	<i>k</i> = 1	<i>k</i> = 2	<i>k</i> = 3	

$$R_0 w(0) + R_1 w(1) + \ldots + R_L w(L) = 0$$

$$R_1 w(0) + R_2 w(1) + \ldots + R_L w(L-1) = 0$$

$$R_2 w(0) + R_3 w(1) + \ldots + R_L w(L-2) = 0$$

$$\vdots \qquad = \vdots$$

$$R_{L-1} w(0) + R_L w(1) = 0$$

$$R_0 w + R_1 \sigma w + \ldots + R_L \sigma^L w = 0$$

... $R_{L-2} R_{L-1} R_L 0 0 0 \ldots$
... 0 0 w(0) w(1) w(2) w(3) ...
... $k = -2$ $k = -1$ $k = 0$ $k = 1$ $k = 2$ $k = 3$...

 $R_{0}w(0) + R_{1}w(1) + \ldots + R_{L}w(L) = 0$ $R_{1}w(0) + R_{2}w(1) + \ldots + R_{L}w(L-1) = 0$ $R_{2}w(0) + R_{3}w(1) + \ldots + R_{L}w(L-2) = 0$ $\vdots \qquad = \vdots$ $R_{L-1}w(0) + R_{L}w(1) = 0$ $R_{L}w(0) = 0$

The shift-and-cut map

$$egin{aligned} &\sigma_+:\mathbb{R}[\xi] o\mathbb{R}[\xi]\ &\sigma_+(\sum_{i=0}^nm{p}_i\xi^i):=\sum_{i=0}^{n-1}m{p}_{i+1}\xi^i \end{aligned}$$

"Divide by ξ and take polynomial part"

Extended componentwise to vectors and matrices

 $R(\xi) = R_0 + R_1 \xi + \ldots + R_{L-1} \xi^{L-1} + R_L \xi^L$

$$R(\xi) = R_0 + R_1 \xi + \ldots + R_{L-1} \xi^{L-1} + R_L \xi^L$$

 $\sigma_{+}(R(\xi)) = R_{1} + \ldots + R_{L-1}\xi^{L-2} + R_{L}\xi^{L-1}$

$$R(\xi) = R_0 + R_1 \xi + \ldots + R_{L-1} \xi^{L-1} + R_L \xi^L$$

$$\sigma_{+}(R(\xi)) = R_{1} + \ldots + R_{L-1}\xi^{L-2} + R_{L}\xi^{L-1}$$
$$\sigma_{+}^{2}(R(\xi)) = R_{2} + \ldots + R_{L-1}\xi^{L-3} + R_{L}\xi^{L-2}$$

$$R(\xi) = R_0 + R_1 \xi + \ldots + R_{L-1} \xi^{L-1} + R_L \xi^L$$

$$\sigma_{+}(\mathbf{R}(\xi)) = \mathbf{R}_{1} + \ldots + \mathbf{R}_{L-1}\xi^{L-2} + \mathbf{R}_{L}\xi^{L-1}$$

$$\sigma_{+}^{2}(\mathbf{R}(\xi)) = \mathbf{R}_{2} + \ldots + \mathbf{R}_{L-1}\xi^{L-3} + \mathbf{R}_{L}\xi^{L-2}$$

$$\vdots = \vdots$$

$$R(\xi) = R_0 + R_1 \xi + \ldots + R_{L-1} \xi^{L-1} + R_L \xi^L$$

$$\sigma_{+}(\mathbf{R}(\xi)) = \mathbf{R}_{1} + \ldots + \mathbf{R}_{L-1}\xi^{L-2} + \mathbf{R}_{L}\xi^{L-1}$$

$$\sigma_{+}^{2}(\mathbf{R}(\xi)) = \mathbf{R}_{2} + \ldots + \mathbf{R}_{L-1}\xi^{L-3} + \mathbf{R}_{L}\xi^{L-2}$$

$$\vdots = \vdots$$

 $\sigma^L_+(\boldsymbol{R}(\xi)) = \boldsymbol{R}_L$

Shift-and-cut and concatenability with zero

- $(\sigma_+(R)(\sigma)w)(0) = 0$
- $(\sigma_+^2(R)(\sigma)w)(0) = 0$
 - : = i
- $(\sigma_+^L(R)(\sigma)w)(0) = 0$

w is concatenable ⇔ with zero

 $col((\sigma_{+}^{i}(R))_{i=1,...,L}(\sigma))$ is a state map!

Shift-and-cut and concatenability with zero

- $(\sigma_+(R)(\sigma)w)(0) = 0$
- $(\sigma_+^2(R)(\sigma)w)(0) = 0$
 - : =:
- $(\sigma_+^L(R)(\sigma)w)(0) = 0$

w is concatenable ⇔ with zero

$$col((\sigma_{+}^{i}(R))_{i=1,...,L}(\sigma))$$
 is a state map!

Other equations equivalent to shift-and-cut ones \implies different state maps are possible!

Shift-and-cut and concatenability with zero

- $(\sigma_{+}(R)(\sigma)W)(0) = 0$ (-2(R)(-)W)(0) = 0
- $(\sigma_+^2(\boldsymbol{R})(\sigma)\boldsymbol{W})(\boldsymbol{0}) = \boldsymbol{0}$
 - : =:
- $(\sigma_+^L(\boldsymbol{R})(\sigma)\boldsymbol{w})(\mathbf{0}) = \mathbf{0}$

w is concatenable ⇔ with zero

 $col((\sigma^i_+(R))_{i=1,...,L}(\sigma))$ is a state map!

Other equations equivalent to shift-and-cut ones \implies different state maps are possible!

Example: scalar systems

$$\mathbf{r}_0\mathbf{w} + \mathbf{r}_1\sigma\mathbf{w} + \ldots + \sigma^n\mathbf{w} = \mathbf{0}$$

Example: scalar systems

$$\mathbf{r}_0\mathbf{W} + \mathbf{r}_1\sigma\mathbf{W} + \ldots + \sigma^n\mathbf{W} = \mathbf{0}$$

Observe *w* concatenable with zero iff w = 0. Indeed,

$$\sigma_{+}^{n}(r)(\sigma)W = W$$

$$\sigma_{+}^{n-1}(r)(\sigma)W = r_{n-1}W + \sigma W$$

$$\vdots = \vdots$$

$$\sigma_{+}(r)(\sigma)W = r_{1}W + \ldots + \sigma^{n-1}W$$

Example: scalar systems

$$\mathbf{r}_0\mathbf{w} + \mathbf{r}_1\sigma\mathbf{w} + \ldots + \sigma^n\mathbf{w} = \mathbf{0}$$

Observe *w* concatenable with zero iff w = 0. Indeed,

$$\sigma_{+}^{n}(r)(\sigma)w = w$$

$$\sigma_{+}^{n-1}(r)(\sigma)w = r_{n-1}w + \sigma w$$

$$\vdots = \vdots$$

$$\sigma_{+}(r)(\sigma)w = r_{1}w + \dots + \sigma^{n-1}w$$

Zero at t = 0 iff $(\sigma^k w)(0) = 0$ for k = 0, ..., n - 1.

From kernel representation to state map

Denote
$$\operatorname{col}((\sigma^i_+(R)))_{i=1,\dots,L} =: \Sigma_R$$
.

Theorem: Let $\mathfrak{B} = \ker(R(\sigma))$. Then

$$R(\sigma)w = 0$$

$$\Sigma_R(\sigma)w = x$$

is a state representation of \mathfrak{B} with state variable x.

Algebraic characterization

Theorem: Let $\mathfrak{B} = \ker(R(\sigma))$, and define Σ_R as above. Then

$$\Xi_{R} := \{ f \in \mathbb{R}^{1 \times w}[\xi] \mid \exists g \in \mathbb{R}^{1 \times \bullet}[\xi], \alpha \in \mathbb{R}^{1 \times \bullet} \\ \text{s.t. } f = \alpha \Sigma_{R} + gR \}$$

is a vector space over \mathbb{R} .

Algebraic characterization

Theorem: Let $\mathfrak{B} = \ker(R(\sigma))$, and define Σ_R as above. Then

$$\Xi_R := \{ f \in \mathbb{R}^{1 \times w}[\xi] \mid \exists g \in \mathbb{R}^{1 \times \bullet}[\xi], \alpha \in \mathbb{R}^{1 \times \bullet} \\ \text{s.t. } f = \alpha \Sigma_R + gR \}$$

is a vector space over \mathbb{R} .

 $X \in \mathbb{R}^{\bullet \times w}[\xi]$ is state map for \mathfrak{B} iff row span $(X) = \Xi_R$

Algebraic characterization

Theorem: Let $\mathfrak{B} = \ker(R(\sigma))$, and define Σ_R as above. Then

$$\Xi_R := \{ f \in \mathbb{R}^{1 \times w}[\xi] \mid \exists g \in \mathbb{R}^{1 \times \bullet}[\xi], \alpha \in \mathbb{R}^{1 \times \bullet} \\ \text{s.t. } f = \alpha \Sigma_R + gR \}$$

is a vector space over \mathbb{R} .

 $X \in \mathbb{R}^{\bullet \times w}[\xi]$ is state map for \mathfrak{B} iff row span $(X) = \Xi_R$

X is minimal if and only if its rows are a basis for Ξ_R .

$$(\sigma^2 + 2\sigma + 3)y = (\sigma + 3)u$$
 $[\xi^2 + 2\xi + 3 - \xi - 3]$

$$(\sigma^2 + 2\sigma + 3)y = (\sigma + 3)u$$
 $[\xi^2 + 2\xi + 3 - \xi - 3]$

$$\sigma_{+} \rightsquigarrow \begin{bmatrix} \boldsymbol{\xi} + \boldsymbol{2} & -\boldsymbol{1} \end{bmatrix} \rightsquigarrow \begin{bmatrix} \sigma + \boldsymbol{2} & -\boldsymbol{1} \end{bmatrix}$$

$$(\sigma^2 + 2\sigma + 3)y = (\sigma + 3)u$$
 $[\xi^2 + 2\xi + 3 - \xi - 3]$

$$\sigma_{+} \rightsquigarrow \begin{bmatrix} \xi + 2 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} \sigma + 2 & -1 \end{bmatrix}$$

If $(y, u) \in \mathfrak{B}$, then for all $g \in \mathbb{R}[\xi]$
$$[\sigma + 2 & -1] \begin{bmatrix} y \\ u \end{bmatrix} = [\sigma + 2 & -1] \begin{bmatrix} y \\ u \end{bmatrix}$$
$$+ \underbrace{g(\sigma) [\sigma^{2} + 2\sigma + 3 & -\sigma - 3]}_{=0 \text{ on } \mathfrak{B}} \begin{bmatrix} y \\ u \end{bmatrix}$$

$$(\sigma^2 + 2\sigma + 3)y = (\sigma + 3)u$$
 $[\xi^2 + 2\xi + 3 - \xi - 3]$

$$\sigma_{+} \rightsquigarrow \begin{bmatrix} \xi + 2 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} \sigma + 2 & -1 \end{bmatrix}$$

If $(y, u) \in \mathfrak{B}$, then for all $g \in \mathbb{R}[\xi]$
$$[\sigma + 2 & -1] \begin{bmatrix} y \\ u \end{bmatrix} = [\sigma + 2 & -1] \begin{bmatrix} y \\ u \end{bmatrix}$$
$$+ \underbrace{g(\sigma) [\sigma^{2} + 2\sigma + 3 & -\sigma - 3]}_{=0 \text{ on } \mathfrak{B}} \begin{bmatrix} y \\ u \end{bmatrix}$$

'equivalence modulo R'

$$(\sigma^2 + 2\sigma + 3)y = (\sigma + 3)u$$
 $[\xi^2 + 2\xi + 3 - \xi - 3]$

$$\begin{aligned} \sigma_+ &\leadsto \begin{bmatrix} \xi + 2 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} \sigma + 2 & -1 \end{bmatrix} \\ \sigma_+^2 &\leadsto \begin{bmatrix} 1 & 0 \end{bmatrix} & \rightsquigarrow \begin{bmatrix} 1 & 0 \end{bmatrix} \end{aligned}$$

$$(\sigma^2 + 2\sigma + 3)y = (\sigma + 3)u$$
 $[\xi^2 + 2\xi + 3 - \xi - 3]$

$$\begin{aligned} \sigma_+ &\leadsto \begin{bmatrix} \xi + 2 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} \sigma + 2 & -1 \end{bmatrix} \\ \sigma_+^2 &\leadsto \begin{bmatrix} 1 & 0 \end{bmatrix} & \rightsquigarrow \begin{bmatrix} 1 & 0 \end{bmatrix} \end{aligned}$$

If $(y, u) \in \mathfrak{B}$, then for all $g \in \mathbb{R}[\xi]$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} + \underbrace{g(\sigma) [\sigma^2 + 2\sigma + 3 & -\sigma - 3]}_{=0 \text{ on } \mathfrak{B}} \begin{bmatrix} y \\ u \end{bmatrix}$$

$$(\sigma^2 + 2\sigma + 3)y = (\sigma + 3)u$$
 $[\xi^2 + 2\xi + 3 - \xi - 3]$

$$\begin{aligned} \sigma_+ &\leadsto \begin{bmatrix} \xi + 2 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} \sigma + 2 & -1 \end{bmatrix} \\ \sigma_+^2 &\leadsto \begin{bmatrix} 1 & 0 \end{bmatrix} & \rightsquigarrow \begin{bmatrix} 1 & 0 \end{bmatrix} \end{aligned}$$

 $\Xi_{R} = \left\{ \alpha \begin{bmatrix} \xi + 2 & -1 \end{bmatrix} + g(\xi) \begin{bmatrix} \xi^{2} + 2\xi + 3 & -\xi - 3 \end{bmatrix}, \\ \beta \begin{bmatrix} 1 & 0 \end{bmatrix} + f(\xi) \begin{bmatrix} \xi^{2} + 2\xi + 3 & -\xi - 3 \end{bmatrix} \\ \alpha, \beta \in \mathbb{R}, f, g \in \mathbb{R}[\xi] \right\}$

$$(\sigma^2 + 2\sigma + 3)y = (\sigma + 3)u$$
 $[\xi^2 + 2\xi + 3 - \xi - 3]$

$$\begin{aligned} \sigma_+ &\leadsto \begin{bmatrix} \xi + 2 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} \sigma + 2 & -1 \end{bmatrix} \\ \sigma_+^2 &\leadsto \begin{bmatrix} 1 & 0 \end{bmatrix} & \rightsquigarrow \begin{bmatrix} 1 & 0 \end{bmatrix} \end{aligned}$$

$$egin{aligned} \Xi_R &= \left\{ lpha \left[eta+2 \quad -1
ight] + eta(\xi) \left[eta^2+2eta+3 \quad -eta-3
ight], \ eta \left[1 \quad 0
ight] + eta(\xi) \left[eta^2+2eta+3 \quad -eta-3
ight] \ lpha,eta \in \mathbb{R}, eta,eta \in \mathbb{R}, eta,eta \in \mathbb{R}[eta]
ight\} \end{aligned}$$

Any set of generators of $\Xi_R \rightsquigarrow$ a state map

Outline

The axiom of state

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

Continuous-time systems

Computation of state-space representations

On the space of solutions

$$\mathfrak{C}^{\infty}$$
-solutions to $R(\frac{d}{dt})w = 0$ too small $\rightsquigarrow \mathcal{L}_{1}^{\text{loc}}$

Equality in the sense of distributions:

$$R(\frac{d}{dt})w = 0 \qquad \Leftrightarrow \qquad \int_{-\infty}^{+\infty} w(t)^{\top} (R(-\frac{d}{dt})^{\top} f)(t) dt = 0$$

for all testing functions f.

- 1 - - -

The axiom of state revisited

 $\Sigma = (\mathbb{T}, \mathbb{W}, \mathbb{X}, \mathfrak{B}_{full})$ is a state system if

$$(w_1, x_1), (w_2, x_2) \in \mathfrak{B}_{\text{full}} \text{ and } x_1(T) = x_2(T)$$

and x_1, x_2 continuous at T
 \downarrow
 $(w_1, x_1) \land (w_2, x_2) \in \mathfrak{B}_{\text{full}}$

'State map'
$$\rightarrow X(\frac{d}{dt})$$

From kernel representation to state map

Denote
$$\operatorname{col}((\sigma^i_+(R)))_{i=1,\ldots,L} =: \frac{\Sigma_R}{\Sigma_R}$$
.

Theorem: Let $\mathfrak{B} = \ker(R(\frac{d}{dt}))$. Then

$$R(\frac{d}{dt})w = 0$$

$$\Sigma_R(\frac{d}{dt})w = x$$

is a state representation of \mathfrak{B} with state variable x.

¿How to prove it?

$$\begin{array}{ll} 0 & \bigwedge_{0} w \in \mathfrak{B} & \Longleftrightarrow & \int_{-\infty}^{+\infty} (0 & \bigwedge_{0} w)(t)^{\top} (R(-\frac{d}{dt})^{\top} f)(t) dt = 0 \\ & \iff & \int_{0}^{+\infty} w(t)^{\top} (R(-\frac{d}{dt})^{\top} f)(t) dt = 0 \end{array}$$

for all testing functions f

$$\begin{array}{ll} 0 & \bigwedge_{0} w \in \mathfrak{B} & \Longleftrightarrow & \int_{-\infty}^{+\infty} (0 & \bigwedge_{0} w)(t)^{\top} (R(-\frac{d}{dt})^{\top} f)(t) dt = 0 \\ & \iff & \int_{0}^{+\infty} w(t)^{\top} (R(-\frac{d}{dt})^{\top} f)(t) dt = 0 \end{array}$$

for all testing functions f

Integrating repeatedly by parts on *f* yields:

$$\sum_{k=1}^{\deg(R)} \sum_{j=k}^{\deg(R)} (-1)^{k-1} (\frac{d^{j-k}}{dt^{j-k}} w)(0)^{\top} R_j^{\top} (\frac{d^{k-1}}{dt^{k-1}} f)(0) + \int_0^{+\infty} (R(\frac{d}{dt}) w)(t)^{\top} f(t) dt = 0$$
When is $\mathbf{w} \in \mathfrak{B}$ concatenable with zero?

$$\begin{array}{ll} 0 & \bigwedge_{0} w \in \mathfrak{B} & \Longleftrightarrow & \int_{-\infty}^{+\infty} (0 & \bigwedge_{0} w)(t)^{\top} (R(-\frac{d}{dt})^{\top} f)(t) dt = 0 \\ & \iff & \int_{0}^{+\infty} w(t)^{\top} (R(-\frac{d}{dt})^{\top} f)(t) dt = 0 \end{array}$$

for all testing functions f

Integrating repeatedly by parts on *f* yields:

$$\sum_{k=1}^{\deg(R)} \sum_{j=k}^{\deg(R)} (-1)^{k-1} (\frac{d^{j-k}}{dt^{j-k}} w)(0)^{\top} R_j^{\top} (\frac{d^{k-1}}{dt^{k-1}} f)(0) + \int_0^{+\infty} (R(\frac{d}{dt}) w)(t)^{\top} f(t) dt = 0$$

$w \in \mathfrak{B}$ concatenable with zero if and only if...

$$\sum_{k=1}^{\deg(R)} \sum_{j=k}^{\deg(R)} (-1)^{k-1} (\frac{d^{j-k}}{dt^{j-k}} w) (0)^{\top} R_{j}^{\top} (\frac{d^{k-1}}{dt^{k-1}} f) (0) = 0$$

$$\begin{pmatrix} f(0) \\ (\frac{d}{dt} f) (0) \\ \vdots \\ (-1)^{\deg(R)-1} (\frac{d^{\deg(R)-1}}{dt^{\deg(R)-1}} f) (0) \end{bmatrix}^{\top} (\Sigma_{R} (\frac{d}{dt}) w) (0) = 0$$

$$\begin{pmatrix} (\Sigma_{R} (\frac{d}{dt}) w) (0) = 0 \end{pmatrix}$$

The shift-and-cut state map!

Outline

The axiom of state

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

Continuous-time systems

Computation of state-space representations

From kernel representation to state representation

$$\pmb{R} \in \mathbb{R}^{g imes w}[\pmb{\xi}] \rightsquigarrow$$
 state map $\pmb{X} \in \mathbb{R}^{n imes w}[\pmb{\xi}]$

Find:

$$\begin{split} \mathbf{E}, \mathbf{F} \in \mathbb{R}^{(n+g) \times n}, \, \mathbf{G} \in \mathbb{R}^{(n+g) \times w} \\ \mathbf{T} \in \mathbb{R}^{(n+g) \times g}[\boldsymbol{\xi}] \text{ with } \operatorname{rank}(\mathbf{T}(\lambda)) = g \, \forall \lambda \in \mathbb{C} \end{split}$$

satisfying

$$E\xi X(\xi) + FX(\xi) + G = T(\xi)R(\xi)$$

Linear equations, Gröbner bases computations!

From I/O representation to I/O/S representation

I/O representationstate map
$$R = \begin{bmatrix} P & -Q \end{bmatrix}$$
 \sim $\begin{bmatrix} X_y & X_u \end{bmatrix}$

Find:

 $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \, \boldsymbol{B} \in \mathbb{R}^{n \times m}, \, \boldsymbol{C} \in \mathbb{R}^{p \times p}, \, \boldsymbol{D} \in \mathbb{R}^{p \times m}$ $T \in \mathbb{R}^{(n+p) \times p}[\xi]$ with rank $(T(\lambda)) = g \ \forall \lambda \in \mathbb{C}$

satisfying

$$\begin{bmatrix} \xi X_y(\xi) & \xi X_u(\xi) \\ I_p & 0 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X_y(\xi) & X_u(\xi) \\ 0 & I_m \end{bmatrix} + T(\xi)R(\xi)$$

 \sim

State map + system equations

state-space equations

 \sim

State map + system equations

state-space equations

 \sim

State map + system equations

state-space equations

$$\left(\frac{d^2}{dt^2}+2\frac{d}{dt}+3\right)y=\left(\frac{d}{dt}+3\right)u$$

$$\begin{bmatrix} \xi^2 + 2\xi + 3 & -\xi - 3 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 1 \\ -3 & 0 \end{bmatrix} \quad B = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 0 \end{bmatrix}$$

'observer canonical form'

'observable canonical form'

• The state is constructed!

- The state is constructed!
- Axiom of state

- The state is constructed!
- Axiom of state
- Concatenability with zero

- The state is constructed!
- Axiom of state
- Concatenability with zero
- State maps

- The state is constructed!
- Axiom of state
- Concatenability with zero
- State maps
- State maps → state-space equations

- The state is constructed!
- Axiom of state
- Concatenability with zero
- State maps
- State maps → state-space equations
- Algorithms!