RATIONAL REPRESENTATIONS

of LTID systems

Jan Willems K.U. Leuven, Belgium

Kyoto University, Japan

November 9, 2006

Joint work with

Yutaka Yamamoto, Kyoto University

Preliminaries

Behaviors & all that

A dynamical system: \Leftrightarrow $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$

 $\mathbb{T} \subseteq \mathbb{R}$ the time-axis

 \mathbb{W} the signal space

 $\mathfrak{B} \subset \mathbb{W}^{\mathbb{T}}$ the *behavior* - a family of trajectories

Behaviors & all that

A dynamical system: \Leftrightarrow $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$

 $\mathbb{T} \subseteq \mathbb{R}$ the *time-axis* today $\mathbb{T} = \mathbb{R}$ the *signal space* $today W = \mathbb{R}^{W}$ \mathbb{W}

 $\mathfrak{B} \subset \mathbb{W}^{\mathbb{T}}$ the *behavior* - a family of trajectories

Behaviors & all that

A dynamical system: \Leftrightarrow $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$

 $\mathbb{T} \subseteq \mathbb{R}$ the *time-axis* today $\mathbb{T} = \mathbb{R}$ \mathbb{W} the signal space today $\mathbb{W} = \mathbb{R}^{\mathbb{W}}$ $\mathfrak{B} \subset \mathbb{W}^{\mathbb{T}}$ the *behavior* - a family of trajectories

 $\Sigma = (\mathbb{R}, \mathbb{R}^{\mathsf{w}}, \mathfrak{B})$ is said to be linear : $\Leftrightarrow \mathfrak{B}$ is a linear space

time-invariant : $\Leftrightarrow \mathfrak{B}$ is shift-invariant

 $w \in \mathfrak{B} \text{ and } t \in \mathbb{R} \quad \Rightarrow \quad \boldsymbol{\sigma}^t w \in \mathfrak{B}$ σ^t denotes the 'shift': $(\sigma^t w)(t') = w(t'+t)$

differential: $\Leftrightarrow \mathfrak{B}$ is the set of sol'ns of an ODE

Examples

Dynamical system:

$$\Sigma$$
: $\overset{\bullet}{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{t}), \quad \mathbf{y} = h(\mathbf{x}, \mathbf{u}, \mathbf{t})$

$$u \in \mathbb{U} = \mathbb{R}^m, y \in \mathbb{Y} = \mathbb{R}^p, x \in \mathbb{X} = \mathbb{R}^n$$
: input, output, state.

Behavior $\mathfrak{B} =$ all sol'ns $(u, y, x) : \mathbb{R} \to \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$.

Time-invariant:

$$\Sigma: \quad \stackrel{\bullet}{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}), \quad \mathbf{y} = h(\mathbf{x}, \mathbf{u})$$

Linear time-invariant:

$$\Sigma$$
: $\overset{\bullet}{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$, $\mathbf{y} = C\mathbf{x} + D\mathbf{u}$

Linear, time-invariant, differential dynamical system ⇔

$$R_0w + R_1\frac{d}{dt}w + R_2\frac{d^2}{dt^2}w + \dots + R_L\frac{d^L}{dt^L}w = 0$$

Linear, time-invariant, differential dynamical system ⇔

$$R_0w + R_1\frac{d}{dt}w + R_2\frac{d^2}{dt^2}w + \dots + R_L\frac{d^L}{dt^L}w = 0$$

Short-hand notation: introduce polynomial matrix

$$R(\xi) = R_0 + R_1 \xi + R_2 \xi^2 + \dots + R_L \xi^L \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$$

$$R\left(\frac{d}{dt}\right)w = 0$$

Linear, time-invariant, differential dynamical system \Leftrightarrow

$$R_0w + R_1\frac{d}{dt}w + R_2\frac{d^2}{dt^2}w + \dots + R_L\frac{d^L}{dt^L}w = 0$$

Short-hand notation: introduce polynomial matrix

$$R(\xi) = R_0 + R_1 \xi + R_2 \xi^2 + \dots + R_L \xi^L \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$$

$$R\left(\frac{d}{dt}\right)w = 0$$

Behavior := all solutions, i.e.

$$\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{W}}) \mid R\left(\frac{d}{dt}\right)w = 0 \}$$

 $\mathfrak{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$ 'kernel representation', polynomial type.

Linear, time-invariant, differential dynamical system ⇔

$$R_0w + R_1\frac{d}{dt}w + R_2\frac{d^2}{dt^2}w + \dots + R_L\frac{d^L}{dt^L}w = 0$$

Short-hand nota LTID systems natrix

$$R(\xi) = R_0 + R_1 \xi + R_2 \xi^2 + \dots + R_L \xi^L \in \mathbb{R}[\xi]^{\bullet imes \mathtt{w}}$$

$$R\left(\frac{d}{dt}\right)w = 0$$

Behavior := all solutions, i.e.

$$\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{w}}) \mid R\left(\frac{d}{dt}\right)w = 0 \}$$

 $\mathfrak{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$ 'kernel representation', polynomial type.

Controllability and stabilizability

Let $\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$ be a time-invariant dynamical system

 Σ is said to be **controllable** : \Leftrightarrow

 $\forall w_1, w_2 \in \mathfrak{B} \exists T \geq 0$, and $w \in \mathfrak{B}$ such that ...

Controllability and stabilizability

Let $\Sigma = (\mathbb{R}, \mathbb{R}^w, \mathfrak{B})$ be a time-invariant dynamical system

 Σ is said to be **controllable** : \Leftrightarrow

 Σ is said to be stabilizable : \Leftrightarrow

 $\forall w \in \mathfrak{B} \exists w' \in \mathfrak{B} \text{ such that ...}$

Controllability and stabilizability

Let $\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$ be a time-invariant dynamical system

 Σ is said to be **controllable** : \Leftrightarrow

 Σ is said to be stabilizable : \Leftrightarrow

Theorem: $R\left(\frac{d}{dt}\right)w = 0$ **defines**

a controllable system \Leftrightarrow

 $\operatorname{rank}\left(R\left(\lambda\right)\right)$ is the same $\forall\ \lambda\in\mathbb{C}$

a stabilizable system \Leftrightarrow

 $\operatorname{rank}\left(R\left(\lambda\right)\right)$ is the same $\forall\;\lambda\in\mathbb{C}$ with real part ≥0

Let $G \in \mathbb{R}(\xi)^{\bullet \times w}$, and consider the 'differential equation'

$$G\left(\frac{d}{dt}\right)w = 0$$

What do we mean by the solutions, i.e. by the behavior?

Let $G \in \mathbb{R}(\xi)^{\bullet \times w}$, and consider the 'differential equation'

$$G\left(\frac{d}{dt}\right)w = 0$$

What do we mean by the solutions, i.e. by the behavior?

Let (P,Q) be a left-coprime polynomial factorization of G

i.e. $P,Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}, \det(P) \neq 0, G = P^{-1}Q, [P \ \vdots \ Q]$ left-prime.

$$G(\frac{d}{dt})w = 0 :\Leftrightarrow Q(\frac{d}{dt})w = 0$$

E.g., in scalar case, means P and Q have no common roots.

Let (P,Q) be a left-coprime polynomial factorization of G

$$G(\frac{d}{dt})w = 0 :\Leftrightarrow Q(\frac{d}{dt})w = 0$$

Justification:

1. G proper. $G(s) = C(Is - A)^{-1}B + D$ controllable realization. Consider output nulling inputs:

$$\frac{d}{dt}x = Ax + Bw, \quad 0 = Cx + Dw$$

 $\frac{d}{dt}x = Ax + Bw, \ \ 0 = Cx + Dw$ This set of w's are exactly those that satisfy $G\left(\frac{d}{dt}\right)w = 0$.

Same for
$$\frac{d}{dt}x = Ax + Bw, 0 = Cx + D\left(\frac{d}{dt}\right)w = 0, \ D \in \mathbb{R}\left[\xi\right]^{\bullet \times \bullet}$$
.

Let (P,Q) be a left-coprime polynomial factorization of G

$$G(\frac{d}{dt})w = 0 :\Leftrightarrow Q(\frac{d}{dt})w = 0$$

Justification:

2. Consider y = G(s)u. View G as a transfer f'n. Take your usual favorite definition of input/output pairs.

The output nulling inputs are exactly those that satisfy $G\left(\frac{d}{dt}\right)w=0$.

3. via Laplace transforms...

 $G\left(\frac{d}{dt}\right)$ is not a map!

Consider

$$y = G\left(\frac{d}{dt}\right)u$$

We now know what it means that $(u, y) \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\bullet})$ satisfies this 'ODE'.

Is there a unique y for a given u?

$$P(\frac{d}{dt})y = Q(\frac{d}{dt})u$$

If $P \neq I$ (better, not unimodular), there are many sol'ns y of this ODE for a given RHS.

Representations

Linear time-invariant differential systems $\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$.

$$\mathfrak{B} = \ker\left(R\left(\frac{d}{dt}\right)\right) \text{ for some } R \in \mathbb{R}\left[\xi\right]^{\bullet \times w} \text{ by definition.}$$

Representations

Linear time-invariant differential systems $\Sigma = (\mathbb{R}, \mathbb{R}^{\mathbb{W}}, \mathfrak{B})$. $\mathfrak{B} = \ker \left(R\left(\frac{d}{dt} \right) \right)$ for some $R \in \mathbb{R}\left[\xi \right]^{\bullet \times \mathbb{W}}$ by definition.

But we may as well take the representation $G\left(\frac{d}{dt}\right)w=0$ for some $G\in\mathbb{R}\left(\xi\right)^{\bullet\times\mathbb{W}}$ as the definition.

Representations

Linear time-invariant differential systems $\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$.

$$\mathfrak{B}=\ker\left(R\left(\frac{d}{dt}\right)\right) \text{ for some } R\in\mathbb{R}\left[\xi\right]^{\bullet\times\mathbb{W}}$$
 by definition .

But we may as well take the representation $G\left(\frac{d}{dt}\right)w=0$ for some $G\in\mathbb{R}\left(\xi\right)^{\bullet\times\mathbb{W}}$ as the definition.

R: all poles at ∞ , we can take G with no poles at ∞ , or more generally all poles in some 'fat' set - intersection with $\mathbb R$ having non-empty interior.

Theorem: Every linear time-invariant differential systems has a representation

$$G\left(\frac{d}{dt}\right)w = 0$$

with $G \in \mathbb{R}\left(\xi\right)^{\bullet \times w}$ strictly proper rational stable.

Proof: Take
$$G(s) = \frac{R(s)}{(s+\lambda)^n}$$
, suitable $\lambda \in \mathbb{R}, n \in \mathbb{N}$.

Matrices of rational functions

Subrings of $\mathbb{R}\left(\xi\right)$

 $\mathbb{R}(\xi)$: real rational functions.

Consider 3 subrings:

- 1. $\mathbb{R}[\xi]$: polynomials with real coefficients
- 2. $\mathbb{R}(\xi)_{\mathscr{P}}$: proper rational functions
- 3. $\mathbb{R}(\xi)_{\mathscr{S}}$: stable proper rational functions

Subrings of $\mathbb{R}(\xi)$

 $\mathbb{R}(\xi)$: real rational functions.

Consider 3 subrings:

- 1. $\mathbb{R}[\xi]$: polynomials with real coefficients all poles at ∞
- 2. $\mathbb{R}(\xi)_{\mathscr{P}}$: proper rational functions no poles at ∞
- 3. $\mathbb{R}(\xi)_{\mathscr{S}}$: stable proper rational functions

no poles in RHP or ∞

Subrings of $\mathbb{R}\left(\xi\right)$

 $\mathbb{R}(\xi)$: real rational functions.

Consider 3 subrings:

- 1. $\mathbb{R}[\xi]$: polynomials with real coefficients all poles at ∞
- 2. $\mathbb{R}(\xi)_{\mathscr{P}}$: proper rational functions no poles at ∞
- 3. $\mathbb{R}(\xi)_{\mathscr{S}}$: stable proper rational functions

no poles in RHP or ∞

Each of these rings has $\mathbb{R}(\xi)$ as its field of fractions.

Unimodular elements (invertible in ring)

- 1. Non-zero constants.
- 2. bi-proper.
- 3. bi-proper and mini-phase.

miniphase:⇔ poles & zeros in LHP

Matrices over these rings

 $\mathbb{R}\left(\xi\right)^{\bullet \times \bullet}$: matrices of real rational functions.

- 1. $\mathbb{R}[\xi]^{\bullet \times \bullet}$: polynomial matrices with real coefficients
- 2. $\mathbb{R}(\xi)^{\bullet \times \bullet}_{\mathscr{P}}$: matrices of proper rational functions
- 3. $\mathbb{R}(\xi)^{\bullet \times \bullet}_{\mathscr{S}}$: of stable proper rational functions

Matrices over these rings

 $\mathbb{R}\left(\xi\right)^{\bullet imes \bullet}$: matrices of real rational functions.

- 1. $\mathbb{R}[\xi]^{\bullet \times \bullet}$: polynomial matrices with real coefficients unimodular: square & determinant = non-zero constant
- 2. $\mathbb{R}(\xi)^{\bullet \times \bullet}_{\mathscr{P}}$: matrices of proper rational functions unimodular: square & determinant biproper
- 3. $\mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \times \bullet}$: of stable proper rational functions unimodular: square & determinant biproper and miniphase (poles & zeros in LHP)

$$M \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2}$$
 is left-prime :\$\Rightarrow\$ $M = FM', F \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_1}, M' \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2}$ \$\Rightarrow\$ U is uni-modular

$$M \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2}$$
 is left-prime over $\mathbb{R} \left[\xi \right] : \Leftrightarrow$

$$M = FM', F \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_1}, M' \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2}$$

$$\Rightarrow U \text{ is uni-modular over } \mathbb{R} \left[\xi \right]$$

$$M \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2}$$
 is left-prime over $\mathbb{R} \left[\xi \right] :\Leftrightarrow$

$$M = FM', F \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_1}, M' \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2}$$

$$\Rightarrow U \text{ is uni-modular over } \mathbb{R} \left[\xi \right]$$

$$M \in \mathbb{R} (\xi)_{\mathscr{P}}^{\mathbf{n}_1 \times \mathbf{n}_2}$$
 is left-prime over $\mathbb{R} (\xi)_{\mathscr{P}}$: \Leftrightarrow

$$M = FM', F \in \mathbb{R} (\xi)_{\mathscr{P}}^{\mathbf{n}_1 \times \mathbf{n}_1}, M' \in \mathbb{R} (\xi)_{\mathscr{P}}^{\mathbf{n}_1 \times \mathbf{n}_2}$$

$$\Rightarrow U \text{ is uni-modular over } \mathbb{R} (\xi)_{\mathscr{P}}$$

$$M \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2}$$
 is left-prime over $\mathbb{R} \left[\xi \right] : \Leftrightarrow$

$$M = FM', F \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_1}, M' \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2}$$

$$\Rightarrow U \text{ is uni-modular over } \mathbb{R} \left[\xi \right]$$

$$M \in \mathbb{R} (\xi)_{\mathscr{P}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}}$$
 is left-prime over $\mathbb{R} (\xi)_{\mathscr{P}} :\Leftrightarrow$

$$M = FM', F \in \mathbb{R} (\xi)_{\mathscr{P}}^{\mathbf{n}_{1} \times \mathbf{n}_{1}}, M' \in \mathbb{R} (\xi)_{\mathscr{P}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}}$$

$$\Rightarrow U \text{ is uni-modular over } \mathbb{R} (\xi)_{\mathscr{P}}$$

$$M \in \mathbb{R} (\xi)_{\mathscr{S}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}}$$
 is left-prime over $\mathbb{R} (\xi)_{\mathscr{S}} : \Leftrightarrow$

$$M = FM', F \in \mathbb{R} (\xi)_{\mathscr{S}}^{\mathbf{n}_{1} \times \mathbf{n}_{1}}, M' \in \mathbb{R} (\xi)_{\mathscr{S}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}}$$

$$\Rightarrow U \text{ is uni-modular over } \mathbb{R} (\xi)_{\mathscr{S}}$$

Prime representations

Theorem: a linear time-invariant differential system admits a representation

$$G\left(\frac{d}{dt}\right)w = 0$$

with

- 1. $G \in \mathbb{R}(\xi)^{\bullet \times w}_{\mathscr{P}}$ left prime over $\mathbb{R}(\xi)_{\mathscr{P}}$
- 2. $G \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$ left prime over $\mathbb{R}\left[\xi\right] \Leftrightarrow$ it is controllable
- 3. $G \in \mathbb{R}(\xi)^{\bullet \times w}_{\mathscr{S}}$ left prime over $\mathbb{R}(\xi)_{\mathscr{S}} \Leftrightarrow$ it is stabilizable

The proof of case 3 is not easy!

Elimination

Consider

$$G_1\left(\frac{d}{dt}\right)w_1 = G_2\left(\frac{d}{dt}\right)w_2$$

 $G_1,G_2\in\mathbb{R}\left(\xi\right)^{\bullet\times\bullet}$. Behavior $\mathfrak{B}.$ Eliminate $w_2\rightsquigarrow$

$$\mathfrak{B}_1 = \{ w_1 \mid \exists \ w_2 \ \text{such that} \ (w_1, w_2) \in \mathfrak{B} \}$$

Then \mathfrak{B}_1 is also a LTID behavior.

In particular

$$w = H\left(\frac{d}{dt}\right)\ell, \quad H \in \mathbb{R}(\xi)^{w \times \bullet}.$$

w-behavior is LTID. Image-like representation.

Representations of controllable systems

Theorem: The following are equivalent for LTID systems

- 1. B is controllable
- 2. B admits an image-like representation

$$w = M\left(\frac{d}{dt}\right)\ell$$
 with $H \in \mathbb{R}\left[\xi\right]^{w \times \bullet}$

3. B admits an image-like representation

$$w = H\left(\frac{d}{dt}\right)\ell$$
 with $H \in \mathbb{R}(\xi)^{w \times \bullet}$

- 4. with observability (ℓ can be deduced from w) added
- 5. with $M \in \mathbb{R}\left[\xi\right]^{w \times \bullet}$ right prime over $\mathbb{R}\left[\xi\right]$
- 6. with $H \in \mathbb{R}(\xi)^{w \times \bullet}_{\mathscr{S}}$ right prime over $\mathbb{R}(\xi)_{\mathscr{S}}$

Consider system y = Gu, $G \in \mathbb{R}(\xi)^{p \times m}$ 'transfer function'

Interpret this as

$$y = G\left(\frac{d}{dt}\right)u$$

Automatically controllable!

Only controllable systems covered by tf. f'ns.

Even if G is i/o unstable or improper, \exists stable kernel- and image-like representations!

$$y = G\left(\frac{d}{dt}\right)u$$

Even if G is i/o unstable or improper, \exists stable kernel- and image-like representations!

$$G_1\left(\frac{d}{dt}\right)y = G_2\left(\frac{d}{dt}\right)u,$$

$$egin{bmatrix} G_1 & \vdots & G_2 \end{bmatrix} \in \mathbb{R}(\xi)_\mathscr{S}^{ullet imes ullet} ext{ left prime over } \mathbb{R}(\xi)_\mathscr{S}.$$

$$y = G\left(\frac{d}{dt}\right)u$$

Even if G is i/o unstable or improper, \exists stable kernel- and image-like representations!

$$G_1\left(\frac{d}{dt}\right)y = G_2\left(\frac{d}{dt}\right)u,$$

$$\begin{bmatrix} G_1 & \vdots & G_2 \end{bmatrix} \in \mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \times \bullet}$$
 left prime over $\mathbb{R}(\xi)_{\mathscr{S}}$.

$$\begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} H_1 \left(\frac{d}{dt} \right) \\ H_2 \left(\frac{d}{dt} \right) \end{bmatrix} \ell,$$

$$\begin{bmatrix} H_1 \\ H_2 \end{bmatrix} \in \mathbb{R} \left(\xi \right)_{\mathscr{S}}^{\bullet \times \bullet} \text{ right prime over } \mathbb{R} \left(\xi \right)_{\mathscr{S}}^{\bullet \times \bullet}.$$

$$y = G\left(\frac{d}{dt}\right)u$$

$$G = G_1^{-1}G_2 = H_2H_1^{-1}$$

left/right co-prime factorizations over $\mathbb{R}(\xi)_{\mathscr{S}}$. As over $\mathbb{R}[\xi]$.

Classical, but we obtain the representation

$$G_1\left(\frac{d}{dt}\right)y = G_2\left(\frac{d}{dt}\right)u,$$

with $\begin{bmatrix} G_1 & \vdots & G_2 \end{bmatrix} \in \mathbb{R}(\xi)^{\bullet \times \bullet}_{\mathscr{S}}$ left prime over $\mathbb{R}(\xi)_{\mathscr{S}}$ also for stabilzable systems, instead of only controllable ones.

The annihilators

Let $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathsf{w}})$.

For $R \in \mathbb{R}\left[\xi\right]^{ullet imes imes}$ it is clear what we mean by

$$R\left(\frac{d}{dt}\right)w = 0.$$

Let $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$.

For $R \in \mathbb{R}\left[\xi\right]^{ullet imes imes}$ it is clear what we mean by

$$R\left(\frac{d}{dt}\right)w = 0.$$

But now we also know what we mean by

$$G\left(\frac{d}{dt}\right)w = 0$$

for $G \in \mathbb{R}\left(\xi\right)^{\bullet \times \mathtt{w}}$.

This gives us the opportunity to discuss more operators that annihilate a given behavior.

Let B be the behavior of a LTID system.

Call
$$n \in \mathbb{R}\left[\xi\right]^{\mathbb{W}}$$
 a polynomial annihilator of $\mathfrak{B}:\Leftrightarrow$

$$n^{\top} \left(\frac{d}{dt} \right) \mathfrak{B} = 0.$$

Call
$$n \in \mathbb{R}(\xi)^{\mathsf{w}}$$
 a rational annihilator of $\mathfrak{B} :\Leftrightarrow n^{\top}\left(\frac{d}{dt}\right)\mathfrak{B} = 0$.

Let B be the behavior of a LTID system.

Call
$$n \in \mathbb{R} [\xi]^{W}$$
 a polynomial annihilator of $\mathfrak{B} :\Leftrightarrow$ $n^{\top} \left(\frac{d}{dt}\right) \mathfrak{B} = 0.$

Call $n \in \mathbb{R}(\xi)^{\mathsf{w}}$ a rational annihilator of $\mathfrak{B} :\Leftrightarrow n^{\top}\left(\frac{d}{dt}\right)\mathfrak{B} = 0$.

- 1. The polynomial annihilators of $\mathfrak B$ form a $\mathbb R[\xi]$ -module.
- 2. The rational annihilators of $\mathfrak B$ form a $\mathbb R[\xi]$ -module.
- 3. The rational annihilators of a controllable $\mathfrak B$ form a $\mathbb R\left(\xi\right)$ -vectorspace.
- 4. There is a one-one relation between the LTID behaviors and the $\mathbb{R}[\xi]$ -submodules of $\mathbb{R}[\xi]^{\mathbb{W}}$.
- 5. There is a one-one relation between the controllable LTID behaviors and the $\mathbb{R}(\xi)$ -subspaces of $\mathbb{R}(\xi)^{\mathbb{V}}$.

Why bother with rational rather than just polynomial 'symbols'?

- 1. Parametrization of all stabilizing controllers
- 2. Model reduction of behavioral systems

Polynomial characterization

Plant & controller LTID systems, behaviors $\mathfrak P$ and $\mathfrak C$, resp.

Controlled behavior $\mathfrak{B} = \mathfrak{P} \cap \mathfrak{C}$. Also LTID.

Polynomial characterization

Plant & controller LTID systems, behaviors $\mathfrak P$ and $\mathfrak C$, resp.

Controlled behavior $\mathfrak{B} = \mathfrak{P} \cap \mathfrak{C}$. Also LTID.

Call \mathfrak{B} stable if $w \in \mathfrak{B} \Rightarrow w(t) \to 0$ for $t \to \infty$

Polynomial characterization

Plant & controller LTID systems, behaviors $\mathfrak P$ and $\mathfrak C$, resp.

Controlled behavior $\mathfrak{B} = \mathfrak{P} \cap \mathfrak{C}$. Also LTID.

Call \mathfrak{B} stable if $w \in \mathfrak{B} \Rightarrow w(t) \to 0$ for $t \to \infty$

Given plant \mathfrak{P} , which controllers \mathfrak{C} are stabilizing?

We will only consider 'regular' controllers.

Plant \mathfrak{P} , assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}' such that

$$\mathfrak{P}\oplus\mathfrak{P}'=\mathfrak{C}^\infty\left(\mathbb{R},\mathbb{R}^\mathtt{w}
ight)$$

Plant \mathfrak{P} , assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}' such that

$$\mathfrak{P}\oplus\mathfrak{P}'=\mathfrak{C}^\infty\left(\mathbb{R},\mathbb{R}^\mathtt{w}
ight)$$

Now take kernel representations of $\mathfrak P$ and $\mathfrak P'$

$$P\left(\frac{d}{dt}\right)w=0, \ \ P\in\mathbb{R}\left[\xi\right]^{\bullet\times w}, \ ext{left prime over }\mathbb{R}\left[\xi\right].$$

$$P'\left(\frac{d}{dt}\right)w=0, \quad P'\in\mathbb{R}\left[\xi\right]^{\bullet\times w}, \text{ left prime over }\mathbb{R}\left[\xi\right].$$

Plant \mathfrak{P} , assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}' such that

$$\mathfrak{P}\oplus\mathfrak{P}'=\mathfrak{C}^{\infty}\left(\mathbb{R},\mathbb{R}^{\mathtt{W}}
ight)$$

$$\mathfrak{P} \cap \mathfrak{P}' = \{0\} \& \mathfrak{P} + \mathfrak{P}' = \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{w}}) \Leftrightarrow \begin{bmatrix} P \\ P' \end{bmatrix}$$
 unimodular

Let $C\left(\frac{d}{dt}\right)w=0$ be a controller.

Unimodularity \Rightarrow it is of the form C = FP + F'P'

since
$$C = \begin{bmatrix} F & \vdots & F' \end{bmatrix} \begin{bmatrix} P \\ P' \end{bmatrix}$$
 is solvable for F, F' .

Plant \mathfrak{P} , assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}' such that

$$\mathfrak{P}\oplus\mathfrak{P}'=\mathfrak{C}^{\infty}\left(\mathbb{R},\mathbb{R}^{\mathtt{w}}
ight)$$

$$C = FP + F'P'$$

Stabilizing? Controlled behavior:

$$\begin{bmatrix} P \\ FP + F'P' \end{bmatrix} \begin{pmatrix} \frac{d}{dt} \end{pmatrix} w = 0 \Leftrightarrow \begin{bmatrix} I & 0 \\ 0 & F' \end{bmatrix} \begin{bmatrix} P \\ P' \end{bmatrix} \begin{pmatrix} \frac{d}{dt} \end{pmatrix} w = 0$$

Stabilizing $\Leftrightarrow F'$ is 'Hurwitz' (square, roots det in LHP).

Plant \mathfrak{P} , assume controllable $\Leftrightarrow \exists$ LTID system \mathfrak{P}' such that

$$\mathfrak{P}\oplus\mathfrak{P}'=\mathfrak{C}^{\infty}\left(\mathbb{R},\mathbb{R}^{\mathtt{w}}
ight)$$

$$C = FP + F'P'$$

Stabilizing? Controlled behavior:

$$\begin{bmatrix} P \\ FP + F'P' \end{bmatrix} \begin{pmatrix} \frac{d}{dt} \end{pmatrix} w = 0 \Leftrightarrow \begin{bmatrix} I & 0 \\ 0 & F' \end{bmatrix} \begin{bmatrix} P \\ P' \end{bmatrix} \begin{pmatrix} \frac{d}{dt} \end{pmatrix} w = 0$$

Stabilizing $\Leftrightarrow F'$ is 'Hurwitz' (square, roots det in LHP). All (regular) stab'ing controllers (polynomial parametrization):

$$C = FP + F'P'$$
, F anything, F' Hurwitz

The stability concept used is input/output stability. For simplicity of notation, assume that the signals are scalar.

The stability concept used is input/output stability. For simplicity of notation, assume that the signals are scalar.

Represent $G_1 = D_1^{-1}N_1$ and $G_2 = D_2^{-1}N_2$ with D_1, N_1, D_2, N_2 proper stable rational.

Can be shown (Vidyasagar): input/output stability $\Leftrightarrow N_1N_2 - D_1D_2$ unimodular over the ring of proper stable rational functions. Bi-proper and miniphase.

Given plant, which controllers stabilize?

Given plant, which controllers stabilize?

Proceed as in the polynomial case: Take kernel representations of $\mathfrak P$ and $\mathfrak P'$

$$P\left(\frac{d}{dt}\right)w=0, \ \ P\in\mathbb{R}\left(\xi\right)_{\mathscr{S}}^{\bullet\times\mathtt{w}}, \ \text{left prime over } \mathbb{R}\left(\xi\right)_{\mathscr{S}}$$

$$P'\left(\frac{d}{dt}\right)w=0, \quad P'\in\mathbb{R}\left(\xi\right)^{\bullet\times w}_{\mathscr{S}}, \text{ left prime over }\mathbb{R}\left(\xi\right)_{\mathscr{S}}$$

such that

$$egin{bmatrix} P \ P' \end{bmatrix}$$
 is unimodular over $\mathbb{R}(\xi)_{\mathscr{S}}$

Given plant, which controllers stabilize?

Let $C\left(\frac{d}{dt}\right)w=0$ be a controller. Unimodularity \Rightarrow it is of the form

$$\mathbf{C} = FP + F'P'$$
 since $C = \begin{bmatrix} F & \vdots & F' \end{bmatrix} \begin{bmatrix} P \\ P' \end{bmatrix}$ is solvable for F, F' .

Given plant, which controllers stabilize?

Let $C\left(\frac{d}{dt}\right)w=0$ be a controller. Unimodularity \Rightarrow it is of the form

$$C = FP + F'P'$$

Stabilizing? Controlled behavior:

$$\begin{bmatrix} P \\ FP + F'P' \end{bmatrix} \begin{pmatrix} \frac{d}{dt} \end{pmatrix} w = 0 \Leftrightarrow \begin{bmatrix} I & 0 \\ F & F' \end{bmatrix} \begin{bmatrix} P \\ P' \end{bmatrix} \begin{pmatrix} \frac{d}{dt} \end{pmatrix} w = 0$$

Stabilizing \Leftrightarrow

F' is unimodular over $\mathbb{R}(\xi)_{\mathscr{S}}$ (biproper & miniphase).

Given plant, which controllers stabilize?

Let $C\left(\frac{d}{dt}\right)w=0$ be a controller. Unimodularity \Rightarrow it is of the form

$$C = FP + F'P'$$

Stabilizing \Leftrightarrow

F' is unimodular over $\mathbb{R}(\xi)_{\mathscr{S}}$ (biproper & miniphase).

All stabilizing controllers (kernel-like representation):

$$C = FP + F'P' \Leftrightarrow C = RP + P' \text{ with } R \in \mathbb{R}(\xi)_{\mathscr{S}}$$

Advantages over polynomial case: involves only ring: $\mathbb{R}\left(\xi\right)_{\mathscr{S}}$

Model reduction

Unitary representations

It is pedagogically easier to discuss 'image-like' representations, hence controllable systems.

Even though it is possible to deal also with 'kernel-like' representations. These would only require stabilizability.

Unitary representations

$$w = G\left(\frac{d}{dt}\right)\ell$$

is said to be a **unitary** representation :⇔

$$(w,\ell) \in \mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{\bullet}) \text{ and } w = G\left(\frac{d}{dt}\right)\ell \implies$$

$$||w||_{\mathscr{L}_2(\mathbb{R},\mathbb{R}^{\bullet})} = ||\ell||_{\mathscr{L}_2(\mathbb{R},\mathbb{R}^{\bullet})}$$

Easy:

unitary
$$\Leftrightarrow$$
 $G^{\top}(-s)G(s) = I$ $\forall s \in \mathbb{C}$

If in addition G is stable rational, then norm preserving on $\mathcal{L}_2(\mathbb{R}_+,\mathbb{R}^{\bullet})$.

Unitary representations

A controllable LTID system admits a unitary representation.

Proof: start with any observable representation $w = G\left(\frac{d}{dt}\right)\ell$. Spectral factor

$$G^{\top}(-s)G(s) = F^{\top}(-s)F(s).$$

Take $G \to GF^{-1}$. The representation $w = GF^{-1}\left(\frac{d}{dt}\right)\ell$ is unitary. Stability may be added.

This result needs rational symbols - not possible with polynomial models.

Usually state space systems

$$\frac{d}{dt}x = Ax + Bu, y = Cx + Du$$

that are moreover stable. Balancing, Hankel norm.

Error bound

$$||G - G_{\text{reduced}}||_{\mathscr{H}_{\infty}} \leq 2(\text{sum of neglected SV's})$$

Is stability needed for model reduction What can be done with behaviors?

In usual input/output approach, the system is (roughly) an input/output map.

Then distance between two systems = induced norm of difference. $\sim \mathcal{H}_{\infty}$ -norms etc.

But this only makes sense if the maps are bounded.

Requires stability!

How do we measure system approximation if a system is given as a behavior?

Distance between two LTID behaviors:

Define, for a given \mathfrak{B} , hence $\subseteq \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{w}})$, the \mathscr{L}_2 -behavior as

$$\mathfrak{B}_2 = \mathfrak{B} \cap \mathscr{L}_2(\mathbb{R}, \mathbb{R}^{\mathsf{w}})$$
.

Easy: \mathfrak{B}_2 is a linear subspace of $\mathscr{L}_2(\mathbb{R}, \mathbb{R}^{\mathsf{w}})$. Take closure.

Distance between two LTID behaviors:

Define, for a given \mathfrak{B} , hence $\subseteq \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{w}})$, the \mathscr{L}_2 -behavior as

$$\mathfrak{B}_2 = \mathfrak{B} \cap \mathscr{L}_2(\mathbb{R}, \mathbb{R}^{\mathsf{w}})$$
.

Easy: \mathfrak{B}_2 is a linear subspace of $\mathscr{L}_2(\mathbb{R},\mathbb{R}^{\mathsf{w}})$. Take closure.

Define the distance between two controllable LTID behaviors $\mathfrak{B}',\mathfrak{B}''$ as the distance between \mathfrak{B}'_2 and \mathfrak{B}''_2 . \rightsquigarrow distance between 2 closed linear subspaces of $\mathscr{L}_2(\mathbb{R},\mathbb{R}^{\mathsf{w}})$. Standard notion (Kato): graph metric.

$$d(\mathfrak{B}',\mathfrak{B}'') := ||P_{\mathfrak{B}'_2} - P_{\mathfrak{B}''_2}||$$

where the P's denote the orthogonal projection operators.

Consider the LTID B, controllable (no stability).

Complexity := McMillan degree. Notation: $n(\mathfrak{B})$.

Consider the LTID B, controllable (no stability).

Complexity := McMillan degree. Notation: $n(\mathfrak{B})$. This can be defined in many ways. Easiest: dimension of the state space in a minimal state representation of \mathfrak{B}

$$\frac{d}{dt}x = Ax + Bw_1, w_2 = Cx + Dw_2, w = \begin{vmatrix} w_1 \\ w_2 \end{vmatrix}.$$

Consider the LTID B, controllable (no stability).

Complexity := McMillan degree. Notation: $n(\mathfrak{B})$.

Problem:

Approximate $\mathfrak B$ by a LTID $\mathfrak B_{reduced}$ of complexity $\leq k$ with $k < n(\mathfrak B)$.

Give a bound for $d(\mathfrak{B},\mathfrak{B}_{\text{reduced}})$ in the graph metric.

Algorithm:

1. Compute a stable unitary representation of B:

$$w = G\left(\frac{d}{dt}\right)\ell.$$

G is stable!

- 2. Make a balanced reduction of $G \rightsquigarrow G_{\text{reduced}}$.
- 3. Define $\mathfrak{B}_{reduced}$ as the system with image-like representation

$$w = G_{\text{reduced}}\left(\frac{d}{dt}\right)\ell.$$

4. There holds

 $d(\mathfrak{B},\mathfrak{B}_{\text{reduced}}) \leq 2(\text{sum of the neglected SV's})$

Recapitulation

Conclusion

- LTID: $\Sigma = (\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}), \mathfrak{B} = \ker(R(\frac{d}{dt})), R \in \mathbb{R}[\xi]^{\bullet \times w}$.
- controllability, stabilizability.
- Representations: ways to specify B: kernel, image, state space, transfer functions, ...
- in terms of rational symbols: $G\left(\frac{d}{dt}\right)w=0$, using left co-prime polynomial factorization of $G\in\mathbb{R}\left(\xi\right)^{\bullet\times\mathbb{W}}$.

Conclusion

- LTID: $\Sigma = (\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}), \mathfrak{B} = \ker(R(\frac{d}{dt})), R \in \mathbb{R}[\xi]^{\bullet \times w}$.
- controllability, stabilizability.
- Representations: ways to specify B: kernel, image, state space, transfer functions, ...
- in terms of rational symbols: $G\left(\frac{d}{dt}\right)w=0$, using left co-prime polynomial factorization of $G\in\mathbb{R}\left(\xi\right)^{\bullet\times w}$.
- Left prime representations: over $\mathbb{R}[\xi] \Leftrightarrow$ controllable, over proper stable rational \Leftrightarrow stabilizable.
- Via annihilators: LTID systems $1 \leftrightarrow 1 \mathbb{R}[\xi]$ -modules; controllable LTID systems $1 \leftrightarrow 1 \mathbb{R}(\xi)$ -subspaces;

Conclusion

- LTID: $\Sigma = (\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}), \mathfrak{B} = \ker(R(\frac{d}{dt})), R \in \mathbb{R}[\xi]^{\bullet \times w}$.
- controllability, stabilizability.
- Representations: ways to specify B: kernel, image, state space, transfer functions, ...
- in terms of rational symbols: $G\left(\frac{d}{dt}\right)w=0$, using left co-prime polynomial factorization of $G\in\mathbb{R}\left(\xi\right)^{\bullet\times w}$.
- Left prime representations: over $\mathbb{R}[\xi] \Leftrightarrow$ controllable, over proper stable rational \Leftrightarrow stabilizable.
- Via annihilators: LTID systems $1 \leftrightarrow 1 \mathbb{R}[\xi]$ -modules; controllable LTID systems $1 \leftrightarrow 1 \mathbb{R}(\xi)$ -subspaces;
- **▶** Applications where rational symbols are indispensable: Kucera-Youla parametrization of stabilizing controllers; unitary representations and model reduction.

Reference:

JCW and YY
Behaviors defined by rational functions
Linear Algebra and Applications
to appear

Reference:

JCW and YY
Behaviors defined by rational functions
Linear Algebra and Applications
to appear

Thank you for your attention