The Behavioral Approach to Systems Theory

Paolo Rapisarda, Un. of Southampton, U.K. &

Jan C. Willems, K.U. Leuven, Belgium

MTNS 2006 Kyoto, Japan, July 24–28, 2006

Lecture 1: General Introduction

Lecturer: Jan C. Willems

• What is a mathematical model, really?

- What is a mathematical model, really?
- How is this specialized to dynamics?

- What is a mathematical model, really?
- How is this specialized to dynamics?
- How are models arrived at?
 - From basic laws: 'first principles' modeling
 - Combined with interconnection:

tearing, zooming, & linking

From measured data: SYSID (system identification)

- What is a mathematical model, really?
- How is this specialized to dynamics?
- How are models arrived at?
 - From basic laws: 'first principles' modeling
 - · Combined with interconnection:

tearing, zooming, & linking

- From measured data: SYSID (system identification)
- What is the role of (differential) equations?

- What is a mathematical model, really?
- How is this specialized to dynamics?
- How are models arrived at?
 - From basic laws: 'first principles' modeling
 - Combined with interconnection:

tearing, zooming, & linking

- From measured data: SYSID (system identification)
- What is the role of (differential) equations?
- Importance of latent variables

The seminal idea

Consider a 'phenomenon'; produces 'outcomes', 'events'.

Mathematization: events belong to a set, I.

The seminal idea

Consider a 'phenomenon'; produces 'outcomes', 'events'.

Mathematization: events belong to a set, a.

Modeling question: Which events can really occur?

The model specifies: Only those in the subset $\mathfrak{B} \subseteq \mathfrak{U}$!

⇒⇒ a mathematical model, with behavior ℜ ←←

The seminal idea

Consider a 'phenomenon'; produces 'outcomes', 'events'.

Mathematization: events belong to a set, a.

Modeling question: Which events can really occur?

The model specifies: Only those in the subset $\mathfrak{B} \subseteq \mathfrak{U}$!

⇒⇒ a mathematical model, with behavior 𝔥 ←←

Before modeling: events in $\mathfrak U$ are possible

After modeling: only events in $\mathfrak B$ are possible

Sharper model \rightsquigarrow smaller \mathfrak{B} .

Gas

Gas law

Phenomenon: A balloon filled with a gas

ii Model the relation between

volume, quantity, pressure, & temperature !!

Gas

Gas law

Phenomenon: A balloon filled with a gas

ji Model the relation between

volume, quantity, pressure, & temperature !!

Event: (vol. V, quant. N, press. P, temp. T) $\rightsquigarrow \mathfrak{U} = \mathbb{R}^4_+$

Gas law

Phenomenon: A balloon filled with a gas

ii Model the relation between

volume, quantity, pressure, & temperature !!

Event: (vol. V, quant. N, press. P, temp. T) $\rightsquigarrow \mathfrak{U} = \mathbb{R}^4_+$

Gas

 \sim model

$$\frac{PV}{NT}$$
 = a universal constant =: R

$$\Rightarrow \Rightarrow \qquad \mathfrak{B} = \left\{ (T, P, V, N) \in \mathbb{R}^4_+ \mid \frac{PV}{NT} = R \right\}$$

An economy

Phenomenon: trading of a product

ii Model the relation between price, sales & production !!

An economy

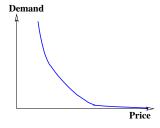
Phenomenon: trading of a product

ii Model the relation between

price, sales & production !!

Event: $\left(\text{price } P, \text{ demand } D\right) \rightsquigarrow \mathfrak{U} = \mathbb{R}^2_+$

Typical model: $\mathfrak{B} = \text{graph of a curve}$



An economy

Phenomenon: trading of a product

ii Model the relation between

price, sales & production !!

Event: $\left(\text{price } P, \text{ supply } S\right) \sim \mathfrak{U} = \mathbb{R}^2_+$

Typical model: $\mathfrak{B} = \text{graph of a curve}$

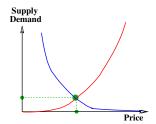
An economy

Phenomenon: trading of a product

ii Model the relation between

price, sales & production !!

 $\mathfrak{B} = \text{intersection of two graphs}: \rightarrow \text{usually point(s)}$



An economy

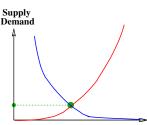
Phenomenon: trading of a product

ii Model the relation between sales & production !! Price only to explain mechanism

Event: $\left(\text{ demand } \boxed{\textit{D}}, \text{ supply } \boxed{\textit{S}} \right) \sim \mathfrak{U} = \mathbb{R}^2_+$

 $\mathfrak{B} = \text{intersection of two graphs} : \sim \text{usually point(s)}$

The price **P** becomes a 'hidden' variable. Modeling using 'hidden', 'auxiliary', 'latent' intermediate variables is very common.



How shall we deal with such variables?

Newton's 2-nd law

FORCE

Phenomenon: A moving mass

ii Model the relation between

force, mass, & acceleration !!

Newton's 2-nd law

Phenomenon: A moving mass

ii Model the relation between

force, mass, & acceleration !!

Event: (force F, mass m, acceleration a)

$$\rightsquigarrow \mathfrak{U} = \mathbb{R}^3 \times \mathbb{R}_+ \times \mathbb{R}^3$$

Newton's 2-nd law

MASS FORCE

Phenomenon: A moving mass

ii Model the relation between

force, mass, & acceleration !!

Event: (force F, mass m, acceleration a)

$$\rightsquigarrow \mathfrak{U} = \mathbb{R}^3 \times \mathbb{R}_+ \times \mathbb{R}^3$$

Model due to Newton:

$$F = ma$$

$$\Rightarrow \Rightarrow \quad \mathfrak{B} = \{ (F, m, a) \in \mathbb{R}^3 \times \mathbb{R}_+ \times \mathbb{R}^3 \mid F = ma \}$$

Newton's 2-nd law

Phenomenon: A moving mass

But, the aim of Newton's law is really:

ii Model the relation between force, mass, & position !!

Newton's 2-nd law

Phenomenon: A moving mass

But, the aim of Newton's law is really:

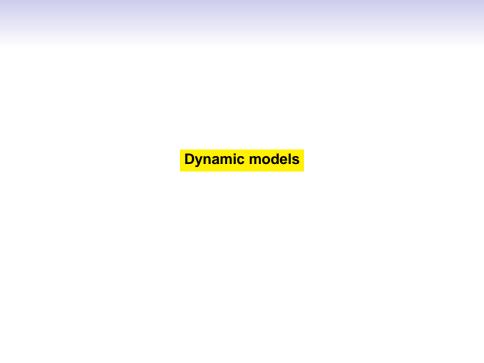
ii Model the relation between force, mass, & position !!

Event: (force F, mass m, position q)

$$F = ma$$
, $a = \frac{d^2}{dt^2}q$

not 'instantaneous' relation between $F, m, q \rightarrow dynamics$

How shall we deal with this?



Phenomenon produces 'events' that are functions of time Mathematization: It is convenient to distinguish domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space'

Phenomenon produces 'events' that are functions of time

Mathematization: It is convenient to distinguish domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space'

A dynamical system :=

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$
 $\mathfrak{B} \subseteq (\mathbb{W})^{\mathbb{T}}$ the behavior

Phenomenon produces 'events' that are functions of time

Mathematization: It is convenient to distinguish domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space'

A dynamical system :=

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$
 $\mathfrak{B} \subseteq (\mathbb{W})^{\mathbb{T}}$ the behavior

 $\mathbb{T} = \mathbb{R}, \mathbb{R}_+,$ or interval in \mathbb{R} : continuous-time systems

 $\mathbb{T} = \mathbb{Z}, \mathbb{N}$, etc.: discrete-time systems

Later: set of independent variables = \mathbb{R}^n , n > 1, PDE's.

Phenomenon produces 'events' that are functions of time

Mathematization: It is convenient to distinguish

domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space'

A dynamical system :=

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$
 $\mathfrak{B} \subseteq (\mathbb{W})^{\mathbb{T}}$ the behavior

 $\mathbb{W} = \mathbb{R}^{w}$, etc. lumped systems

W = finite: finitary systems

 $\mathbb{T} = \mathbb{Z}$ or \mathbb{N}, \mathbb{W} finite: **DES** (discrete event systems)

 $\mathbb{W} = \text{function space: } \mathsf{DPS} \text{ (distributed parameter systems)}$

Phenomenon produces 'events' that are functions of time

Mathematization: It is convenient to distinguish domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space'

A dynamical system :=

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$
 $\mathfrak{B} \subseteq (\mathbb{W})^{\mathbb{T}}$ the behavior

 \mathbb{W} vector space, $\mathfrak{B} \subset (\mathbb{W})^{\mathbb{T}}$ linear subspace: linear systems controllability, observability, stabilizability, dissipativity, stability, symmetry, reversibility, (equivalent) representations, etc.: to be defined in terms of the behavior \mathfrak{B}

THE BEHAVIOR IS ALL THERE IS!

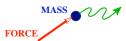
Newton's 2-nd law



¡¡ Model the relation between force & position

force & position of a pointmass !!

Newton's 2-nd law



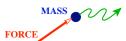
ii Model the relation between

force & position of a pointmass !!

Event: (force F (a f'n of time), position q (a f'n of time))

$$\sim \mathbb{T} = \mathbb{R}, \mathbb{W} = \mathbb{R}^3 \times \mathbb{R}^3$$

Newton's 2-nd law



¡¡ Model the relation between

force & position of a pointmass !!

Event: (force F (a f'n of time), position q (a f'n of time))

$$\sim \mathbb{T} = \mathbb{R}, \mathbb{W} = \mathbb{R}^3 \times \mathbb{R}^3$$

Model:

$$F = ma, \quad a = \frac{d^2}{dt^2}q$$

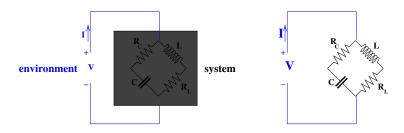
$$ightsquigarrow \mathbf{\Sigma} = (\mathbb{R}, \mathbb{R}^3 \times \mathbb{R}^3, \mathfrak{B})$$

with

$$\Rightarrow \Rightarrow \quad \mathfrak{B} = \left\{ \begin{array}{ccc} (F,q) : \mathbb{R} \to \mathbb{R}^3 \times \mathbb{R}^3 \mid F = m \frac{d^2}{dt^2} q \right\} \end{array} \iff \Leftrightarrow$$

RLC circuit

Phenomenon: the port voltage and current, f'ns of time



Model voltage/current histories as a f'n of time!

RLC circuit

$$ightsquigarrow \Sigma = (\mathbb{R}, \mathbb{R}^2, \mathfrak{B})$$

behavior 3 specified by:

Case 1:
$$CR_C \neq \frac{L}{R_L}$$

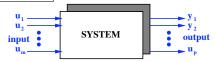
$$\left(\frac{R_{C}}{R_{L}} + \left(1 + \frac{R_{C}}{R_{L}}\right) CR_{C} \frac{d}{dt} + CR_{C} \frac{L}{R_{L}} \frac{d^{2}}{dt^{2}}\right) V = \left(1 + CR_{C} \frac{d}{dt}\right) \left(1 + \frac{L}{R_{L}} \frac{d}{dt}\right) R_{C} I$$

Case 2:
$$CR_C = \frac{L}{R_L}$$

$$\left(\frac{R_{C}}{R_{L}} + CR_{C}\frac{d}{dt}\right)V = (1 + CR_{C})\frac{d}{dt}R_{C}I$$

 \rightarrow behavior all solutions $(V, I) : \mathbb{R} \rightarrow \mathbb{R}^2$ of this ODE

input/output models



$$y(t) = f(y(t-1), \dots, y(t-n), u(t), u(t-1), u(t-n)), \quad w = \begin{bmatrix} u \\ y \end{bmatrix}$$

Differential equation analogue

$$P(\frac{d}{dt})y = P(\frac{d}{dt})u, w = \begin{bmatrix} u \\ y \end{bmatrix}, P, Q$$
: polynomial matrices or matrices of rational functions as in $y = G(s)u$

How shall we define the behavior with the rational fine?

input/output models

State models

R.E. Kalman

$$\frac{d}{dt}x = Ax + Bu, \ y = Cx + Du; \ \frac{d}{dt}x = f \circ (x, u), \ y = h \circ (x, u)$$

¿¿ What is the behavior of this system ??

input/output models

State models

$$\frac{d}{dt}x = Ax + Bu, y = Cx + Du; \quad \frac{d}{dt}x = f \circ (x, u), y = h \circ (x, u)$$

¿¿ What is the behavior of this system ??

In applications, we care foremost about i/o pairs u, y

$$ightsquigarrow \mathbf{\Sigma} = (\mathbb{R}, \mathbb{U} \times \mathbb{Y}, \mathfrak{B})$$

$$\mathfrak{B} = \{(u,y) : \mathbb{R} \to \mathbb{U} \times \mathbb{Y} \mid$$

$$\exists x : \mathbb{R} \to \mathbb{X}$$
 such that $x = f \circ (x, u), y = h \circ (x, u)$

So, here again, we meet $\frac{\text{auxiliary}}{\text{auxiliary}}$ variables, the state x.

Latent variables

Auxiliary variables. We call them 'latent'. They are ubiquitous:

- states in dynamical systems
- prices in economics
- the wave function in QM
- the basic probability space Ω
- potentials in mechanics, in EM
- interconnection variables
- driving variables in linear system theory
- etc., etc.

Their importance in applications merits formalization.

Latent variables

!: space of manifest variables

£: space of **latent** variables

 $\mathfrak{B}_{\text{full}}$: 'full behavior'

 $\mathfrak{B} = \{u \in \mathfrak{U} | \exists \ell \in \mathfrak{L} : (u, \ell) \in \mathfrak{B}_{\text{full}} \}$: 'manifest behavior'.

Latent variables

Latent variable model :=
$$(\mathfrak{U}, \mathfrak{L}, \mathfrak{B}_{\text{full}})$$
 with $\mathfrak{B}_{\text{full}} \subseteq (\mathfrak{U} \times \mathfrak{L})$

- **!: space of manifest variables**
- £: space of **latent** variables
- **𝔻**_{full}: 'full behavior'
- $\mathfrak{B} = \{u \in \mathfrak{U} | \exists \ell \in \mathfrak{L} : (u, \ell) \in \mathfrak{B}_{\text{full}} \}$: 'manifest behavior'.

This is readily generalized to dynamical systems.

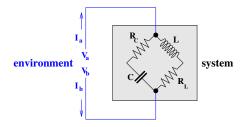
A latent variable dynamical system :=

$$egin{aligned} oldsymbol{(\mathbb{T},\mathbb{W},\mathbb{L},\mathfrak{B}_{\mathrm{full}})} & \mathsf{with} \ \mathfrak{B}_{\mathrm{full}} \subseteq oldsymbol{(\mathbb{W} \times \mathbb{L})^{\mathbb{T}}} \end{aligned}$$

etc.

The price in our economic example

RLC circuit

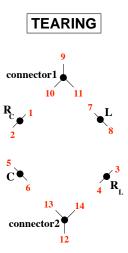


Model voltage/current histories as a f'n of time!

How do we actually go about this modeling?

Emergence of latent variables.

RLC circuit



RLC circuit

ZOOMING

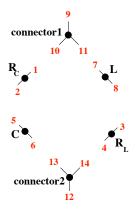
The list of the modules & the associated terminals:

Module	Type	Terminals	Parameter
R _C	resistor	(1, 2)	in ohms
R_L	resistor	(3, 4)	in ohms
С	capacitor	(5, 6)	in farad
L	inductor	(7, 8)	in henry
connector1	3-terminal connector	(9, 10, 11)	
connector2	3-terminal connector	(12, 13, 14)	

RLC circuit

TEARING

The interconnection architecture:



Pairing
{10,1}
{11,7}
{2,5}
{8,3 }
{6,13}
{4,14}

RLC circuit

Manifest variable assignment:

the variables

$$V_9, I_9, V_{12}, I_{12}$$

on the external terminals (9, 12), i.e,

$$V_a = V_9, I_a = I_9, V_b = V_{12}, I_b = I_{12}.$$

The internal terminals are

The variables (currents and voltages) on these terminals are our latent variables.

Madulaa

RLC circuit

Equations for the full behavior:

Faraday Ohm

Henry

Coulomb

wodules	Constitutive equations	
R _C	$I_1+I_2=0$	$V_1-V_2=R_CI_1$
R_L	$I_7+I_8=0$	$V_7 - V_8 = R_L I_7$
С	$I_5+I_6=0$	$C\frac{d}{dt}(V_5-V_6)=I_5$
L	$I_7+I_8=0$	$V_7 - V_8 = L \frac{d}{dt} I_7$
connector1	$I_9 + I_{10} + I_{11} = 0$	$V_9 = V_{10} = V_{11}$
connector2	$I_{12} + I_{13} + I_{14} = 0$	$V_{12} = V_{13} = V_{14}$

Kirchhoff

Interconnection pair	Interconnection equations	
{10,1}	$V_{10}=V_1$	$I_{10} + I_{1} = 0$
{11,7}	$V_{11} = V_7$	$I_{11} + I_7 = 0$
{2,5}	$V_2 = V_5$	$I_2+I_5=0$
{8,3}	$V_8 = V_3$	$I_8+I_3=0$
{6,13}	$V_6 = V_{13}$	$I_6 + I_{13} = 0$
{4,14}	$V_4 = V_{14}$	$I_4 + I_{14} = 0$

RLC circuit

All these eq'ns combined define a latent variable system in the manifest 'external' variables

$$\mathbf{w} = (\mathbf{V_a}, \mathbf{I_a}, \mathbf{V_b}, \mathbf{I_b})$$

with 'internal' latent variables

$$\ell = (V_1, I_1, V_2, I_2, V_3, I_3, V_4, I_4, V_5, I_5, V_6, I_6, V_7, I_7, V_8, I_8, V_{10}, I_{10}, V_{11}, I_{11}, V_{13}, I_{13}, V_{14}, I_{14}).$$

The manifest behavior $\mathfrak B$ is given by

$$\mathfrak{B} = \{ (V_a, I_a, V_b, I_b) : \mathbb{R} \to \mathbb{R}^4 \mid \exists \ \ell : \mathbb{R} \to \mathbb{R}^{24} \ldots \}$$

RLC circuit

Elimination:

Case 1:
$$CR_C \neq \frac{L}{R_l}$$
.

$$\left(\frac{R_C}{R_L} + (1 + \frac{R_C}{R_L})CR_C\frac{d}{dt} + CR_C\frac{L}{R_L}\frac{d^2}{dt^2}\right)(V_a - V_b) = (1 + CR_C\frac{d}{dt})(1 + \frac{L}{R_L}\frac{d}{dt})R_CI_a.$$

$$I_a + I_b = 0$$

Case 2:
$$CR_C = \frac{L}{R_I}$$
.

$$(\frac{R_c}{R_L} + CR_c \frac{d}{dt})(V_a - V_b) = (1 + CR_c \frac{d}{dt})R_c I_a$$

$$I_a + I_b = 0$$

Perhaps 'port' variables: $V = V_a - V_b$, $I = I_a = -I_b$

RLC circuit

Note: the eliminated equations are differential equations! Does this follow from some general principle?

Algorithms for elimination?

The modeling of this RLC circuit is an example of tearing, zooming & linking. It is the most prevalent way of modeling. See my website for formalization. Crucial role of latent variables.

Note: no input/output thinking;

systems in nodes, connections in edges.

Controllability & Observability

System properties

In this framework, system theoretic notions like

Controllability, observability, stabilizability,...

become simpler, more general, more convincing.

System properties

In this framework, system theoretic notions like

Controllability, observability, stabilizability,...

become simpler, more general, more convincing.

For simplicity, we consider only time-invariant, continuous-time systems with $\mathbb{T}=\mathbb{R}$

 $\frac{\mathsf{time\text{-}invariant}}{\mathsf{time\text{-}invariant}} := [\![\ w \in \mathfrak{B} \]\!] \Rightarrow [\![\ w(t'+\cdot) \in \mathfrak{B} \ \forall \ t' \in \mathbb{R} \]\!].$

Controllability

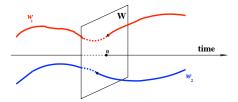
The time-invariant system $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be

if for all $w_1, w_2 \in \mathfrak{B} \ \exists \ w \in \mathfrak{B}$ and $T \geq 0$ such that

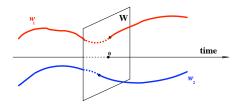
$$w(t) = \begin{cases} w_1(t) & t < 0 \\ w_2(t-T) & t \ge T \end{cases}$$

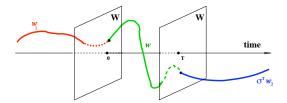
Controllability :⇔ legal trajectories must be 'patch-able', 'concatenable'.

Controllability



Controllability





$$\frac{d}{dt}x = Ax + Bu; \quad \frac{d}{dt}x = f \circ (x, u)$$

with w = (x, u), controllable \Leftrightarrow 'state point' controllable.

$$\frac{d}{dt}x = Ax + Bu; \quad \frac{d}{dt}x = f \circ (x, u)$$

with w = (x, u), controllable \Leftrightarrow 'state point' controllable.

likewise \Leftrightarrow with w = x

$$\frac{d}{dt}x = Ax + Bu; \quad \frac{d}{dt}x = f \circ (x, u)$$

with w = (x, u), controllable \Leftrightarrow 'state point' controllable.

RLC circuit

Case 2:
$$CR_C = \frac{L}{R_L}$$

$$\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right)(V_a - V_b) = (1 + CR_C \frac{d}{dt})R_C I_a$$

$$I_a + I_b = 0$$

Assume also $R_C = R_L$. Controllable?

$$V_a - V_b = R_C I_a + constant \cdot e^{-\frac{t}{CR_C}}$$
. Not controllable.

$$\frac{d}{dt}x = Ax + Bu; \quad \frac{d}{dt}x = f \circ (x, u)$$

with w = (x, u), controllable \Leftrightarrow 'state point' controllable.

$$p(\frac{d}{dt})y = q(\frac{d}{dt})u$$

controllable $\Leftrightarrow p, q$ co-prime

$$\frac{d}{dt}x = Ax + Bu; \quad \frac{d}{dt}x = f \circ (x, u)$$

with w = (x, u), controllable \Leftrightarrow 'state point' controllable.

$$w = M(\frac{d}{dt})\ell$$

M a polynomial matrix, always has a controllable manifest behavior.

In fact, this characterizes the

controllable linear time-invariant differentiable systems ('image representation').

Note emergence of latent variables, ℓ .

$$w = M(\frac{d}{dt})\ell$$

M a polynomial matrix, always has a controllable manifest behavior. Likewise,

$$w = F(\frac{d}{dt})\ell$$

F matrix of rat. f'ns has controllable manifest behavior. But we need to give this 'differential equation' a meaning.

Whence

$$y = G(\frac{d}{dt})u, \quad w = \begin{bmatrix} u \\ y \end{bmatrix}$$

is always controllable.

 ξ is it possible to deduce w_2 from w_1 and the model \mathfrak{B} ?

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B})$. Each element of \mathfrak{B} hence consists of a pair of trajectories $(\mathbf{w}_1, \mathbf{w}_2)$:

 w_1 : observed; w_2 : to-be-deduced.

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B})$. Each element of \mathfrak{B} hence consists of a pair of trajectories $(\mathbf{w}_1, \mathbf{w}_2)$:

 w_1 : observed; w_2 : to-be-deduced.

Definition: w₂ is said to be

observable from w₁

if $[(w_1, w_2') \in \mathfrak{B}$, and $(w_1, w_2'') \in \mathfrak{B}] \Rightarrow [(w_2' = w_2'')]$, i.e., if on \mathfrak{B} , there exists a map $w_1 \mapsto w_2$.

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B})$. Each element of \mathfrak{B} hence consists of a pair of trajectories $(\mathbf{w}_1, \mathbf{w}_2)$:

 w_1 : observed; w_2 : to-be-deduced.

Definition: w₂ is said to be

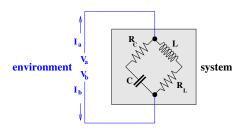
observable from w₁

if $[(w_1, w_2') \in \mathfrak{B}$, and $(w_1, w_2'') \in \mathfrak{B}] \Rightarrow [(w_2' = w_2'')]$, i.e., if on \mathfrak{B} , there exists a map $w_1 \mapsto w_2$.

Very often manifest = observed, latent = to-be-deduced. We then speak of an observable (latent variable) system.

$$\frac{d}{dt}x = Ax + Bu, y = Cx + Du; \quad \frac{d}{dt}x = f\circ(x, u), y = h\circ(x, u)$$

with $w_1 = (u, y)$, $w_2 = x$, observable \Leftrightarrow 'state' observable.



Controllability of this system (referring to external terminal variables) is a well-defined question.

Observability is not! No duality on the system's level. Of course, there is a notion of \mathfrak{B}^{\perp} , and results connecting controllability of \mathfrak{B} to state observability of \mathfrak{B}^{\perp} .

Equations for the full behavior:

Faraday Ohm

Coulomb

Kirchhoff

Modules	Constitutive equations		
R _C	$I_1+I_2=0$	$V_1-V_2=R_CI_1$	
R _L	$I_7 + I_8 = 0$	$V_7 - V_8 = R_L I_7$	
С	$I_5+I_6=0$	$C\frac{d}{dt}(V_5-V_6)=I_5$	
L	$I_7+I_8=0$	$V_7 - V_8 = L \frac{d}{dt} I_7$	
connector1	$I_9 + I_{10} + I_{11} = 0$	$V_9 = V_{10} = V_{11}$	
connector2	$I_{12}+I_{13}+I_{14}=0$	$V_{12} = V_{13} = V_{14}$	

Interconnection pair	Interconnection equations	
{10,1}	$V_{10}=V_1$	$I_{10} + I_1 = 0$
{11,7}	$V_{11}=V_7$	$I_{11} + I_7 = 0$
{2,5}	$V_2 = V_5$	$I_2+I_5=0$
{8,3}	$V_8 = V_3$	$I_8+I_3=0$
{6,13}	$V_6 = V_{13}$	$I_6 + I_{13} = 0$
{4,14}	$V_4 = V_{14}$	$I_4 + I_{14} = 0$

All these eq'ns combined define a latent variable system in the manifest variables

$$\mathbf{w} = (V_a, I_a, V_b, I_b)$$

with latent variables

$$\ell = (V_1, I_1, V_2, I_2, V_3, I_3, V_4, I_4, V_5, I_5, V_6, I_6, V_7, I_7, V_8, I_8, V_{10}, I_{10}, V_{11}, I_{11}, V_{13}, I_{13}, V_{14}, I_{14}).$$

The manifest behavior \mathfrak{B} is given by

$$\mathfrak{B} = \{ (V_a, I_a, V_b, I_b) : \mathbb{R} \to \mathbb{R}^4 \mid \exists \ \ell : \mathbb{R} \to \mathbb{R}^{24} \ldots \}$$

Are the latent variables observable from the manifest ones?

$$\Leftrightarrow$$
 $CR_C \neq L/R_L$

Examples

$$p(\frac{d}{dt})y = q(\frac{d}{dt})u$$

u is observable from $y \Leftrightarrow q = \text{non-zero constant}$ (no zeros).

A controllable linear time-invariant differential system always has an observable 'image' representation

$$w=M(\frac{d}{dt})\ell.$$

In fact, this again characterizes the controllable linear time-invariant differentiable systems.

Kalman definitions

Special case: classical Kalman definitions for

$$\frac{d}{dt}x = f \circ (x, u), \quad y = h \circ (x, u).$$

R.E. Kalman

Kalman definitions

Special case: classical Kalman definitions for

$$\frac{d}{dt}x = f \circ (x, u), \ \ y = h \circ (x, u).$$

controllability: variables = (input, state)

R.E. Kalman

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?

Kalman definitions

Special case: classical Kalman definitions for

$$\frac{d}{dt}x = f \circ (x, u), \quad y = h \circ (x, u).$$

controllability: variables = (input, state)

R.E. Kalman

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?

```
observability: 
→ observed = (input, output),
to-be-deduced = state.
```

Why is it so interesting to try to deduce the state, of all things? The state is a derived notion, not a 'physical' one.

Stabilizability

The system $\Sigma=(\mathbb{T},\mathbb{R}^{\mathsf{w}},\mathfrak{B})$ is said to be stabilizable if, for all $w\in\mathfrak{B}$, there exists $w'\in\mathfrak{B}$ such that

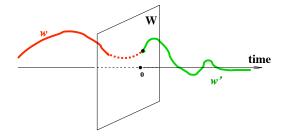
$$w(t) = w'(t)$$
 for $t < 0$ and $w'(t) \xrightarrow[t \to \infty]{} 0$.

Stabilizability

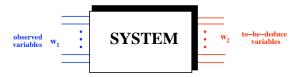
The system $\Sigma = (\mathbb{T}, \mathbb{R}^w, \mathfrak{B})$ is said to be stabilizable if, for all $w \in \mathfrak{B}$, there exists $w' \in \mathfrak{B}$ such that

$$w(t) = w'(t)$$
 for $t < 0$ and $w'(t) \xrightarrow[t \to \infty]{} 0$.

Stabilizability :⇔ legal trajectories can be steered to a desired point.



Detectability



 ξ is it possible to deduce w_2 asymptotically from w_1 ?

Detectability

 ξ Is it possible to deduce w_2 asymptotically from w_1 ?

Definition: w₂ is said to be

detectable from w₁ if

A model is not a map, but a relation.

- A model is not a map, but a relation.
- A flow

$$\frac{d}{dt}x = f(x) \text{ with or without } y = h(x)$$

is a very limited model class.

→ closed dynamical systems.

- A model is not a map, but a relation.
- A flow is a very limited model class.

 \sim closed dynamical systems.

An open dynamical system is not an input/output map.

Heaviside

Wiener

Nyquist

Bode

- A model is not a map, but a relation.
- A flow is a very limited model class.

→ closed dynamical systems.

- An open dynamical system is not an input/output map.
- input/state/output systems, although still limited, are the first class of suitably general models

R.E. Kalman

- A model is not a map, but a relation.
- A flow is a very limited model class.

 \sim closed dynamical systems.

- An open dynamical system is not an input/output map.
- input/state/output systems, although still limited, are the first class of suitably general models
- Behaviors, including latent variables, are the first suitable general model class for physical applications and modeling by tearing, zooming, and linking

• A mathematical model = a subset

- A mathematical model = a subset
- A dynamical system = a behavior

= a family of trajectories

- A mathematical model = a subset
- A dynamical system = a behavior = a family of trajectories
- Latent variables are ubiquitous in models

- A mathematical model = a subset
- A dynamical system = a behavior = a family of trajectories
- Latent variables are ubiquitous in models
- Important properties of dynamical systems
 - Controllability: concatenability of trajectories
 - Observability: deducing one trajectory from another
 - Stabilizability: driving a trajectory to zero

- A mathematical model = a subset
- A dynamical system = a behavior = a family of trajectories
- Latent variables are ubiquitous in models
- Important properties of dynamical systems
 - Controllability: concatenability of trajectories
 - Observability: deducing one trajectory from another
 - Stabilizability: driving a trajectory to zero
- The behavior is all there is. All properties in terms of the behavior. Equivalence, representations also.

Stochastic models

We only consider deterministic models. Stochastic models:

Kolmogorov

there is a map P (the 'probability')

$$P:\mathfrak{A}\to [0,1]$$

with $\mathfrak A$ a ' σ -algebra' of subsets of $\mathfrak U$.

 $P(\mathfrak{B})$ = 'degree of certainty' (relative frequency, propensity, plausibility, belief) that outcomes are in \mathfrak{B} ; \cong the degree of validity of \mathfrak{B} as a model.

Stochastic models

We only consider deterministic models. Stochastic models: there is a map *P* (the 'probability')

$$P:\mathfrak{A} \to [0,1]$$

with $\mathfrak A$ a ' σ -algebra' of subsets of $\mathfrak U$.

 $P(\mathfrak{B})$ = 'degree of certainty' (relative frequency, propensity, plausibility, belief) that outcomes are in \mathfrak{B} ; \cong the degree of validity of \mathfrak{B} as a model.

Determinism:
$$P$$
 is a ' $\{0,1\}$ -law'
$$\mathfrak{A} = \{\varnothing,\mathfrak{B},\mathfrak{B}^{\text{complement}},\mathfrak{U}\}, P(\mathfrak{B}) = 1.$$

Fuzzy models

L. Zadeh

Fuzzy models: there is a map μ ('membership f'n')

$$\mu:\mathfrak{U} o [0,1]$$

 μ (x) = 'the extent to which x belongs to the model's behavior'.

Fuzzy models

Fuzzy models: there is a map μ ('membership f'n')

$$\mu:\mathfrak{U} o [0,1]$$

 $\mu (x) =$ 'the extent to which x belongs to the model's behavior'.

Determinism: μ is 'crisp':

image
$$(\mu) = \{0, 1\},$$

$$\mathfrak{B} = \mu^{-1} (\{1\}) := \{x \in \mathfrak{U} \mid \mu(x) = 1\}$$

Every 'good' scientific theory is prohibition: it forbids certain things to happen...
The more a theory forbids, the better it is.

Karl Popper (1902-1994)

Replace 'scientific theory' by 'mathematical model'!

