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Behaviors & all that

A dynamical system.<

> = (T,W,B)

TCR the time-axis
W the signal space

B C WL the behavior

- afamily of trajectories
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Behaviors & all that

A dynamical system:< 2 =(T,W,%B)

TCR the time-axis today T =R
W the signal space today W = R¥

B CW!' the behavior - afamily of trajectories

2 = (R,R¥,‘B) is said to belinear :«< ‘5 is a linear space

time-invariant :< B Is shift-invariant
weBandte R = oweB
o' denotes the ‘shift: (o'w) (t') = w(t’ +1)

differential ;< B is the set of sol'ns of an ODE
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Examples

Dynamical system:

2. x=f(xut), y=h(xu,t)

ucU=R"yeY =RP xeX=R" Input, output, state.

Behavior 8 = allsol'ns (u,y,x):R—-UxY xX.

Time-invariant:

2: X=f(xu), y=h(xu)

Linear time-invariant:
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LTID systems

Linear, time-invariant, differential dynamical system«

d d? db
Row+ Ry d2W+ +R|_—W 0

W+ R
d+2
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LTID systems

Linear, time-invariant, differential dynamical system«

d d? db
ROW—l—Rld d2W+ +R|_—W 0

Short-hand notation: introduce polynomial matrix

W+ Ry

R(¢) :RO+R1€—|—R2€2_|_..._|_RLEL ER[f]OXW

R(§)w=0
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LTID systems

Linear, time-invariant, differential dynamical system«

d? d-

d
Row+ R —w+ Ro—w+-- +RL—W 0

dt dt?

Short-hand notation: introduce polynomial matrix
R(§) =Ry+Ri& +RE%+-- -+ R EL e R[E]
d _
R(E) w=20
Behavior := all solutions, I.e.

B = {we e (R,R") | R(&)w=0}

B =kernel(R(&)) ‘kernel representation’, polynomial type.
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LTID systems

Linear, time-invariant, differential dynamical system«

d? d-

d
Row+ R —w+ Ro—w+-- +RL—W 0

dt dt?

LTID systems

R(E):RO+Rlé +R2¢L—|— _|_RLéI—ER[€]O><W

Short-hand nota 1atrix

R(§)w=0

Behavior := all solutions, I.e.

B = {we e (R,R") | R(&)w=0}

B =kernel(R(&)) ‘kernel representation’, polynomial type.
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Controllability and stabilizability

Let > = (R,R",*B) be a time-invariant dynamical system

> IS said to be controllable : &

Vwi,woeBdT >0, andw € B such that ...

W
1

N
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Controllability and stabilizability

Let > = (R,R",*B) be a time-invariant dynamical system
2 Is said to be controllable :<

> IS said to be stabilizable &

Ywe B Iw e 9B such that ...

/W\ E'ffffffflcwe

W’
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Controllability and stabilizability

Let > = (R,R",*B) be a time-invariant dynamical system
> IS said to be controllable : &

> IS said to be stabilizable &

Theorem: R(&) w = 0 defines acontrollable system<

rank(R(A)) isthe samev A € C

a stabilizable system<«

rank(R(A)) is the samev A € C with real part >0
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Rational representations
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Rational representations

Let Ge R (&)*™", and consider the ‘differential equation’
G(§)w=0
dt

What do we mean by the solutionsi.e. by the behavior?
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Rational representations

Let Ge R (&)*™", and consider the ‘differential equation’
G(§)w=0
dt

What do we mean by the solutionsi.e. by the behavior?

Let (P,Q) be a left-coprime polynomial factorization of G

i.e. PQc R[&]***,delP) #0,G =P 1Q,[P: Q] left-prime.

d
G()w=0:s Q(§)w=0

E.g., In scalar case, meanB and Q have no common roots.
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Rational representations
Let (P,Q) be a left-coprime polynomial factorization of G

d
G()w=0:s Q(&)w=0

Justification:

1. G proper. G(s) = C(Is— A)~1B+ D controllable realization.
Consider output nulling inputs:

%X:AX—I— Bw, O0=Cx+Dw

This set ofw's are exactly those that satisfyG (&) w = 0.

Same for $x= Ax+Bw,0=Cx+D(%)w=0, DeR[E]**".
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Rational representations
Let (P,Q) be a left-coprime polynomial factorization of G

d
G()w=0:s Q(&)w=0

Justification:

2. Considery = G(s)u. View G as a transfer f'n.
Take your usual favorite definition of input/output pairs.

The output nulling inputs are exactly those that satisfy
G(&)w=0.

3. via Laplace transforms...
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G(&) is not a map!

Consider
d
y=G(g)u
We now know what it means that(u,y) € €* (R,R®) satisfies
this ‘ODE’.

Is there a uniquey for a given u?

d d
P(—)y=Q(—
If P +# | (better, not unimodular), there are many sol’'nsy of

this ODE for a given RHS.
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Representations

Linear time-invariant differential systems 2 = (R, R",*B).
B =ker(R(&)) for someRe R[E]**" by definition .
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Representations
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B =ker(R(&)) for someRe R[E]**" by definition .

But we may as well take the representatiorG () w = 0 for
someG c R(&)*™" as the definition.
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Representations

Linear time-invariant differential systems 2 = (R, R",*B).
B =ker(R(&)) for someRe R[E]**" by definition .

But we may as well take the representatiorG () w = 0 for

someG c R(&)*™" as the definition.

R: all poles at, we can takeG with no poles ate, or more
generally all poles in some ‘fat’ set - intersection withR
having non-emply interior.

Theorem: Every linear time-invariant differential systems has
a representation

G () w="0

with G € R (&)**" strictly proper rational stable.

Proof: Take G(s) = >n, suitableA € R,n € N.
— (stA)
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Matrices of rational functions
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Subrings of R (¢)

R (¢ ): real rational functions.

Consider 3 subrings:
1. R[&]: polynomials with real coefficients
2. R(&) ,: proper rational functions

3. R(&) ,: stable proper rational functions
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no poles in RHP oro
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Subrings of R (¢)

R (&): real rational functions.

Consider 3 subrings:
1. R[&]: polynomials with real coefficients  all poles ateo
2. R(&) ,: proper rational functions no poles atew

3. R(&) ,: stable proper rational functions
no poles in RHP oro

Each of these rings haR () as its field of fractions.

Unimodular elements (invertible in ring)
1. Non-zero constants.

2. bi-proper.

3. bi-proper and mini-phase.

miniphase < poles & zeros in LHP
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R(§)"™"

Matrices over these rings

matrices of real rational functions.

1. R[E]*™*:

2. R(€)

3. R(€)

exe,

«:@ .

exe,

y .

polynomial matrices with real coefficients
matrices of proper rational functions

of stable proper rational functions
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Matrices over these rings

R (&)***: matrices of real rational functions.

1. R[&]*"*: polynomial matrices with real coefficients
unimodular: square & determinant = non-zero constant

2. R(&)%,°: matrices of proper rational functions
unimodular: square & determinant biproper

3. R(&)%,*: of stable proper rational functions
unimodular: square & determinant biproper
and miniphase (poles & zeros in LHP)
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Prime elements

M e R[E]™7"2 is left-prime &
M =FM/F € R[§]™™ M € R[§]"*02
= U Is uni-modular
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Prime elements

M e R[E]™7 "2 is left-prime overR [¢] i<
M =FM/F € R[] ™ M € R[§]"*02
= U is uni-modular over R [¢]
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Prime elements

M e R[E]™7 "2 is left-prime overR [¢] i<
M =FM/F € R[] ™ M € R[§]"*02
= U is uni-modular over R [¢]

M e R (&)™ is left-prime overR (), <
M=FM FeR(&)L™ MecR(&)L ™
= U is uni-modular overR (¢)
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Prime elements

M e R[E]™7 "2 is left-prime overR [¢] i<
M =FM/F € R[] ™ M € R[§]"*02
= U is uni-modular over R [¢]

M e R (&)™ is left-prime overR (), <
M=FM FeR(&)L™ MecR(&)L ™
= U is uni-modular overR (¢)

M e R (&) " isleft-prime overR (§) ., i<
M=FM FeR(&)T™ MecR(§)L ™
= U is uni-modular overR (¢ ) .,
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Prime representations & system properties
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Prime representations

Theorem: a linear time-invariant differential system admits a

representation
d
G|—|w=0

1. GeR(&)%," left prime over R(&)

2. GERI[&]*™Y left prime over R[&] < it is controllable

with

3. GER(&)%," left prime over R (&) ., < it is stabilizable

The proof of case 3 is not easy!
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Controllability and image-like representations
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Elimination

d d
Gl(dt>W1_Gz<dt>

G1,G, c R(&)*™°. BehaviorB. Eliminate w, ~»

Consider

B1={wy | 3w, such that (wy,w,) € B}

Then B, 1s also a LTID behavior.

In particular

d uxe
w=H (dt)e HeR()

w-behavior is LTID. Image-like representation.
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Representations of controllable systems

Theorem: The following are equivalent for LTID systems
1. B is controllable
2. ‘B admits an image-like representation

w=M (&)¢ with H € R[&]"**
3. B admits an image-like representation
w=H (&)¢ with H e R(&)"*

4. with observabillity (¢ can be deduced fromw) added
5. with M € R[&]"”° right prime over R[¢]
6. with H € R(&)"%° right prime over R (&) .,
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Relations with classical results

Consider systemy = Gu, GeR(&)P*" ‘transfer function’

d
1=6()"

Automatically controllable!
Only controllable systems covered by tf. f'ns.

Interpret this as

Even if G is I/o unstable or improper, 3 stable kernel- and
Image-like representations!
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Relations with classical results

= G(;)

Even if G is i/o unstable or improper, 3 stable kernel- and
Image-like representations!

o ()7~ (@)

[Gl : (32} ceR (&)%) ° left prime over R (&) ..
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Relations with classical results

= G(;)

Even if G is i/o unstable or improper, 3 stable kernel- and
Image-like representations!

o ()7~ (@)

[Gl : (32} ceR (&)%) ° left prime over R (&) ..

ul _ [Hi(g)

- v [H ()
e R(&)%,° right prime over R(f);ﬁ’.

2




Relations with classical results

= G(;)

G =G Gy =HyH; !

left/right co-prime factorizations over R () ... As overR [£].

Classical, but we obtain the representation

o (a)r= (@)

with {Gl : (32} e R (&)%) ° left prime over R(&) .,

also for stabilzable systems, instead of only controllablenes.
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The annihilators
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Polynomial and rational annihilators

Let we €% (R,R").

For Re R[&]*"" itis clear what we mean by

d
R(a)w_a
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Polynomial and rational annihilators

Let we €% (R,R").

For Re R[&]*"" itis clear what we mean by

d
R(a>w_0

But now we also know what we mean by
d
G|—|w=0

This gives us the opportunity to discuss more operators that
annihilate a given behavior.

for GER(&)*™".
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Polynomial and rational annihilators

Let B be the behavior of a LTID system.

Call ne R[&]" a polynomial annihilator of B <
n'(

d
dt
d
dt

)8

Callne R(&)" a rational annihilator of % :< n' ($)B

=0.

0.
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Polynomial and rational annihilators

Let B be the behavior of a LTID system.

Call ne R[&]" a polynomial annihilator of B <

n"($)B =0.
Call ne R(&)" a rational annihilator of B :< n' (%)% =0.

1. The polynomial annihilators of5 form a R [{]-module.

2. The rational annihilators of 8 form a R [ ]-module.

3. The rational annihilators of a controllable 8 form a
R (&)-vectorspace.

4. There Is a one-one relation between the LTID behaviors
and the R [§]-submodules ofR [&]".

5. There I1s a one-one relation between the controllable
LTID behaviors and the R (£)-subspaces oR (&)".
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Why bother with rational rather than just polynomial ‘symbo Is’?
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Why bother with rational rather than just polynomial ‘symbo Is’?

1. Parametrization of all stabilizing controllers
2. Model reduction of behavioral systems
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Parametrization of all stabilizing controllers
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Polynomial characterization

Controller

Controlled system

Plant & controller LTID systems, behaviors 3 and ¢, resp.

Controlled behavior B =8N . Also LTID.
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Polynomial characterization

Controller

Controlled system

Plant & controller LTID systems, behaviors 3 and ¢, resp.
Controlled behavior B =8N . Also LTID.

Call B stableif we %8 = w(t) - O0for t — o
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Polynomial characterization

Controller

Controlled system

Plant & controller LTID systems, behaviors ‘3 and ¢, resp.

Controlled behavior B =8N . Also LTID.
Call B stableif we 8 = w(t) — 0fort — o
Given plant 3, which controllers ¢ are stabilizing?

We will only consider ‘regular’ controllers.
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Polynomial characterization (Kuijper)

Plant 3, assume controllable= 3 LTID system 3’ such that

PeP = (R,RY)

—n. 28/



Polynomial characterization (Kuijper)

Plant 3, assume controllable= 3 LTID system 3’ such that
PP = (R,R")
Now take kernel representations ofl3 and 3’

P (%) w=0, PeR[&]*"", left prime over R[¢].

P/ (%) w=0, P eRI[E]*"" left prime over R[&].
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Polynomial characterization (Kuijper)

Plant 3, assume controllable= 3 LTID system 3’ such that

PP ={0} & P+P =¢"R,R") <

PeP = (R,RY)

unimodular

Let C (&) w=0be a controller.
Unimodularity = itis of the form C=FP+F'P

sinceC = [F

g

P
P/

IS solvable forF, F’.
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Polynomial characterization (Kuijper)

Plant 3, assume controllable= 3 LTID system 3’ such that

Stabilizing? Controlled behavior:

P

FP+F'P

PeP = (R,RY)

C=FP+F'P

(Gw=0

P/

(§)w=0

Stabilizing < F’ is ‘Hurwitz’ (square, roots det in LHP).
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Polynomial characterization (Kuijper)

Plant 3, assume controllable= 3 LTID system 3’ such that
PP = (R,RY)
C=FP+F'PVP

Stabilizing? Controlled behavior:

P

(%)W:O@ O F/ P/

Stabilizing < F’ is ‘Hurwitz’ (square, roots det in LHP). All
(regular) stab’ing controllers (polynomial parametrization):

C=FP+F'P, F anything, F’ Hurwitz

—n. 28/



Kucera-Youla type characterization

The stability concept used is input/output stability.

For simplicity of notation, assume that the signals are scatr.
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Kucera-Youla type characterization

The stability concept used is input/output stability.
For simplicity of notation, assume that the signals are scatr.

RepresentG, = DIlNl and Gy = D2_1N2 with D1,N1,D>, Ny
proper stable rational.

Can be shown (Vidyasagar): input/output stability
< N1N> — D1D2 unimodular over the ring of proper stable
rational functions. Bi-proper and miniphase.
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Kucera-Youla type characterization

Given plant, which controllers stabilize?
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Kucera-Youla type characterization

Given plant, which controllers stabilize?

Proceed as in the polynomial case: Take kernel
representations of]3 and 3’

p((i)w 0, PeR(&)Y", left prime over R(¢) .,

P,(;jt)W 0, PeR(&),", left prime over R(&)

such that

is unimodular over R(§) o,
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Kucera-Youla type characterization

Given plant, which controllers stabilize?

Let C(&)w = 0be a controller.
Unimodularity = it is of the form

C=FP+F'P

. Pl.
sinceC = {F : F’} ,| is solvable forF,F’.
P




Kucera-Youla type characterization

Given plant, which controllers stabilize?

Let C(&)w = 0be a controller.
Unimodularity = it is of the form

C=FP+F'P

Stabilizing? Controlled behavior :

I o] |P
F F||P

P

Stabilizing
F’" is unimodular over R (§) ., (biproper & miniphase).
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Kucera-Youla type characterization

Given plant, which controllers stabilize?

Let C(&)w = 0be a controller.
Unimodularity = it is of the form

C=FP+F'P

Stabilizing <
F"is unimodular over R (§) ., (biproper & miniphase).

All stabilizing controllers (kernel-like representation):
C=FP+FP < C=RP+P withReR(E).,

Advantages over polynomial case: involves only ringR (¢ ) .,
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Model reduction
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Unitary representations

It is pedagogically easier to discuss ‘image-like’
representations, hence controllable systems.

Even though it is possible to deal also with ‘kernel-like’

representations. These would only require stabilizabiliy.
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Unitary representations

d
W—G<a>€

IS said to be a unitary representation <
(W 0) € €*(R,R*) andw=G(Z)/ =

HWHc%z(R,R’) — H&sz(R,R’)
Easy:
unitary < G'(—s)G(s)=1 VscC

If in addition G is stable rational, then norm preserving on
ogz (R+,R.) .
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Unitary representations
A controllable LTID system admits a unitary representation.

Proof: start with any observable representationw = G () /.
Spectral factor

G'(—s)G(s) =F ' (—s)F(s).

Take G — GF ~1. The representationw = GF 1 (&) ¢ is
unitary. Stability may be added.

This result needs rational symbols - not possible with
polynomial models.
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Distance between two systems

Usually state space systems

d
ax: Ax—+ Bu,y = Cx+ Du

that are moreover stable Balancing, Hankel norm.

Error bound

|G — Greduced| .z, < 2(sum of neglected SV’s

|s stability needed for model reduction
What can be done with behaviors?
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Distance between two systems

In usual input/output approach, the system is (roughly) an
Input/output map.

Then distance between two systems = induced norm of
difference. ~ Fe-NOIMS etc.

But this only makes sense if the maps are bounded.
Requires stability!

How do we measure system approximation if a system is given
as a behavior?
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Distance between two systems

Distance between two LTID behaviors:

Define, for a given®B, henceC ¢* (R,R"), the #»-behavior as
Bor=BN.L(R,R").

Easy: 98, is a linear subspace of% (R, R¥) . Take closure.
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Distance between two systems

Distance between two LTID behaviors:
Define, for a given®B, henceC ¢* (R,R"), the #»-behavior as
Bor=BN.L(R,R").

Easy: B, is a linear subspace of%, (R, R"). Take closure.

Define the distance between two controllable LTID behaviors
B’ B" as the distance betweefB’, and B7. ~» distance

between 2 closed linear subspaces &, (R, R¥) . Standard
notion (Kato): graph metric.

d(B’,B") := [|Py, — Pyyl|
where the P's denote the orthogonal projection operators.
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Model reduction of behaviors

Consider the LTID B, controllable (no stability).
Complexity := McMillan degree. Notation: n(®8).
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Model reduction of behaviors

Consider the LTID B, controllable (no stability).

Complexity := McMillan degree. Notation: n(®8).
This can be defined in many ways. Easiest. dimension of the
state space in a minimal state representation db

d W
—X = AX+ Bwq, Wy = CXx+ Dwo, W = 1
dt Wo
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Model reduction of behaviors

Consider the LTID B, controllable (no stability).
Complexity := McMillan degree. Notation: n(®8).

Problem:

Approximate B by a LTID Brequcedof complexity < k
with k <n(*B).

Give a bound for d(28, B educeq in the graph metric.
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Model reduction of behaviors

Algorithm:

1. Compute a stable unitary representation of3:
d
w=G|— |/
G Is stable!

2. Make a balanced reduction ofG ~ Gieduced
3. DefineBequceqa@s the system with image-like

representation ;
W= Greduced(a) l.
4. There holds

d (2B, Breduced < 2(sum of the neglected SV’s)
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Recapitulation
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L I

Conclusion

LTID: == (R,R*,B),B =ker(R(%)), Re R[&]**".
controllability, stabilizability.

Representations: ways to specif{s:
kernel, image, state space, transfer functions, ...

in terms of rational symbols: G (&) w = 0, using left
co-prime polynomial factorization of GeE R (&)*™".
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Conclusion

LTID: == (R,R*,B),B =ker(R(%)), Re R[&]**".
controllability, stabilizability.

Representations: ways to specif{s:
kernel, image, state space, transfer functions, ...

in terms of rational symbols: G (&) w = 0, using left
co-prime polynomial factorization of GeE R (&)*™".

Left prime representations: overR || < controllable,
over proper stable rational < stabilizable.

Via annihilators: LTID systems 1+ 1R |[{|-modules;
controllable LTID systems 1« 1R (¢)-subspaces;

—n. 36/



L I

Conclusion

LTID: == (R,R*,B),B =ker(R(%)), Re R[&]**".
controllability, stabilizability.

Representations: ways to specif{s:
kernel, image, state space, transfer functions, ...

in terms of rational symbols: G (&) w = 0, using left
co-prime polynomial factorization of GeE R (&)*™".

Left prime representations: overR || < controllable,
over proper stable rational < stabilizable.

Via annihilators: LTID systems 1+ 1R |[{|-modules;
controllable LTID systems 1« 1R (¢)-subspaces;

Applications where rational symbols are indispensable:
Kucera-Youla parametrization of stabilizing controllers;
unitary representations and model reduction.
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Reference:
JCWand YY

Behaviors defined by rational functions

Linear Algebra and Applications
to appear
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Reference:
JCW and YY
Behaviors defined by rational functions
Linear Algebra and Applications
to appear

Thank you for your attention
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