RATIONAL REPRESENTATIONS

of LTID systems

Jan Willems

K.U. Leuven, Belgium

Joint work with

Yutaka Yamamoto, Kyoto University

Preliminaries

Behaviors \& all that

A dynamical system: $\Leftrightarrow \quad \Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\begin{array}{ll}\mathbb{T} \subseteq \mathbb{R} \quad \text { the } \text { time-axis } \\ \mathbb{W} & \text { the signal space } \\ \mathfrak{B} \subseteq \mathbb{W} \mathbb{T} \quad \text { the behavior - a family of trajectories }\end{array}$

Behaviors \& all that

A dynamical system: $\Leftrightarrow \quad \Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\begin{array}{lll}\mathbb{T} \subseteq \mathbb{R} & \text { the time-axis } & \text { today } \mathbb{T}=\mathbb{R} \\ \mathbb{W} & \text { the signal space } & \text { today } \mathbb{W}=\mathbb{R}^{W} \\ \mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { the } \text { behavior } & - \\ \text { a family of trajectories }\end{array}$

Behaviors \& all that

A dynamical system: $\Leftrightarrow \quad \Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\begin{array}{lll}\mathbb{T} \subseteq \mathbb{R} & \text { the time-axis } & \text { today } \mathbb{T}=\mathbb{R} \\ \mathbb{W} & \text { the signal space } & \text { today } \mathbb{W}=\mathbb{R}^{W} \\ \mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { the behavior } & \text { a family of trajectories }\end{array}$
$\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$ is said to be linear $: \Leftrightarrow \mathfrak{B}$ is a linear space time-invariant $: \Leftrightarrow \mathfrak{B}$ is shift-invariant $w \in \mathfrak{B}$ and $t \in \mathbb{R} \quad \Rightarrow \quad \sigma^{t} w \in \mathfrak{B}$ σ^{t} denotes the 'shift': $\quad\left(\sigma^{t} w\right)\left(t^{\prime}\right)=w\left(t^{\prime}+t\right)$
differential $: \Leftrightarrow \mathfrak{B}$ is the set of sol'ns of an ODE

Examples

Dynamical system:

$$
\Sigma: \quad \dot{\mathrm{x}}=f(\mathrm{x}, \mathrm{u}, \mathrm{t}), \quad \mathrm{y}=h(\mathrm{x}, \mathrm{u}, \mathrm{t})
$$

$\mathrm{u} \in \mathbb{U}=\mathbb{R}^{\mathrm{m}}, \mathrm{y} \in \mathbb{Y}=\mathbb{R}^{\mathrm{p}}, \mathrm{x} \in \mathbb{X}=\mathbb{R}^{\mathrm{n}}$: input, output, state.

Behavior $\mathfrak{B}=$ all sol'ns $\quad(u, y, x): \mathbb{R} \rightarrow \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$.
Time-invariant:

$$
\Sigma: \quad \stackrel{\bullet}{\mathrm{x}}=f(\mathrm{x}, \mathrm{u}), \quad \mathrm{y}=h(\mathrm{x}, \mathrm{u})
$$

Linear time-invariant:

$$
\Sigma: \quad \stackrel{\bullet}{\mathrm{x}}=A \mathrm{x}+B \mathrm{u}, \quad \mathrm{y}=C \mathrm{x}+D \mathrm{u}
$$

LTID systems

Linear, time-invariant, differential dynamical system \Leftrightarrow

$$
R_{0} w+R_{1} \frac{d}{d t} w+R_{2} \frac{d^{2}}{d t^{2}} w+\cdots+R_{L} \frac{d^{L}}{d t^{L}} w=0
$$

LTID systems

Linear, time-invariant, differential dynamical system \Leftrightarrow

$$
R_{0} w+R_{1} \frac{d}{d t} w+R_{2} \frac{d^{2}}{d t^{2}} w+\cdots+R_{L} \frac{d^{L}}{d t^{L}} w=0
$$

Short-hand notation: introduce polynomial matrix

$$
\begin{gathered}
R(\xi)=R_{0}+R_{1} \xi+R_{2} \xi^{2}+\cdots+R_{L} \xi^{L} \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}} \\
R\left(\frac{d}{d t}\right) w=0
\end{gathered}
$$

LTID systems

Linear, time-invariant, differential dynamical system \Leftrightarrow

$$
R_{0} w+R_{1} \frac{d}{d t} w+R_{2} \frac{d^{2}}{d t^{2}} w+\cdots+R_{L} \frac{d^{L}}{d t^{L}} w=0
$$

Short-hand notation: introduce polynomial matrix

$$
\begin{gathered}
R(\xi)=R_{0}+R_{1} \xi+R_{2} \xi^{2}+\cdots+R_{L} \xi^{L} \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}} \\
R\left(\frac{d}{d t}\right) w=0
\end{gathered}
$$

Behavior := all solutions, i.e.

$$
\mathfrak{B}=\left\{w \in \mathbb{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

$\mathfrak{B}=\operatorname{kernel}\left(R\left(\frac{d}{d t}\right)\right)$ 'kernel representation', polynomial type.

LTID systems

Linear, time-invariant, differential dynamical system \Leftrightarrow

$$
R_{0} w+R_{1} \frac{d}{d t} w+R_{2} \frac{d^{2}}{d t^{2}} w+\cdots+R_{L} \frac{d^{L}}{d t^{L}} w=0
$$

Short-hand nota LTDD systems ${ }^{\text {1atrix }}$

$$
R(\xi)=R_{0}+R_{1} \xi+R_{2} \xi^{-}+\cdots+R_{L} \xi^{\llcorner } \in \mathbb{R}[\xi]^{\bullet \times w}
$$

$$
R\left(\frac{d}{d t}\right) w=0
$$

Behavior := all solutions, i.e.

$$
\mathfrak{B}=\left\{w \in \mathbb{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

$\mathfrak{B}=\operatorname{kernel}\left(R\left(\frac{d}{d t}\right)\right)$ 'kernel representation', polynomial type.

Controllability and stabilizability

Let $\Sigma=\left(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}\right)$ be a time-invariant dynamical system Σ is said to be controllable : \Leftrightarrow

$$
\forall w_{1}, w_{2} \in \mathfrak{B} \exists T \geq 0, \text { and } w \in \mathfrak{B} \text { such that ... }
$$

Controllability and stabilizability

Let $\Sigma=\left(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}\right)$ be a time-invariant dynamical system
Σ is said to be controllable : \Leftrightarrow
Σ is said to be stabilizable $: \Leftrightarrow$
$\forall w \in \mathfrak{B} \exists w^{\prime} \in \mathfrak{B}$ such that \ldots

Controllability and stabilizability

Let $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$ be a time-invariant dynamical system
Σ is said to be controllable $: \Leftrightarrow$
Σ is said to be stabilizable $: \Leftrightarrow$
Theorem: $R\left(\frac{d}{d t}\right) w=0$ defines
a controllable system \Leftrightarrow
$\operatorname{rank}(R(\lambda))$ is the same $\forall \lambda \in \mathbb{C}$
a stabilizable system \Leftrightarrow
$\operatorname{rank}(R(\lambda))$ is the same $\forall \lambda \in \mathbb{C}$ with real part ≥ 0

Rational representations

Rational representations

Let $G \in \mathbb{R}(\xi)^{\bullet \times \text { w }}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the solutions, i.e. by the behavior?

Rational representations

Let $G \in \mathbb{R}(\xi)^{\bullet \times W}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0
$$

What do we mean by the solutions, i.e. by the behavior?
Let (P, Q) be a left-coprime polynomial factorization of G
i.e. $P, Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \operatorname{det}(P) \neq 0, G=P^{-1} Q,[P \vdots Q]$ left-prime.

$$
G\left(\frac{d}{d t}\right) w=0: \Leftrightarrow Q\left(\frac{d}{d t}\right) w=0
$$

E.g., in scalar case, means P and Q have no common roots.

Rational representations

Let (P, Q) be a left-coprime polynomial factorization of G

$$
G\left(\frac{d}{d t}\right) w=0: \Leftrightarrow Q\left(\frac{d}{d t}\right) w=0
$$

Justification:

1. G proper. $G(s)=C(I s-A)^{-1} B+D$ controllable realization. Consider output nulling inputs:

$$
\frac{d}{d t} x=A x+B w, 0=C x+D w
$$

This set of w 's are exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.
Same for $\frac{d}{d t} x=A x+B w, 0=C x+D\left(\frac{d}{d t}\right) w=0, \quad D \in \mathbb{R}[\xi]^{\bullet \times \bullet}$.

Rational representations

Let (P, Q) be a left-coprime polynomial factorization of G

$$
G\left(\frac{d}{d t}\right) w=0: \Leftrightarrow Q\left(\frac{d}{d t}\right) w=0
$$

Justification:

2. Consider $y=G(s) u$. View G as a transfer f'n.

Take your usual favorite definition of input/output pairs.
The output nulling inputs are exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.
3. via Laplace transforms...

$G\left(\frac{d}{d t}\right)$ is not a map!

Consider

$$
y=G\left(\frac{d}{d t}\right) u
$$

We now know what it means that $(u, y) \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$ satisfies this 'ODE'.

Is there a unique y for a given u ?

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u
$$

If $P \neq I$ (better, not unimodular), there are many sol'ns y of this ODE for a given RHS.

Representations

Linear time-invariant differential systems $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$. $\mathfrak{B}=\operatorname{ker}\left(R\left(\frac{d}{d t}\right)\right)$ for some $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}} \quad$ by definition .

Representations

Linear time-invariant differential systems $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$. $\mathfrak{B}=\operatorname{ker}\left(R\left(\frac{d}{d t}\right)\right)$ for some $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}} \quad$ by definition .

But we may as well take the representation $G\left(\frac{d}{d t}\right) w=0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$ as the definition.

Representations

Linear time-invariant differential systems $\Sigma=\left(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}\right)$. $\mathfrak{B}=\operatorname{ker}\left(R\left(\frac{d}{d t}\right)\right)$ for some $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{W}}$ by definition .

But we may as well take the representation $G\left(\frac{d}{d t}\right) w=0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times w}$ as the definition. R : all poles at ∞, we can take G with no poles at ∞, or more generally all poles in some 'fat' set - intersection with \mathbb{R} having non-emply interior.

Theorem: Every linear time-invariant differential systems has a representation

$$
G\left(\frac{d}{d t}\right) w=0
$$

with $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$ strictly proper rational stable.
Proof: Take $G(s)=\frac{R(s)}{(s+\lambda)^{\mathrm{n}}}$, suitable $\lambda \in \mathbb{R}, \mathrm{n} \in \mathbb{N}$.

Matrices of rational functions

Subrings of $\mathbb{R}(\xi)$

$\mathbb{R}(\xi)$: real rational functions.
Consider 3 subrings:

1. $\mathbb{R}[\xi]$: polynomials with real coefficients
2. $\mathbb{R}(\xi)_{\mathscr{P}}$: proper rational functions
3. $\mathbb{R}(\xi)_{\mathscr{S}}$: stable proper rational functions

Subrings of $\mathbb{R}(\xi)$

$\mathbb{R}(\xi)$: real rational functions.
Consider 3 subrings:

1. $\mathbb{R}[\xi]$: polynomials with real coefficients all poles at ∞
2. $\mathbb{R}(\xi)_{\mathscr{P}}$: proper rational functions no poles at ∞
3. $\mathbb{R}(\xi)_{\mathscr{S}}$: stable proper rational functions
no poles in RHP or ∞

Subrings of $\mathbb{R}(\xi)$

$\mathbb{R}(\xi)$: real rational functions.
Consider 3 subrings:

1. $\mathbb{R}[\xi]$: polynomials with real coefficients
2. $\mathbb{R}(\xi)_{\mathscr{P}}$: proper rational functions all poles at ∞
3. $\mathbb{R}(\xi)_{\mathscr{S}}$: stable proper rational functions
no poles in RHP or ∞
Each of these rings has $\mathbb{R}(\xi)$ as its field of fractions.
Unimodular elements (invertible in ring)
4. Non-zero constants.
5. bi-proper.
6. bi-proper and mini-phase.

Matrices over these rings

$\mathbb{R}(\xi)^{\bullet \bullet}$: matrices of real rational functions.

1. $\mathbb{R}[\xi]^{\bullet \times \bullet}$: polynomial matrices with real coefficients
2. $\mathbb{R}(\xi)^{\bullet \bullet \times \bullet}:$ matrices of proper rational functions
3. $\mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \bullet}$: of stable proper rational functions

Matrices over these rings

$\mathbb{R}(\xi)^{\bullet \times \bullet}$: matrices of real rational functions.

1. $\mathbb{R}[\xi]^{\bullet \times \bullet}$: polynomial matrices with real coefficients unimodular: square \& determinant = non-zero constant
2. $\mathbb{R}(\xi)^{\bullet \bullet \bullet}$: matrices of proper rational functions unimodular: square \& determinant biproper
3. $\mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \bullet \bullet}:$ of stable proper rational functions unimodular: square \& determinant biproper and miniphase (poles \& zeros in LHP)

Prime elements

$$
M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}} \text { is left-prime } \quad: \Leftrightarrow
$$

$M=F M^{\prime}, F \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$
$\Rightarrow U$ is uni-modular

Prime elements

$M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is left-prime over $\mathbb{R}[\xi]: \Leftrightarrow$
$M=F M^{\prime}, F \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$
$\Rightarrow U$ is uni-modular over $\mathbb{R}[\xi]$

Prime elements

$M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is left-prime over $\mathbb{R}[\xi]: \Leftrightarrow$
$M=F M^{\prime}, F \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$
$\Rightarrow U$ is uni-modular over $\mathbb{R}[\xi]$
$M \in \mathbb{R}(\xi)_{\mathscr{P}}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is left-prime over $\mathbb{R}(\xi)_{\mathscr{P}}: \Leftrightarrow$
$M=F M^{\prime}, F \in \mathbb{R}(\xi)_{\mathscr{P}}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \in \mathbb{R}(\xi)_{\mathscr{P}}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$
$\Rightarrow U$ is uni-modular over $\mathbb{R}(\xi)_{\mathscr{P}}$

Prime elements

$M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is left-prime over $\mathbb{R}[\xi]: \Leftrightarrow$
$M=F M^{\prime}, F \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$
$\Rightarrow U$ is uni-modular over $\mathbb{R}[\xi]$
$M \in \mathbb{R}(\xi)_{\mathscr{D}}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is left-prime over $\mathbb{R}(\xi)_{\mathscr{P}}: \Leftrightarrow$
$M=F M^{\prime}, F \in \mathbb{R}(\xi)_{\mathscr{P}}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \in \mathbb{R}(\xi)_{\mathscr{P}}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$
$\Rightarrow U$ is uni-modular over $\mathbb{R}(\xi)_{\mathscr{P}}$
$M \in \mathbb{R}(\xi)_{\mathscr{S}}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is left-prime over $\mathbb{R}(\xi)_{\mathscr{S}}: \Leftrightarrow$
$M=F M^{\prime}, F \in \mathbb{R}(\xi)_{\mathscr{S}}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \in \mathbb{R}(\xi)_{\mathscr{P}}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$
$\Rightarrow U$ is uni-modular over $\mathbb{R}(\xi)_{\mathscr{S}}$

Prime representations \& system properties

Prime representations

Theorem: a linear time-invariant differential system admits a representation

$$
G\left(\frac{d}{d t}\right) w=0
$$

with

1. $G \in \mathbb{R}(\xi)^{\bullet \times{ }_{P}}$ left prime over $\mathbb{R}(\xi)_{\mathscr{P}}$
2. $G \in \mathbb{R}[\xi]^{\bullet \times W}$ left prime over $\mathbb{R}[\xi] \Leftrightarrow$ it is controllable
3. $G \in \mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \times W}$ left prime over $\mathbb{R}(\xi)_{\mathscr{S}} \Leftrightarrow$ it is stabilizable

The proof of case $\mathbf{3}$ is not easy!

Controllability and image-like representations

Elimination

Consider

$$
G_{1}\left(\frac{d}{d t}\right) w_{1}=G_{2}\left(\frac{d}{d t}\right) w_{2}
$$

$G_{1}, G_{2} \in \mathbb{R}(\xi)^{\bullet \times \bullet}$. Behavior \mathfrak{B}. Eliminate $w_{2} \leadsto$

$$
\mathfrak{B}_{1}=\left\{w_{1} \mid \exists w_{2} \text { such that }\left(w_{1}, w_{2}\right) \in \mathfrak{B}\right\}
$$

Then \mathfrak{B}_{1} is also a LTID behavior.
In particular

$$
w=H\left(\frac{d}{d t}\right) \ell, \quad H \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet} .
$$

w-behavior is LTID. Image-like representation.

Representations of controllable systems

Theorem: The following are equivalent for LTID systems

1. \mathfrak{B} is controllable
2. \mathfrak{B} admits an image-like representation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } H \in \mathbb{R}[\xi]^{\mathrm{w} \times} \bullet
$$

3. \mathfrak{B} admits an image-like representation

$$
w=H\left(\frac{d}{d t}\right) \ell \text { with } H \in \mathbb{R}(\xi)^{\mathbf{w} \times \bullet}
$$

4. with observability (ℓ can be deduced from w) added
5. with $M \in \mathbb{R}[\xi]^{\mathrm{w} \times}$ • right prime over $\mathbb{R}[\xi]$
6. with $H \in \mathbb{R}(\xi)_{\mathscr{S}}^{W \times \bullet}$ right prime over $\mathbb{R}(\xi)_{\mathscr{S}}$

Relations with classical results

Consider system $y=G u, G \in \mathbb{R}(\xi)^{\mathrm{p} \times \mathrm{m}} \quad$ 'transfer function'
Interpret this as

$$
y=G\left(\frac{d}{d t}\right) u
$$

Automatically controllable!
Only controllable systems covered by tf. f'ns.
Even if G is $\mathbf{i} / \boldsymbol{o}$ unstable or improper, \exists stable kernel- and image-like representations!

Relations with classical results

$$
y=G\left(\frac{d}{d t}\right) u
$$

Even if G is i/o unstable or improper, \exists stable kernel- and image-like representations!

$$
G_{1}\left(\frac{d}{d t}\right) y=G_{2}\left(\frac{d}{d t}\right) u
$$

$\left[\begin{array}{lll}G_{1} & \vdots & G_{2}\end{array}\right] \in \mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \bullet \bullet}$ left prime over $\mathbb{R}(\xi)_{\mathscr{S}}$.

Relations with classical results

$$
y=G\left(\frac{d}{d t}\right) u
$$

Even if G is i/o unstable or improper, \exists stable kernel- and image-like representations!

$$
G_{1}\left(\frac{d}{d t}\right) y=G_{2}\left(\frac{d}{d t}\right) u
$$

$\left[\begin{array}{lll}G_{1} & \vdots & G_{2}\end{array}\right] \in \mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \bullet}$ left prime over $\mathbb{R}(\xi)_{\mathscr{S}}$.
$\left[\begin{array}{l}u \\ y\end{array}\right]=\left[\begin{array}{l}H_{1}\left(\frac{d}{d t}\right) \\ H_{2}\left(\frac{d}{d t}\right)\end{array}\right]$,
$\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right] \in \mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \bullet}$ right prime over $\mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \bullet}$.

Relations with classical results

$$
\begin{gathered}
y=G\left(\frac{d}{d t}\right) u \\
G=G_{1}^{-1} G_{2}=H_{2} H_{1}^{-1}
\end{gathered}
$$

left/right co-prime factorizations over $\mathbb{R}(\xi)_{\mathscr{S}}$. As over $\mathbb{R}[\xi]$.
Classical, but we obtain the representation

$$
G_{1}\left(\frac{d}{d t}\right) y=G_{2}\left(\frac{d}{d t}\right) u
$$

with $\left[\begin{array}{lll}G_{1} & \vdots & G_{2}\end{array}\right] \in \mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \times \bullet}$ left prime over $\mathbb{R}(\xi)_{\mathscr{S}}$
also for stabilzable systems, instead of only controllable ones.

The annihilators

Polynomial and rational annihilators

Let $w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$.
For $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$ it is clear what we mean by

$$
R\left(\frac{d}{d t}\right) w=0
$$

Polynomial and rational annihilators

Let $w \in \mathfrak{C}^{+\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$.
For $R \in \mathbb{R}[\xi]^{\bullet \times w}$ it is clear what we mean by

$$
R\left(\frac{d}{d t}\right) w=0 .
$$

But now we also know what we mean by

$$
G\left(\frac{d}{d t}\right) w=0
$$

for $G \in \mathbb{R}(\xi)^{\bullet \times w}$.
This gives us the opportunity to discuss more operators that annihilate a given behavior.

Polynomial and rational annihilators

Let \mathfrak{B} be the behavior of a LTID system.
Call $n \in \mathbb{R}[\xi]^{\mathbb{W}}$ a polynomial annihilator of $\mathfrak{B}: \Leftrightarrow$

$$
n^{\top}\left(\frac{d}{d t}\right) \mathfrak{B}=0 .
$$

Call $n \in \mathbb{R}(\xi)^{\mathbb{W}}$ a rational annihilator of $\mathfrak{B}: \Leftrightarrow n^{\top}\left(\frac{d}{d t}\right) \mathfrak{B}=0$.

Polynomial and rational annihilators

Let \mathfrak{B} be the behavior of a LTID system.
Call $n \in \mathbb{R}[\xi]^{\mathbb{W}}$ a polynomial annihilator of $\mathfrak{B}: \Leftrightarrow$

$$
n^{\top}\left(\frac{d}{d t}\right) \mathfrak{B}=0
$$

Call $n \in \mathbb{R}(\xi)^{\mathbb{W}}$ a rational annihilator of $\mathfrak{B}: \Leftrightarrow n^{\top}\left(\frac{d}{d t}\right) \mathfrak{B}=0$.

1. The polynomial annihilators of \mathfrak{B} form $\mathfrak{R}[\xi]$-module.
2. The rational annihilators of \mathfrak{B} form a $\mathbb{R}[\xi]$-module.
3. The rational annihilators of a controllable \mathfrak{B} form a $\mathbb{R}(\xi)$-vectorspace.
4. There is a one-one relation between the LTID behaviors and the $\mathbb{R}[\xi]$-submodules of $\mathbb{R}[\xi]^{W}$.
5. There is a one-one relation between the controllable LTID behaviors and the $\mathbb{R}(\xi)$-subspaces of $\mathbb{R}(\xi)^{w}$.

Why bother with rational rather than just polynomial 'symbols'?

Why bother with rational rather than just polynomial 'symbols'?

1. Parametrization of all stabilizing controllers
2. Model reduction of behavioral systems

Parametrization of all stabilizing controllers

Polynomial characterization

Plant \& controller LTID systems, behaviors \mathfrak{P} and \mathfrak{C}, resp.
Controlled behavior $\mathfrak{B}=\mathfrak{P} \cap \mathfrak{C}$. Also LTID.

Polynomial characterization

Plant \& controller LTID systems, behaviors \mathfrak{P} and \mathfrak{C}, resp.
Controlled behavior $\mathfrak{B}=\mathfrak{P} \cap \mathfrak{C}$. Also LTID.
Call \mathfrak{B} stable if $w \in \mathfrak{B} \Rightarrow w(t) \rightarrow 0$ for $t \rightarrow \infty$

Polynomial characterization

Plant \& controller LTID systems, behaviors \mathfrak{P} and \mathfrak{C}, resp.
Controlled behavior $\mathfrak{B}=\mathfrak{P} \cap \mathfrak{C}$. Also LTID.
Call \mathfrak{B} stable if $w \in \mathfrak{B} \Rightarrow w(t) \rightarrow 0$ for $t \rightarrow \infty$
Given plant \mathfrak{P}, which controllers \mathfrak{C} are stabilizing?
We will only consider 'regular' controllers.

Polynomial characterization (Kuijper)

Plant \mathfrak{P}, assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}^{\prime} such that

$$
\mathfrak{P} \oplus \mathfrak{P}^{\prime}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}\right)
$$

Polynomial characterization (Kuijper)

Plant \mathfrak{P}, assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}^{\prime} such that

$$
\mathfrak{P} \oplus \mathfrak{P}^{\prime}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}\right)
$$

Now take kernel representations of \mathfrak{P} and \mathfrak{P}^{\prime}

$$
\begin{aligned}
& P\left(\frac{d}{d t}\right) w=0, \quad P \in \mathbb{R}[\xi]^{\bullet \times \mathbb{W}}, \text { left prime over } \mathbb{R}[\xi] . \\
& P^{\prime}\left(\frac{d}{d t}\right) w=0, \quad P^{\prime} \in \mathbb{R}[\xi]^{\bullet \times \mathbb{w}}, \text { left prime over } \mathbb{R}[\xi] .
\end{aligned}
$$

Polynomial characterization (Kuijper)

Plant \mathfrak{P}, assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}^{\prime} such that

$$
\mathfrak{P} \oplus \mathfrak{P}^{\prime}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)
$$

$\mathfrak{P} \cap \mathfrak{P}^{\prime}=\{0\} \& \mathfrak{P}+\mathfrak{P}^{\prime}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \Leftrightarrow\left[\begin{array}{c}P \\ P^{\prime}\end{array}\right]$ unimodular
Let $C\left(\frac{d}{d t}\right) w=0$ be a controller.
Unimodularity $\Rightarrow \mathbf{i t}$ is of the form $C=F P+F^{\prime} P^{\prime}$
since $C=\left[\begin{array}{lll}F & \vdots & F^{\prime}\end{array}\right]\left[\begin{array}{c}P \\ P^{\prime}\end{array}\right]$ is solvable for F, F^{\prime}.

Polynomial characterization (Kuijper)

Plant \mathfrak{P}, assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}^{\prime} such that

$$
\begin{gathered}
\mathfrak{P} \oplus \mathfrak{P}^{\prime}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{W}}\right) \\
C=F P+F^{\prime} P^{\prime}
\end{gathered}
$$

Stabilizing? Controlled behavior:

$$
\left[\begin{array}{c}
P \\
F P+F^{\prime} P^{\prime}
\end{array}\right]\left(\frac{d}{d t}\right) w=0 \Leftrightarrow\left[\begin{array}{cc}
I & 0 \\
0 & F^{\prime}
\end{array}\right]\left[\begin{array}{c}
P \\
P^{\prime}
\end{array}\right]\left(\frac{d}{d t}\right) w=0
$$

Stabilizing $\Leftrightarrow F^{\prime}$ is 'Hurwitz’ (square, roots det in LHP).

Polynomial characterization (Kuijper)

Plant \mathfrak{P}, assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}^{\prime} such that

$$
\begin{gathered}
\mathfrak{P} \oplus \mathfrak{P}^{\prime}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}\right) \\
C=F P+F^{\prime} P^{\prime}
\end{gathered}
$$

Stabilizing? Controlled behavior:

$$
\left[\begin{array}{c}
P \\
F P+F^{\prime} P^{\prime}
\end{array}\right]\left(\frac{d}{d t}\right) w=0 \Leftrightarrow\left[\begin{array}{cc}
I & 0 \\
0 & F^{\prime}
\end{array}\right]\left[\begin{array}{c}
P \\
P^{\prime}
\end{array}\right]\left(\frac{d}{d t}\right) w=0
$$

Stabilizing $\Leftrightarrow F^{\prime}$ is 'Hurwitz' (square, roots det in LHP). All (regular) stab'ing controllers (polynomial parametrization):

$$
C=F P+F^{\prime} P^{\prime}, \quad F \text { anything, } F^{\prime} \text { Hurwitz }
$$

Kucera-Youla type characterization

The stability concept used is input/output stability. For simplicity of notation, assume that the signals are scalar.

Kucera-Youla type characterization

The stability concept used is input/output stability. For simplicity of notation, assume that the signals are scalar.

Represent $G_{1}=D_{1}^{-1} N_{1}$ and $G_{2}=D_{2}^{-1} N_{2}$ with $D_{1}, N_{1}, D_{2}, N_{2}$ proper stable rational.

Can be shown (Vidyasagar): input/output stability $\Leftrightarrow N_{1} N_{2}-D_{1} D_{2}$ unimodular over the ring of proper stable rational functions. Bi-proper and miniphase.

Kucera-Youla type characterization

Given plant, which controllers stabilize?

Kucera-Youla type characterization

Given plant, which controllers stabilize?

Proceed as in the polynomial case: Take kernel representations of \mathfrak{P} and \mathfrak{P}^{\prime}

$$
\begin{gathered}
P\left(\frac{d}{d t}\right) w=0, \quad P \in \mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \times w}, \text { left prime over } \mathbb{R}(\xi)_{\mathscr{S}} \\
P^{\prime}\left(\frac{d}{d t}\right) w=0, \quad P^{\prime} \in \mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \times w}, \text { left prime over } \mathbb{R}(\xi)_{\mathscr{S}}
\end{gathered}
$$

such that

$$
\left[\begin{array}{c}
P \\
P^{\prime}
\end{array}\right] \text { is unimodular over } \mathbb{R}(\xi)_{\mathscr{S}}
$$

Kucera-Youla type characterization

Given plant, which controllers stabilize?

Let $C\left(\frac{d}{d t}\right) w=0$ be a controller.
Unimodularity \Rightarrow it is of the form
$C=F P+F^{\prime} P^{\prime}$
since $C=\left[\begin{array}{lll}F & \vdots & F^{\prime}\end{array}\right]\left[\begin{array}{c}P \\ P^{\prime}\end{array}\right]$ is solvable for F, F^{\prime}.

Kucera-Youla type characterization

Given plant, which controllers stabilize?

Let $C\left(\frac{d}{d t}\right) w=0$ be a controller.
Unimodularity \Rightarrow it is of the form

$$
C=F P+F^{\prime} P^{\prime}
$$

Stabilizing? Controlled behavior :

$$
\left[\begin{array}{c}
P \\
F P+F^{\prime} P^{\prime}
\end{array}\right]\left(\frac{d}{d t}\right) w=0 \Leftrightarrow\left[\begin{array}{cc}
I & 0 \\
F & F^{\prime}
\end{array}\right]\left[\begin{array}{c}
P \\
P^{\prime}
\end{array}\right]\left(\frac{d}{d t}\right) w=0
$$

Stabilizing \Leftrightarrow
F^{\prime} is unimodular over $\mathbb{R}(\xi)_{\mathscr{S}}$ (biproper \& miniphase).

Kucera-Youla type characterization

Given plant, which controllers stabilize?

Let $C\left(\frac{d}{d t}\right) w=0$ be a controller.
Unimodularity \Rightarrow it is of the form

$$
C=F P+F^{\prime} P^{\prime}
$$

Stabilizing \Leftrightarrow

$$
F^{\prime} \text { is unimodular over } \mathbb{R}(\xi)_{\mathscr{S}} \text { (biproper \& miniphase). }
$$

All stabilizing controllers (kernel-like representation):

$$
C=F P+F^{\prime} P^{\prime} \Leftrightarrow C=R P+P^{\prime} \text { with } R \in \mathbb{R}(\xi)_{\mathscr{S}}
$$

Advantages over polynomial case: involves only ring: $\mathbb{R}(\xi)_{\mathscr{S}}$

Model reduction

Unitary representations

It is pedagogically easier to discuss 'image-like' representations, hence controllable systems.

Even though it is possible to deal also with 'kernel-like' representations. These would only require stabilizability.

Unitary representations

$$
w=G\left(\frac{d}{d t}\right) \ell
$$

is said to be a unitary representation $: \Leftrightarrow$
$(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$ and $w=G\left(\frac{d}{d t}\right) \ell \Rightarrow$

$$
\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)}=\|\ell\|_{\mathscr{L}_{2}(\mathbb{R}, \mathbb{R} \bullet)}
$$

Easy:

$$
\text { unitary } \Leftrightarrow G^{\top}(-s) G(s)=I \quad \forall s \in \mathbb{C}
$$

If in addition G is stable rational, then norm preserving on $\mathscr{L}_{2}\left(\mathbb{R}_{+}, \mathbb{R}^{\bullet}\right)$.

Unitary representations

A controllable LTID system admits a unitary representation.

Proof: start with any observable representation $w=G\left(\frac{d}{d t}\right) \ell$. Spectral factor

$$
G^{\top}(-s) G(s)=F^{\top}(-s) F(s) .
$$

Take $G \rightarrow G F^{-1}$. The representation $w=G F^{-1}\left(\frac{d}{d t}\right) \ell$ is unitary. Stability may be added.

This result needs rational symbols - not possible with polynomial models.

Distance between two systems

Usually state space systems

$$
\frac{d}{d t} x=A x+B u, y=C x+D u
$$

that are moreover stable. Balancing, Hankel norm.
Error bound

$$
\left\|G-G_{\text {reduced }}\right\|_{\mathscr{H}_{\infty}} \leq 2(\text { sum of neglected } \mathbf{S V} ' \mathbf{s})
$$

Is stability needed for model reduction What can be done with behaviors?

Distance between two systems

In usual input/output approach, the system is (roughly) an input/output map.

Then distance between two systems = induced norm of difference. $\sim \mathscr{H}_{\infty}$-norms etc.

But this only makes sense if the maps are bounded.
Requires stability!

How do we measure system approximation if a system is given as a behavior?

Distance between two systems

Distance between two LTID behaviors:
Define, for a given \mathfrak{B}, hence $\subseteq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$, the \mathscr{L}_{2}-behavior as

$$
\mathfrak{B}_{2}=\mathfrak{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}\right)
$$

Easy: \mathfrak{B}_{2} is a linear subspace of $\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$. Take closure.

Distance between two systems

Distance between two LTID behaviors:
Define, for a given \mathfrak{B}, hence $\subseteq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$, the \mathscr{L}_{2}-behavior as

$$
\mathfrak{B}_{2}=\mathfrak{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)
$$

Easy: \mathfrak{B}_{2} is a linear subspace of $\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right)$. Take closure.
Define the distance between two controllable LTID behaviors $\mathfrak{B}^{\prime}, \mathfrak{B}^{\prime \prime}$ as the distance between $\mathfrak{B}_{2}^{\prime}$ and $\mathfrak{B}_{2}^{\prime \prime} . \leadsto$ distance between 2 closed linear subspaces of $\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$. Standard notion (Kato): graph metric.

$$
d\left(\mathfrak{B}^{\prime}, \mathfrak{B}^{\prime \prime}\right):=\left\|P_{\mathfrak{B}_{2}^{\prime}}-P_{\mathfrak{B}_{2}^{\prime \prime}}\right\|
$$

where the P 's denote the orthogonal projection operators.

Model reduction of behaviors

Consider the LTID \mathfrak{B}, controllable (no stability).
Complexity $:=$ McMillan degree. Notation: $n(\mathfrak{B})$.

Model reduction of behaviors

Consider the LTID \mathfrak{B}, controllable (no stability).
Complexity := McMillan degree. Notation: $\mathrm{n}(\mathfrak{B})$. This can be defined in many ways. Easiest: dimension of the state space in a minimal state representation of \mathfrak{B}

$$
\frac{d}{d t} x=A x+B w_{1}, w_{2}=C x+D w_{2}, w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

Model reduction of behaviors

Consider the LTID \mathfrak{B}, controllable (no stability).
Complexity $:=$ McMillan degree. Notation: $n(\mathfrak{B})$.
Problem:
Approximate \mathfrak{B} by a LTID $\mathfrak{B}_{\text {reduced }}$ of complexity $\leq k$ with $k<n(\mathfrak{B})$.

Give a bound for $d\left(\mathfrak{B}, \mathfrak{B}_{\text {reduced }}\right)$ in the graph metric.

Model reduction of behaviors

Algorithm:

1. Compute a stable unitary representation of \mathfrak{B} :

$$
w=G\left(\frac{d}{d t}\right) \ell .
$$

G is stable!
2. Make a balanced reduction of $G \leadsto G_{\text {reduced }}$.
3. Define $\mathfrak{B}_{\text {reduced }}$ as the system with image-like representation

$$
w=G_{\text {reduced }}\left(\frac{d}{d t}\right) \ell .
$$

4. There holds
$d\left(\mathfrak{B}, \mathfrak{B}_{\text {reduced }}\right) \leq 2($ sum of the neglected $\mathbf{S V} ' \mathbf{s})$

Recapitulation

Conclusion

- LTID: $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}\right), \mathfrak{B}=\operatorname{ker}\left(R\left(\frac{d}{d t}\right)\right), R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$.
- controllability, stabilizability.
- Representations: ways to specify \mathfrak{B} : kernel, image, state space, transfer functions, ...
- in terms of rational symbols: $G\left(\frac{d}{d t}\right) w=0$, using left co-prime polynomial factorization of $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$.

Conclusion

- LTID: $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}\right), \mathfrak{B}=\operatorname{ker}\left(R\left(\frac{d}{d t}\right)\right), R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$.
- controllability, stabilizability.
- Representations: ways to specify \mathfrak{B} : kernel, image, state space, transfer functions, ...
- in terms of rational symbols: $G\left(\frac{d}{d t}\right) w=0$, using left co-prime polynomial factorization of $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{W}}$.
- Left prime representations: over $\mathbb{R}[\xi] \Leftrightarrow$ controllable, over proper stable rational \Leftrightarrow stabilizable.
- Via annihilators: LTID systems $1 \leftrightarrow 1 \mathbb{R}[\xi]$-modules; controllable LTID systems $1 \leftrightarrow 1 \mathbb{R}(\xi)$-subspaces;

Conclusion

- LTID: $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}\right), \mathfrak{B}=\operatorname{ker}\left(R\left(\frac{d}{d t}\right)\right), R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$.
- controllability, stabilizability.
- Representations: ways to specify \mathfrak{B} : kernel, image, state space, transfer functions, ...
- in terms of rational symbols: $G\left(\frac{d}{d t}\right) w=0$, using left co-prime polynomial factorization of $G \in \mathbb{R}(\xi)^{\bullet \times W}$.
- Left prime representations: over $\mathbb{R}[\xi] \Leftrightarrow$ controllable, over proper stable rational \Leftrightarrow stabilizable.
- Via annihilators: LTID systems $1 \leftrightarrow 1 \mathbb{R}[\xi]$-modules; controllable LTID systems $1 \leftrightarrow 1 \mathbb{R}(\xi)$-subspaces;
- Applications where rational symbols are indispensable: Kucera-Youla parametrization of stabilizing controllers; unitary representations and model reduction.

Reference:

JCW and YY
Behaviors defined by rational functions
Linear Algebra and Applications
to appear

Reference:
JCW and YY
Behaviors defined by rational functions
Linear Algebra and Applications
to appear

Thank you for your attention

