On the occasion of Keith’s 60-th

STRUCTURAL ASPLECTS OF SYSTEM IDENTIFICATION

by

Keith Glover

B.Sc. (Eng.) Imperial College of Science and Technology,

London University
1967

E.E., M.S. E.E., Massachusetts Institute of Technology
1971

SUBMITTED IN PARTIAL FULFILIMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 1973

-
j 4 :/) .
signature of Author S .ﬁw‘\er*j
Department of Electrical Engineering
A s
Certified by iy L4 (5t

“"Thesis Supervisor

&

Accepted by

Chairman, Departmental Comnmittee on Graduate Students

- p.2/32

Keith
Bromle,
He rece
trical el
of Sele
versity,
S.M.,, I
enginee
of Tecl
and 197
From

-p.2/32

Keith Glover (8'71-M'73) was born in
Bromley, Kent, England, on April 23, 1946.
He received the B.Sc.(Eng.) degree in elec-
trical engineering from the Imperial College
of Secience and Technology, London Uni-
versity, London, England, in 1967, and the
S.M., E.E,, and Ph.D. degrées in electrical
engineering from the Massachusetts Institute
of Technology, Cambridge, in 1971, 1971,
and 1973, respectively.

PR, From l%f to 1969 he worked on the de-
velnpment of dlgmﬂ communication equipment at the Marconi
Company, Chelmsford, Essex, England, and he was a Kennedy
Memorial Fellow at M.I.T. frnm 1969 to 1971. He is currently an
Assistant Professor of Electrical Engineering at the University of
Southern California, Los Angeles. His present research interests are
in system identification and linear system theory.

Jan C, Willems (5’66-M’'68) was born in
Bruges, Belgium, in 1939. He graduated in
electrical and mechanical engineering from
the University of Ghent, Belgium, in 1963,
received the M.B. degree in electrical engi-
neering from the University of Rhode Island,
Kingston, in 1965, and the Ph.D. degree in
electrical engiueering from Massachusetts
Institute of Technology, Cambridge, in 1968.

From June 1968 he was an Assistant Pro-
' fessor in the Department of Electrical
Engmeermg at. M.LT. uniil in February 1972 when he was appointed

-p.2/32

Parametrizations of Linear Dynamical Systems:
Canonical Forms and Identifiability

KEITH GLOVER, mEMBER, 1EEE, AND JAN C. WILLEMS, MEMBER, IEEE

Abstract—We consider the problem of what parametrizations of
linear dynamical systems are appropriate for identification (i.e., so
that the identification problem has a unique solution, and all systems
of a particular class can be represented). Canonical forms for con-
trollable linear systems under similarity transformation are con-
sidered and it is shown that their use in identification may cause
numerical difficulties, and an alternate approach is proposed which

awnide thace AiffirnlHae Than if ie aconmad that tha evctam matrirac

@. In the context of identifving such dynamical systems
the following two properties of a parametrization are
desirable.

Property 1: The parametrization should be identifiable
in some sense,

Property 2: All systems in an appropriate class can be

S S AL WD e S i Sl s

-p.2/32

STATE FROM DATA

Jan C. Willems
K.U. Leuven, Belgium

Keithfest, Cambridge, UK April 21, 2006

~p.3/32

Joint work with lvan Markovsky & Bart De Moor (K.U. Leuven)

—p.4/32

The problem

—p.5/32

Compute the left kernel of the (block) Hankel matrix

w(1)
w(2)
W (3)

W (t)
(' + 1)

Question

w(2)
w(3)
W (4)

W(t + 1)
W (t + 2)

'lb(t,,)
@ (" + 1)
@ (" + 2)

,&')(tl _|_ t”
B (¢ +)

—1)

- p.6/32

Background

—p.7/32

w — MPUM

Given the observed (infinite horizon) vector time-series
w = w(1), w(2),...,w(t),... w(t) € R"

compute the most powerful unfalsified model (MPUM) that generated
it.

- p.8/32

w — MPUM

Given the observed (infinite horizon) vector time-series
w = w(1), w(2),...,w(t),... w(t) € R"
compute the most powerful unfalsified model (MPUM) that generated

it.

MPUM : model in a model class,
explains the observations w

+ as little else as possible.

St Karl Popper (1902-1904)

Karl Popper
(1902-1994)

—p.8/32

The model class

Exceedingly familiar: The model B C (IR{W)N belongsto £" : &
® ‘B is linear, shift-invariant, and closed

® Y3 is linear, time-invariant, and complete :< ‘prefix determined’

-p.9/32

The model class

The model B C (R¥)" belongs to £¥ :<

9

9o

9o

B3 is linear, shift-invariant, and closed
'8 is linear, time-invariant, and complete :< ‘prefix determined’

3 matrices Ry, Rq, ..., R; such that 83: all w that satisfy
Row(t)+ Riyw(t+1)+---+Rrw(t+L) =0 VteN
In the obvious polynomial matrix notation

R(oc)w =0
Including input/output partition

P(o)y = Q(o)u, w=[}] det(P) 0

-p.9/32

The model class

The model B C (R¥)" belongs to £¥ :<
® ‘B is linear, shift-invariant, and closed

'8 is linear, time-invariant, and complete :< ‘prefix determined’

K
® R(o)w =0
K

P(o)y = Q(o)u, w = [y]

® o matrices A, B, C, D such that
B8 consists of all w’s generated by

x(t+1) = Az(t) + Bu(t), y(t) = Cz(t) + Du(t), w=[y

~p.9/32

The model class

The model B C (R¥)" belongs to £¥ :<
® ‘B is linear, shift-invariant, and closed

® 3 is linear, time-invariant, and complete :&> ‘prefix determined’
® R(o)w =0

P(o)y = Q(o)u, w=[y]

ocr = Ax + Bu, y = Cx + Du, w =[]

o o o

3 a matrix of rational functions (G such that 3 — sol’ns of
G(o)w =0
without LOG strictly proper, with LOG proper stable rational.

-p.9/32

et multi alteri

—p.10/32

The problem

Given the observed (infinite horizon) vector time-series
W = w(1),w(2),...,0(),... W(t) € R

compute the MPUM in £" that generated these data.

‘Exact’, ‘deterministic’ system ID (with an eye to approximation).

~p.11/32

Subspace ID

~p.12/32

- [AB]
w —
C‘D

Once we have (an estimate of) the MPUM, the system that produced

the data w , we can analyze it, make an i/o partition, an observable
state representation

x(t+1) = Ax(t) + Bu(t),
y(t) = Ca(t) + Du(t), w(t)=|ul]
and compute the (unique) state trajectory
x(1),x(2)y...,2(t),...

corresponding to

B(1), W(2), ..., w0(t),...

~p.13/32

- [AB]
w —
C‘D

Once we have (an estimate of) the MPUM, the system that produced

the data w , we can analyze it, make an i/o partition, an observable
state representation

x(t+1) = Ax(t) + Bu(t),

y(t) = Ca(t) + Du(t), w(t)= |3]

and compute the (unique) state trajectory

#(1),5(2), ..., &), ..

Of course,
£(2) #@3) .-+ &t+1) .| _ |A Bl |#1) &(2) --- &)
g(1) »(2) --- y(t) C D| |a(1) a(2) --- u(t)

~p.13/32

Of course,
£(2) #@3) .-+ &t+1) .| _ |A Bl |#1) &(2) --- &)
g(1) 9(2) --- y(t) C D| |a(1) a(2) --- u(t)

But if we could go the other way:

first compute the state trajectory « , directly from w ,
then this equation provides a way of

e s Al|lB
identifying the system parameters = ‘ 5

Classical realization is a special case: impulse response data.

~p.13/32

#(2) #@B) --- #¢+1) ---| _|A B
(1) g2) --- y(t) ¢ D

z(1) x(2) --- &) ---
u(l) a(2) .- a(t)

Yields an attractive SYSID procedure:

® Truncation at suff. large t; copes with missing data : cancel
columns; extends to more than one observed time series, ...

® Model reduce using SVD c.s. by first lowering the row dim. of

~

the matrix X = [{1'3(1) z(2) --- z(t)]

A
® Solve for [= } f)] using Least Squares

~~» what has come to be known as ‘subspace ID’ .

Algorithms compare favorably compared to PEM, etc.

—p.14/32

From data to state

—p.15/32

&
i
&

How does this work?

B(1), W(2), ..., 0(t),...

U

#(1),5(2), ..., &), ..

This Is a very nice system theoretic question.

~p.16/32

w— T

Henceforth, A sufficiently large.

Can we somehow identify, directly from the data , the map

w(1),w(2),...,w(A)

w(2),w(3),...,w(A + 1)

or

w(1), w(2),...,w(A)

@(2), (3), - . ., W(A + 1)

There are many algorithms. We discuss two.

—

z(1)

z(2)

(A + 1)

(A + 2)

~p.16/32

w — x by past/future intersection
w(1) w(2) B (t)
w(2) B (3) B(t + 1)
B(A) B(A + 1) B(t+ A — 1)
(A +1) (A +2) B(t + A)
(A +2) @A+ 3) B(t+ A+ 1)
B(24) (24 +1) @(t+ 24 — 1)

T
T

T
‘PAST’

‘FUTURFE’

1
\3
1

~p.17/32

w — x by past/future intersection

w1 W@ - W (t) [
B(2) w(3) e @+ 1)

T

: : : : 4
[’H_] B(A) BA+1) - BE+A-1) nsr
He | (A +1) DA+2) - W(t+A) .- FUTURE

w(A+2) w(A+3) .. wt+A+1) ... i

B(28) W2A+1) .- wE+ 248 —1) v

The intersection of the span of the rows of 7{_ with the span of the
rows of H 1 = the state space. The common linear combinations

(A +1) z(A+2) -+« x(t+ A) --- | < | ‘PRESENT STATE

State = what is common between past and future.
Existing algorithms (N4SID, MOESP.,...) use past/future partition.

~p.17/32

How do we compute this intersection?

E] = aIMl + a,TMz =0 ~ a M1 = —a;er
w1 w(2) ()
@B(2) @(3) @(t + 1)
ar] Tl @) @+ B+ A — 1)
az B(A+1) (A + 2) B(t + A)
(A +2) WA+ 3) W(t+ A+ 1)
@(24) (24 +1) @(t+ 24 — 1)

T
T

T
‘PAST’

‘FUTURFE’

1
\
A

~p.18/32

How do we compute this intersection?

[Z—:]T {%] = aTMi+alMz=0 ~ o M1 = —aJ M-
W) B(2) 10
@(2) w(3) @(t + 1)
0 [o]T B(A) BA+1) - BE+FA—T)
az B(A+1) BA+2) - BE+A)
G(A+2) WA+3) - BE+AF1)
B(28) W2A+1) .- wE+2A —1)

Exploiting Hankel structure ~~» following algorithm

T
T

T
‘PAST’

‘FUTURFE’

1
\
A

~p.18/32

w — &I

via left annihilators

Compute ‘the’ left annihilators of the Hankel matrix:

[Nl N2 N3

vl

@ (1) @(2) e @ (t)
@ (2) @ (3) @(t+ 1)
@(3) @(4) @(t + 2)

B(A) BALL) - BE+ A1)

~p.19/32

w — ax via left annihilators

Compute ‘the’ left annihilators of the Hankel matrix:

@ (1) @(2) e @ (t)
B (2) W(3) .- W(t + 1)
N1 N2 Ns - Na| [®0B) @4 - @(t+2)
B(A) BALL) - BE+ A1)
Then 21) #(2) - % (t)
' N2 Nz .-+ Na 0] [@@1) @(2) - @)
Ns Na === 0 0 |52 @(3) - @t+1)
— 5 o @) W(4) - W(t+2)
Na—-1 Na --- 0 ; ; ; ;
'Na 0 - 0 o] [#(A) @(A+1) - @BE+A-1)
Tt 1

‘shift-and-cut’

~p.19/32

w — ax via left annihilators

Compute ‘the’ left annihilators of the Hankel matrix:

@ (1) @(2) e @ (t)
B (2) W(3) .- W(t + 1)
N1 N2 Ns - Na| [®0B) @4 - @(t+2)
B(A) BALL) - BE+ A1)
Then #(1) #(2) %(t)
[N2 Nz -~ Na 0| [@w(1) (2 @(t)
Ns Na - 0 0 l@(2) @(@3) - BE+1)
— 5 o @) w(4) -+ w(t+2)
Na_1 Na -+ O : : : Z
'Na 0 - 0 o] [#(A) @(A+1) - @BE+A-1)
Tt 1

a hon-minimal state

, thou

‘shift-and-cut’

~p.19/32

Back to the beginning

—p.20/32

Compute the left kernel of the (block) Hankel matrix

w(1)
w(2)
W (3)

w(t')
(¢ + 1)

Our problem

w(2)
w(3)
W (4)

w(t + 1)
@ (¢ + 2)

’lI)(t”)
(" + 1)
(" + 2)

'lI)(t’ _|_ tll
'lI)(t, _|_ t”)

—1)

—p.21/32

The module structure

—p.22/32

Annihilators as polynomials

Each left annihilator can be identified with a vector polynomial

w(1) w(2) - W (")
B(2) w(3) .- @ +1)
B(3) w(4) .- @t +2)
[ao ai---aan 0] : . . : .| =0
BH) WE +1) - BE 7 —1)

>~ a(f) =aptaif+---+aal?® € REIM*¥ € left kernel

~p.23/32

Annihilators as polynomials

Closed under addition

a0 -+ an 0
| bo ba O
Y

w(1)
w(2)
B (3)

@ (t)

’lIJ(t”)
Wt + 1)
(" + 2)

'lI)(t, _|_ t” _

1)

~p.23/32

Annihilators as polynomials

and under shifting

B(1) e @)
W(2) -+ Wt +1)
[ao0 a1 aa 0 0] B(3) .- Bt 4+ 2)
¢ =0
[0 a0 -+ aa_1 aan O0---] @(It') @ (¢ +.t” —1)

a(f) =ag+ a,€E+ -+ anaf? € left kernel
b(§) = by + bi&E+ -+ + bak> € left kernel

= a(§)+b(&) and Ea(&) € left kernel.

~p.23/32

Annihilators as polynomials

a(f) =ap+ a1+ -+ aaf® € left kernel
b(§) = by + bi&E+ -+ bak® € leftkernel

= a(&)+b(&) and Ea(&) E leftkernel.

=> The left kernel hence forms a R [£]-module .

| Finitely generated: 3 annihilators a(£), b(£), - - - , c(§)

that yield all under 4 and shifts.

Left kernel is in a sense always finite dimensional (dim.p < w).

~p.23/32

The module in subspace ID

—p.24/32

State construction via the generators

Generators [ao a1 -+ an,]
[bo b1 --- b, |

[CO Cl o0 o0 ° s 0 cnp]

—p.25/32

State construction via the generators

Generators
Then
-al a’n]_—l
a2 Qn,

[ao
[bo

[co

ai

b1

Ci

Qn, |
bn, |
cnp]
51 #2) - 7 (t)
[w(1) w(2) .- @ (t)

W (2) W(3) - w(t+1)

Cn, w(3) w(4) e w(t + 2)

0 :

|W(cn,) W(Cn, +1) +++ W(t+ co, — 1)
0

—p.25/32

State construction via the generators

Then
—al **° Qp,—1 Qn, |
‘e ny 0 0
o . [(1) #(2) - (t)]
fag o 0 Cw(1) w(2) - @ (£) ‘
W (2) W(3) .- w(t+1)
c1 Cn,—1 Cn, w(3) w(4) e w(t + 2)
c2 Cn, 0
: | W(Cn,) W(Cn, +1) -+ wW(t+ co, — 1) .
ca, O 0 0]

Suitable conditions on generators ~> minimal state.

—p.25/32

Computation of the generators

— p.26/32

w +—> left kernel

Suppose we found a left annihilator of

(1) @(2) @ (t)
@(2) @(3) @(t + 1)
% (3) @(4) @(t + 2)

B(A) DAL - BE+L A1)

~p.27/32

w +—> left kernel

Suppose we found a left annihilator of

[w(1) w(2) - ()
w(2) W (3) w(t+ 1)
w(3) W (4) w(t + 2)

B(A) DAL - BE+L A1)

Can we use this to simplify finding the other left annihilators of

(1) W(2) - B (t)
B (2) W(3) .- Bt + 1)
B (3) w(4) .- B (t + 2)

B(A) W(A+1) .- wE+A—1)

~p.27/32

The completion lemma

Let R(&) € RPX¥[¢] be left prime. Then 3 E(£) € RU—P)IX¥[¢]
such that

R(¢)
E6)

meaning det = a non-zero constant, invertible as a pol. matrix.

is unimodular

—p.28/32

The completion lemma

Let R(&) € RPX¥[¢] be left prime. Then 3 E(£) € RU—P)IX¥[¢]
such that

R(¢)
E6)

meaning det = a non-zero constant, invertible as a pol. matrix.

is unimodular

EX.
p=1,w=2,R(§) = [r1(§) m2(8)], E(&) = [—y(&) =(&)]
Given 11(£),7r2(&) € R [£], find (&), y(&) € R [£] such that

z(&)ri(§) + y(§)r2(§) =1 Bézout

Solvable iff 1, 72 coprime. d algorithms, etc.

The completion lemma

Let R(&) € RPX¥[¢] be left prime. Then 3 E(£) € RU—P)IX¥[¢]
such that

R(¢)
E6)

is unimodular

Equivalent proposition:
For a given B8 € £, there exists B’ € £¥, such that
B DB = (RN

iff 255 is ‘controllable’.

—p.28/32

Application to left kernel computation

Assume () @@ e
B (2) ®(3) -+ w(t+1)
@0 a1 -+ an] | ®(3) B(4) - wE+2) | =0

By +1) B +2) o B(E+m)

~p.29/32

Application to left kernel computation

Assume [@(1)
w(2)
[ao a1 -+ an,] w(3)

Complete a(§) ~ FE4(&)

w(2)
w(3)
w(4)

_’J)(nl +1) w(ni + 2)

w(t)
w(t+ 1)
w(t + 2)

w(t + n1)

unimodular.

—p.29/32

Application to left kernel computation

Assume w(1) w(2) w(t)
W (2) W(3) oo (4 1)
ey @m cce G W (3) W (4) coe W(t+2)
@(o1+1) W1 +2) .- @+ n1)

Complete a(§) ~ FE4(&)
Compute the ‘error € = E,(o)w

Notethat e is (w — 1)-dimensional.

—p.29/32

Assume

[a0 a1

Compute

[bo b1

Qn, |

ba, |

w(1)
w(2)
B (3)

_’J)(nl +1) w(ni + 2)

é(1)
&(2)
&(3)

i é(nz. + 1)

w(2)
w(3)
w(4)

€(2)
&(3)
&(4)

é(nz.—|— 2)

Application to left kernel computation

w(t)
w(t+ 1)
w(t + 2)

@(t +n1)
eé(t)
&(t + 1)

E(t + 2)

e(t -|— nz)

Yields annihilator b(&)E, (&) ~ 2 generators: a(&), b(§) E,(§)

Complete b ~» E;. Compute €’ = Ey(0)e, proceed recursively...

—p.29/32

Assume

Application to left kernel computation

w(1) w(2) w(t)
@(2) @(3) @(t+ 1)
[ao a1 an, | w(3) w(4) w(t + 2) =0
@(o1 4+ 1) (a1 + 2) @(t +n1)
Compute e(1) &(2) é(t)
&(2) &(3) &t + 1)
bo b1 by | E(3) &(4) &(t + 2) _ 0
E(2+1) &z +2) &(t + n2)
Recursively a(§), b(§)Ea(§), -+, c(§)--- Ep(§)Ea(§)

yields left kernel by computing p times a left kernel vector.

Recursion can be combined with the state computation.

—p.29/32

Summary

—p.30/32

Summary

Subspace ID:
w(1),w(2),...,w(t),...

d
X = [53(1),53(2),...,3E(t),...]
i ~
Row reduce X
d
LS solve
#(2) &@3) --- &E+1) - _ |A B| |81) &(2) --- &)
g(1) g@2) --- g (t) C D| |a(1) u(2) --- a(t)
d

ModeI[AB]
C‘D

~p.31/32

Summary

State from data:
W(1), w(2),...,w(t),...
~ ~ \L ~
x(1),x(2)y...,2(t),...

via left kernel of the data Hankel matrix

w(1) w(2) A w(t")

W (2) ®(3) - w4+ 1)

W (3) w(4) - @t +2)

@) Wt +1) - DE +t —1)
w(t'+1) w('+2) --- w(t' +t")

This is a module of dimension < w
its generators lead to the state via shift-and-cut

~p.31/32

ai

a2

Summary

81 #2) - 7 (t)
w(1) @(2) - W (t)
w(2) w(3) .- w(E+1)
Cay @(3) w(4) .- w(E+2)
0
|W(cn,) W(Cn, +1) +++ W(t+ co, — 1)
0 -

~p.31/32

Summary

This left kernel can be computed recursively by repeated use of the
completion lemma and error propagation .

Requires computing p vectors in kernel of (truncated) Hankel
matrices formed by ‘error’.

This error time-series decreases each time in dimension.

Can be executed using humerical LA.
Very adapted to approximate computations.

-p.31/32

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat .kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you

~p.32/32

Happy Birthday !!!

	
	
	
	
	
	small hfill �oldmath yb {Question}
	
	small hfill �oldmath yb {$hw mapsto $~MPUM}
	small hfill �oldmath yb {The model class }
	
	small yb {The problem}
	
	small yb {�oldmath $hw mapsto sABCD $}
	small yb {�oldmath $hw mapsto sABCD $}
	
	small yb {�oldmath $hw mapsto 	ilde {x}$}
	small yb {�oldmath $hw mapsto 	ilde {x}$ ~~by past/future intersection}
	small yb {How do we compute this intersection?}
	small yb {�oldmath $hw mapsto 	ilde {x}$ ~~via left annihilators}
	
	small hfill �oldmath yb {Our problem}
	
	small hfill �oldmath yb {Annihilators as polynomials}
	
	small hfill �oldmath yb {State construction via the generators}
	
	small hfill �oldmath yb {$hw mapsto $ left kernel}
	small hfill �oldmath yb {The completion lemma}
	small hfill �oldmath yb {Application to left kernel computation}
	
	small yb {Summary}
	

