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Questions

• What is a mathematical model , really?

• How is this specialized to dynamics ?

• How are models arrived at?

• From basic laws: ‘first principles’ modeling
• Combined with interconnection:

tearing, zooming, & linking
• From measured data: SYSID (system identification)

• What is the role of (differential) equations ?

• Importance of latent variables
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Static models



The seminal idea

Consider a ‘phenomenon’; produces ‘outcomes’, ‘events’ .

Mathematization: events belong to a set, U.

Modeling question: Which events can really occur ?

The model specifies: Only those in the subset B ⊆ U !

⇒⇒ a mathematical model , with behavior B ⇐⇐

Before modeling: events in U are possible
After modeling: only events in B are possible

Sharper model ; smaller B.
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Examples

Gas law

Phenomenon: A balloon filled with a gas

Gas

¡¡ Model the relation between
volume, quantity, pressure, & temperature !!

Event: (vol. V , quant. N, press. P, temp. T ) ; U = R4
+

Charles Boyle and Avogadro

; model
PV

NT
= a universal constant =: R

⇒⇒ B =
{

(T , P, V , N) ∈ R 4
+ |

PV

NT
= R

}
⇐⇐
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Examples

An economy Phenomenon: trading of a product

¡¡ Model the relation between
price, sales & production !!

Event:
(

price P , demand D , supply S
)

; U = R3
+

U = R2
+

B = intersection of two graphs : ; usually point(s)

The price P becomes a ‘hidden’
variable. Modeling using ‘hidden’,
‘auxiliary’, ‘latent’ intermediate
variables is very common.

How shall we deal with such variables?
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Examples

An economy Phenomenon: trading of a product

¡¡ Model the relation between
sales & production !! Price only to explain mechanism

Event:
(

demand D , supply S
)

; U = R2
+

B = intersection of two graphs : ; usually point(s)

Demand
Supply

The price P becomes a ‘hidden’
variable. Modeling using ‘hidden’,
‘auxiliary’, ‘latent’ intermediate
variables is very common.

How shall we deal with such variables?
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¡¡ Model the relation between
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Examples

Newton’s 2-nd law

Phenomenon: A moving mass FORCE

MASS

¡¡ Model the relation between
force, mass, & acceleration !!

Event: (force F , mass m, acceleration a)
; U = R3 × R+ × R3

Model due to Newton:

F = ma

⇒⇒ B = { (F , m, a) ∈ R3 × R+ × R3 | F = ma} ⇐⇐
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MASS
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¡¡ Model the relation between
force, mass, & position !!



Examples

Newton’s 2-nd law

Phenomenon: A moving mass FORCE

MASS

But, the aim of Newton’s law is really:

¡¡ Model the relation between
force, mass, & position !!

Event: (force F , mass m, position q)

F = ma, a =
d 2

dt 2
q

not ‘instantaneous’ relation between F , m, q ; dynamics

How shall we deal with this?



Dynamic models



Dynamical systems
Phenomenon produces ‘events’ that are functions of time

Mathematization: It is convenient to distinguish
domain (‘independent’ variables) T ⊆ R ‘time-axis’
co-domain (‘dependent’ variables) W ‘signal space’

A dynamical system :=

Σ = (T, W, B) B ⊆ (W)T the behavior
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Phenomenon produces ‘events’ that are functions of time

Mathematization: It is convenient to distinguish
domain (‘independent’ variables) T ⊆ R ‘time-axis’
co-domain (‘dependent’ variables) W ‘signal space’

A dynamical system :=

Σ = (T, W, B) B ⊆ (W)T the behavior

T = R, R+, or interval in R: continuous-time systems

T = Z, N, etc.: discrete-time systems

Later: set of independent variables = Rn, n > 1, PDE’s.



Dynamical systems
Phenomenon produces ‘events’ that are functions of time

Mathematization: It is convenient to distinguish
domain (‘independent’ variables) T ⊆ R ‘time-axis’
co-domain (‘dependent’ variables) W ‘signal space’

A dynamical system :=

Σ = (T, W, B) B ⊆ (W)T the behavior

W = Rw, etc. lumped systems

W = finite: finitary systems
T = Z or N, W finite: DES (discrete event systems)

W = function space: DPS (distributed parameter systems)



Dynamical systems
Phenomenon produces ‘events’ that are functions of time

Mathematization: It is convenient to distinguish
domain (‘independent’ variables) T ⊆ R ‘time-axis’
co-domain (‘dependent’ variables) W ‘signal space’

A dynamical system :=

Σ = (T, W, B) B ⊆ (W)T the behavior

W vector space, B ⊂ (W)T linear subspace: linear systems

controllability, observability, stabilizability, dissipativity,
stability, symmetry, reversibility, (equivalent) representa-
tions, etc.: to be defined in terms of the behavior B

THE BEHAVIOR IS ALL THERE IS !
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¡¡ Model the relation between
force & position of a pointmass !!
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Examples

Newton’s 2-nd law
FORCE

MASS

¡¡ Model the relation between
force & position of a pointmass !!

Event: (force F (a f’n of time) , position q (a f’n of time) )
; T = R, W = R3 × R3

Model:

F = ma, a =
d 2

dt 2
q

; Σ = (R, R3 × R3, B)

with

⇒⇒ B =
{

(F , q) : R → R3 × R3 | F = m
d 2

dt 2
q
}

⇐⇐



Examples

RLC circuit

Phenomenon: the port voltage and current, f’ns of time
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L

Model voltage/current histories as a f’n of time !



Examples

RLC circuit
; Σ = (R, R2, B)

behavior B specified by:

Case 1: CRC 6=
L

RL(
RC

RL
+

(
1 +

RC

RL

)
CRC

d
dt

+ CRC
L

RL

d 2

dt 2

)
V =

(
1 + CRC

d
dt

) (
1 +

L
RL

d
dt

)
RC I

Case 2: CRC =
L

RL(
RC

RL
+ CRC

d
dt

)
V = (1 + CRC)

d
dt

RC I

; behavior all solutions (V , I) : R → R2 of this ODE



Examples
input/output models

u1
u2

u

1
y

um

y
2

p

input SYSTEM output

y (t ) = f (y (t − 1), · · · , y (t − n), u(t ), u(t − 1), u(t − n)), w =

[
u
y

]
Differential equation analogue

P(
d
dt

)y = P(
d
dt

)u , w =

[
u
y

]
, P, Q : polynomial matrices

or matrices of rational functions as in y = G(s)u

How shall we define the behavior with the rational f’ns ?



Examples
input/output models

State models

R.E. Kalman

d

dt
x = Ax +Bu , y = Cx+Du ;

d

dt
x = f ◦(x , u), y = h◦(x , u)

¿¿ What is the behavior of this system ??



Examples
input/output models

State models

d

dt
x = Ax +Bu , y = Cx+Du ;

d

dt
x = f ◦(x , u), y = h◦(x , u)

¿¿ What is the behavior of this system ??

In applications, we care foremost about i/o pairs u , y

; Σ = (R, U × Y, B)

B = {(u , y ) : R → U × Y |

∃x : R → X such that x = f ◦ (x , u), y = h ◦ (x , u)

So, here again, we meet auxiliary variables, the state x .



Latent variables



Latent variables

Auxiliary variables. We call them ‘latent’ . They are ubiqui-
tous:

• states in dynamical systems
• prices in economics
• the wave function in QM
• the basic probability space Ω

• potentials in mechanics, in EM
• interconnection variables
• driving variables in linear system theory
• etc., etc.

Their importance in applications merits formalization.

Latent variable model := (U, L, Bfull ) with Bfull ⊆ (U×L)

U: space of manifest variables
L: space of latent variables

Bfull : ‘full behavior’
B = {u ∈ U|∃` ∈ L : (u , `) ∈ Bfull }: ‘manifest behavior’.

This is readily generalized to dynamical systems.

A latent variable dynamical system :=

(T, W, L, Bfull ) with Bfull ⊆ (W × L)T

etc.
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Latent variables

Latent variable model := (U, L, Bfull ) with Bfull ⊆ (U×L)

U: space of manifest variables
L: space of latent variables

Bfull : ‘full behavior’
B = {u ∈ U|∃` ∈ L : (u , `) ∈ Bfull }: ‘manifest behavior’.

This is readily generalized to dynamical systems.

A latent variable dynamical system :=

(T, W, L, Bfull ) with Bfull ⊆ (W × L)T

etc.



Example

The price in our economic example

RLC circuit



Example

RLC circuit

aV

Vb

I a

I b

��

R
L

C

C

LR ��

��

environment system

Model voltage/current histories as a f’n of time !

How do we actually go about this modeling ?

Emergence of latent variables.



Example

RLC circuit
TEARING
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R L7
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Example

RLC circuit
ZOOMING

The list of the modules & the associated terminals :

Module Type Terminals Parameter
RC resistor (1, 2) in ohms
RL resistor (3, 4) in ohms
C capacitor (5, 6) in farad
L inductor (7, 8) in henry

connector1 3-terminal connector (9, 10, 11)
connector2 3-terminal connector (12, 13, 14)



Example

RLC circuit
TEARING

The interconnection architecture :

11

R L7

8

C
6

5

R
L4

3

10

9

12

13 14

2

1C

connector1

connector2

Pairing
{10, 1}
{11, 7}
{2, 5}
{8, 3}
{6, 13}
{4, 14}



Example

RLC circuit
Manifest variable assignment :

the variables
V9, I9, V12, I12

on the external terminals {9, 12} , i.e,

Va = V9, Ia = I9, Vb = V12, Ib = I12.

The internal terminals are

{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14}

The variables (currents and voltages) on these terminals
are our latent variables.



Example

RLC circuit

Faraday Ohm

Henry Coulomb

Equations for the full behavior :

Modules Constitutive equations

RC I1 + I2 = 0 V1 − V2 = RC I1
RL I7 + I8 = 0 V7 − V8 = RL I7
C I5 + I6 = 0 C d

dt (V5 − V6) = I5
L I7 + I8 = 0 V7 − V8 = L d

dt I7
connector1 I9 + I10 + I11 = 0 V9 = V10 = V11
connector2 I12 + I13 + I14 = 0 V12 = V13 = V14

Kirchhoff

Interconnection pair Interconnection equations
{10, 1} V10 = V1 I10 + I1 = 0
{11, 7} V11 = V7 I11 + I7 = 0
{2, 5} V2 = V5 I2 + I5 = 0
{8, 3} V8 = V3 I8 + I3 = 0
{6, 13} V6 = V13 I6 + I13 = 0
{4, 14} V4 = V14 I4 + I14 = 0



Example

RLC circuit

All these eq’ns combined define a latent variable system in
the manifest ‘external’ variables

w = (Va, Ia, Vb , Ib)

with ‘internal’ latent variables
` = (V1, I1, V2, I2, V3, I3, V4, I4, V5, I5, V6, I6, V7, I7,

V8, I8, V10, I10, V11, I11, V13, I13, V14, I14).

The manifest behavior B is given by

B = {(Va, Ia, Vb , Ib) : R → R4 | ∃ ` : R → R24 . . .}



Example

RLC circuit
Elimination :

Case 1: CRC 6=
L

RL
.

(
RC

RL
+(1+

RC

RL
)CRC

d
dt

+CRC
L

RL

d 2

dt 2 )(Va − Vb) = (1+CRC
d
dt

)(1+
L

RL

d
dt

)RC Ia.

Ia + Ib = 0

Case 2: CRC =
L

RL
.

(
RC

RL
+ CRC

d
dt

)(Va − Vb) = (1 + CRC
d
dt

)RC Ia

Ia + Ib = 0

Perhaps ‘port’ variables: V = Va − Vb , I = Ia = −Ib



Example

RLC circuit

Note: the eliminated equations are differential equations!
Does this follow from some general principle ?

Algorithms for elimination?

The modeling of this RLC circuit is an example of
tearing, zooming & linking . It is the most prevalent way of
modeling. See my website for formalization. Crucial role of
latent variables.
Note: no input/output thinking;

systems in nodes, connections in edges.



Controllability & Observability



System properties

In this framework, system theoretic notions like

Controllability, observability, stabilizability,...

become simpler, more general, more convincing.



System properties

In this framework, system theoretic notions like

Controllability, observability, stabilizability,...

become simpler, more general, more convincing.

For simplicity, we consider only
time-invariant, continuous-time systems with T = R

time-invariant := [[ w ∈ B ]] ⇒ [[ w (t ′ + ·) ∈ B ∀ t ′ ∈ R ]].



Controllability

The time-invariant system Σ = (T, W, B) is said to be

controllable

if for all w1, w2 ∈ B ∃ w ∈ B and T ≥ 0 such that

w (t ) =

{
w1(t ) t < 0

w2(t − T ) t ≥ T

Controllability :⇔
legal trajectories must be ‘patch-able’, ‘concatenable’.

2

0

1
w

w

W

time

2

0 T

1
w

w

! wT

W

time

W



Controllability
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w

w

W

time
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0 T

1
w

w

! wT

W

time

W



Controllability

2
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1
w

w

W

time

2

0 T

1
w

w

! wT

W

time

W



Examples

d

dt
x = Ax + Bu ;

d

dt
x = f ◦ (x , u)

with w = (x , u), controllable ⇔ ‘state point’ controllable.



Examples

d

dt
x = Ax + Bu ;

d

dt
x = f ◦ (x , u)

with w = (x , u), controllable ⇔ ‘state point’ controllable.

likewise ⇔ with w = x



Examples

d

dt
x = Ax + Bu ;

d

dt
x = f ◦ (x , u)

with w = (x , u), controllable ⇔ ‘state point’ controllable.

RLC circuit Case 2: CRC =
L

RL

(
RC

RL
+ CRC

d
dt

)(Va − Vb) = (1 + CRC
d
dt

)RC Ia

Ia + Ib = 0

Assume also RC = RL . Controllable ?

Va − Vb = RC Ia + constant · e
− t

CRC . Not controllable.



Examples

d

dt
x = Ax + Bu ;

d

dt
x = f ◦ (x , u)

with w = (x , u), controllable ⇔ ‘state point’ controllable.

p(
d

dt
)y = q(

d

dt
)u

controllable ⇔ p, q co-prime



Examples

d

dt
x = Ax + Bu ;

d

dt
x = f ◦ (x , u)

with w = (x , u), controllable ⇔ ‘state point’ controllable.

w = M(
d

dt
)`

M a polynomial matrix, always has a controllable manifest
behavior.

In fact, this characterizes the
controllable linear time-invariant differentiable systems

(‘image representation’).

Note emergence of latent variables, `.



Examples

w = M(
d

dt
)`

M a polynomial matrix, always has a controllable manifest
behavior. Likewise,

w = F (
d

dt
)`

F matrix of rat. f’ns has controllable manifest behavior.
But we need to give this ‘differential equation’ a meaning.

Whence

y = G(
d

dt
)u , w =

[
u
y

]
is always controllable.



Observability

SYSTEMw1variables
to!be!deduce
variablesw2observed

¿ Is it possible to deduce w2 from w1 and the model B ?



Observability

Consider the system Σ = (T, W1 × W2, B). Each element
of B hence consists of a pair of trajectories (w1, w2):

w1 : observed;
w2 : to-be-deduced.



Observability

Consider the system Σ = (T, W1 × W2, B). Each element
of B hence consists of a pair of trajectories (w1, w2):

w1 : observed;
w2 : to-be-deduced.

Definition : w2 is said to be

observable from w1

if [[(w1, w ′
2) ∈ B, and (w1, w ′′

2 ) ∈ B]] ⇒ [[(w ′
2 = w ′′

2 )]],
i.e., if on B, there exists a map w1 7→ w2.



Observability

Consider the system Σ = (T, W1 × W2, B). Each element
of B hence consists of a pair of trajectories (w1, w2):

w1 : observed;
w2 : to-be-deduced.

Definition : w2 is said to be

observable from w1

if [[(w1, w ′
2) ∈ B, and (w1, w ′′

2 ) ∈ B]] ⇒ [[(w ′
2 = w ′′

2 )]],
i.e., if on B, there exists a map w1 7→ w2.

Very often manifest = observed, latent = to-be-deduced .
We then speak of an observable (latent variable) system.



Examples

d

dt
x = Ax +Bu , y = Cx+Du ;

d

dt
x = f ◦(x , u), y = h◦(x , u)

with w1 = (u , y ), w2 = x , observable ⇔ ‘state’ observable.



Examples

aV

Vb

I a

I b

��

R
L

C

C

LR ��

��

environment system

Controllability of this system (referring to external terminal
variables) is a well-defined question.

Observability is not! No duality on the system’s level.
Of course, there is a notion of B⊥, and results connecting
controllability of B to state observability of B⊥.



Examples

Faraday Ohm

Henry Coulomb

Equations for the full behavior :

Modules Constitutive equations

RC I1 + I2 = 0 V1 − V2 = RC I1
RL I7 + I8 = 0 V7 − V8 = RL I7
C I5 + I6 = 0 C d

dt (V5 − V6) = I5
L I7 + I8 = 0 V7 − V8 = L d

dt I7
connector1 I9 + I10 + I11 = 0 V9 = V10 = V11
connector2 I12 + I13 + I14 = 0 V12 = V13 = V14

Kirchhoff

Interconnection pair Interconnection equations

{10, 1} V10 = V1 I10 + I1 = 0
{11, 7} V11 = V7 I11 + I7 = 0
{2, 5} V2 = V5 I2 + I5 = 0
{8, 3} V8 = V3 I8 + I3 = 0
{6, 13} V6 = V13 I6 + I13 = 0
{4, 14} V4 = V14 I4 + I14 = 0



Examples

All these eq’ns combined define a latent variable system in
the manifest variables

w = (Va, Ia, Vb , Ib)

with latent variables
` = (V1, I1, V2, I2, V3, I3, V4, I4, V5, I5, V6, I6, V7, I7,

V8, I8, V10, I10, V11, I11, V13, I13, V14, I14).

The manifest behavior B is given by

B = {(Va, Ia, Vb , Ib) : R → R4 | ∃ ` : R → R24 . . .}

Are the latent variables observable from the manifest ones?

⇔ CRC 6= L/RL



Examples

p(
d

dt
)y = q(

d

dt
)u

u is observable from y ⇔ q = non-zero constant
( no zeros ).

A controllable linear time-invariant differential system al-
ways has an observable ‘image’ representation

w = M(
d

dt
)`.

In fact, this again characterizes the
controllable linear time-invariant differentiable systems.



Kalman definitions

Special case : classical Kalman definitions for

d
dt x = f ◦ (x , u), y = h ◦ (x , u).

R.E. Kalman

controllability: variables = (input, state)

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?

observability: ; observed = (input, output) ,
to-be-deduced = state.

Why is it so interesting to try to deduce the state, of all
things? The state is a derived notion, not a ‘physical’ one.
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Stabilizability

The system Σ = (T, Rw, B) is said to be stabilizable if,
for all w ∈ B, there exists w ′ ∈ B such that

w (t ) = w ′(t ) for t < 0 and w ′(t ) −→
t→∞

0.

Stabilizability :⇔
legal trajectories can be steered to a desired point.

w’

w

0

W

time
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Detectability

SYSTEMw1variables
to!be!deduce
variablesw2observed

¿ Is it possible to deduce w2 asymptotically from w1 ?



Detectability

SYSTEMw1variables
to!be!deduce
variablesw2observed

¿ Is it possible to deduce w2 asymptotically from w1 ?

Definition : w2 is said to be

detectable from w1 if

[[(w1, w ′
2) ∈ B, and (w1, w ′′

2 ) ∈ B]]

⇒ [[(w ′
2 − w ′′

2 ) → 0 for t → ∞]]



Summary



Btw

• A model is not a map, but a relation.

• A flow is a very limited model class.
; closed dynamical systems.

• An open dynamical system is not an input/output
map .

• input/state/output systems, although still limited, are
the first class of suitably general models

• Behaviors, including latent variables, are the first
suitable general model class for physical applications
and modeling by tearing, zooming, and linking
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x = f (x ) with or without y = h(x )
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Summary

• A mathematical model = a subset

• A dynamical system = a behavior
= a family of trajectories

• Latent variables are ubiquitous in models

• Important properties of dynamical systems

• Controllability : concatenability of trajectories

• Observability : deducing one trajectory from another

• Stabilizability : driving a trajectory to zero

• The behavior is all there is. All properties in terms of
the behavior. Equivalence, representations also.
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Stochastic models

We only consider deterministic models. Stochastic
models:

Laplace Kolmogorov

there is a map P (the ’probability’ )

P : A → [0, 1]

with A a ‘σ-algebra’ of subsets of U.

P (B) = ‘degree of certainty’ (relative frequency,
propensity, plausibility, belief) that outcomes are in B;
∼= the degree of validity of B as a model.

Determinism: P is a ‘{0, 1}-law’
A = {∅, B, Bcomplement, U}, P (B) = 1.
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Fuzzy models

L. Zadeh

Fuzzy models: there is a map µ (‘membership f’n’ )

µ : U → [0, 1]

µ (x ) = ‘the extent to which x belongs to
the model’s behavior’ .

Determinism: µ is ‘crisp’ :

image(µ) = {0, 1},

B = µ−1 ({1}) := {x ∈ U | µ (x ) = 1}
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Every ‘good’ scientific theory is prohibition: it
forbids certain things to happen...
The more a theory forbids, the better it is.

Karl Popper (1902-1994)

Replace ‘scientific theory’
by ‘mathematical model’ !


