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Lyapunov functions
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Lyapunov functions

Consider the classical dynamical system, the ‘flow’

3 %:c = f(x)
withx € X = R" the sfate and f : X — X the vectorfield.

Denote the set of solutions x : R — X by *B, the ‘behavior’.
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Lyapunov functions

Consider the classical dynamical system, the ‘flow’

3 %:c = f(x)
withx € X = R" the sfate and f : X — X the vectorfield.

Denote the set of solutions x : R — X by *B, the ‘behavior’.

V: X—=R

is said to be a Lyapunov function for X if along x € B

FV(z()<o

Equivalently, if 1;’2 :=VV.f<O0.
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Typical Lyapunov theorem

Lyapunov |V
function

system
trajectory

V (x) >Oand‘;2(:c) <0Ofor0#xeX

—
V x € B, there holds = (1) — Ofort — oo ‘global stability’
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Lyapunov

Lyapunov f’ns play a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov’s ‘second method’ in his thesis (1899).
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Dissipative systems
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Open systems

‘Open’ systems are a much more appropriate starting point
for the study of dynamics. For example,

ll1 — Y1
u, .—.’ Y,
|} —— llp

~» the dynamical system
3 %wzf(a:,u), y=h(xz,u).

u€elU=R"y €Y =RP,z € X =R" input, output, state.

Behavior 95 = allsol’'ns (u,y,x): R — U X Y x X.
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Dissipative dynamical systems

Let s:U XY — R beafunction, called the supply rate.

VX — R,

called the storage function, such that

% V() <s(u(),y(-))

vV (u(),y(),z()) €B.
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Dissipation inequality

V@) <s@(-),y())
vV (u(),y(),z()) €B.

This inequality is called the dissipation inequality.

Equivalent to

VE (z,u) = VV (z) - f (@,u) < s (u, h (z,u))
for all (u,x) € U x X,

If equality holds: ‘conservative’ system.
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Dissipation inequality

SUPPLY

A
I SYSTEM
I \
STORAGE “\

#vv"
DISSIPATION

s (u, y) models something like the power delivered to the
system when the input value is © and output value is y.

V' (x) then models the internally stored energy.

Dissipativity :&
rate of increase of internal energy < power delivered.

—p.11/50



Dissipation inequality

Special case: ‘closed’ system: s = 0 then

dissipativeness <> V' is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.
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Dissipation inequality

Special case: ‘closed’ system: s = 0 then

dissipativeness <> V' is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closed systems ~ Dissipativity for open systems.
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The construction of storage functions

Basic question:

Given (a representation of ) X, the dynamics,
and given s, the supply rate,
is the system dissipative w.r.t. s, i.e.
does there exist a storage function V such that
the dissipation inequality holds?
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The construction of storage functions

Basic question:

Given (a representation of ) X, the dynamics,
and given s, the supply rate,
is the system dissipative w.r.t. s, i.e.
does there exist a storage function V such that
the dissipation inequality holds?

input

SYSTEM

—

supply

output

Monitor power in, known dynamics, what is the stored energy?
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The construction of storage functions

The construction of storage £’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.
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The construction of storage functions

The construction of storage £’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov

functions, H . and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.
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The construction of storage functions

The construction of storage £’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov

functions, H . and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.

The storage function V is in general far from unique. There
are two ‘canonical’ storage functions:

the available storage and the required supply .

For conservative systems, V' is unique.
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Dissipative systems

Dissipative systems and storage functions play a remarkably
central role in the field.
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Dissipative systems

Dissipative systems and storage functions play a remarkably
central role in the field.

The construction of storage functions
is the question which we shall discuss today
for systems described by PDE’s.
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PDE’s



Examples

Heat diffusion in a bar

.

~> the PDE

0,
ot

—8:1:2T +q

(x € R, position, t € R, time),

describes the evolution of the temperature 7" (x, t)
and the heat q (x, T") supplied to / radiated away.

(2-D system)
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Examples

The voltage V' (x,t) and current I (x,t) in a coaxial cable

I(x,t)

@ > X -
s, 3,
—V = RI—-L—1,
ox ot
3, 3,
—1 = GV —-C—V.,
ox ot

R the resistance, L the inductance, C the capacitance of the cable,

G the conductance of the dielectric medium, all per unit length.
(2-D system)
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Examples

Maxwell’s equations

<
&
Il
|
°

— 8—»
VXFE = ——
ot '
V.B = 0,
c’VxB = —j+4 —
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Examples

Maxwell’s equations

- 1
V-E = — P,
€0
— a—»
VXFEF = ——B
ot '
V.B = 0,
2’V x B = —7 + —

T = R x R3 (time and space) ~» n = 4 (4-D system) ,

w = (E » B,y 7, p)

(electric field, magnetic field, current density, charge density),
W =R3 xR} x R® X R,~» w = 10,

B — set of solutions to these PDE’s.

Note: 10 variables, 8 equations! = d free variables.
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PDE’s: polynomial notation

Consider, for example, the PDE:

0? o

wi (1, x2) + w1 (1, 22) + —w2 (T1,22) = O
oxs 0x;
o3 o4

w2 (1, 2) + w1 (1, 22) + w2 (z1,22) = O

oxs ox]
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PDE’s: polynomial notation

Consider, for example, the PDE:

ok 9,

wi (T1,x2) + W1 (x1,22) + — w2 (1, 22) =
oxs 0x;
o3 o4

w2 (53175132) + 3—:c§w1 (513175132) + 3—:1:fllw2 (51317132) —

Notation:
3 3 w1
gl(_)—a '52(_)—71”: ’ R(£17€2):
8:131 3:132 w9

&1
1+&7
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Linear differential distributed systems

T = R", the set of independent variables,

typically n = 4: time and space,
W = RRY, the set of dependent variables,
'8 — the solutions of a linear constant coefficient PDE.
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Linear differential distributed systems

T = R", the set of independent variables,

typically n = 4: time and space,
W = RRY, the set of dependent variables,
'8 — the solutions of a linear constant coefficient PDE.

Let R € R**"[£q,- -, &y], and consider

R(p2, o )w=0. (%

Define the associated behavior
B = {w € € (R*,R") | (*) holds }.

Notation for n-D linear differential systems:
(R*,R",*B) € £, orB c £V,
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Elimination theorem

Theorem:

If the behavior of (w1, ..., wx, Wgt1,...,Wwy)
obeys a constant coefficient linear PDE,

then so does the behavior of (w1, ..., wy)!
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Elimination theorem

Theorem:

If the behavior of (w1, ..., wx, Wgt1,...,Wwy)
obeys a constant coefficient linear PDE,
then so does the behavior of (w1, ..., wy)!

Which PDE’s describe (p, E, f) in Maxwell’s equations ?

Eliminate B from Maxwell’s equations ~

- 1
V.-E = — P,
€0
Ov. 5 + V.5 0
E - . . pr—
08t J ’
eo——FE +e0c®VXVXE + —j = 0.
ot? ot ~ p.20/50




Image representation

0 0 _
R(a—wl,... ,a_wn)w_()

is called a kernel representation of the associated 5 € £7.
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Image representation

0 0
R(a—wl,... ’3wn)w_0

is called a kernel representation of the associated 5 € £7.
Another representation: image representation

_ o 0
w_M(_aiBl’...’a_iBn)e
° ° [ ° 8 8 W
Eliminationthm = im (M (a—m, .o ’8wn>) c £ !

Do all behaviors of linear constant coefficient PDE’s admit an
image representation???
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Image representation

0 0
R(a—ml,... ’3wn)w_0

is called a kernel representation of the associated 5 € £7.
Another representation: image representation

_ o 0
w_M(_aiBl’...’a_iBn)e
° ° [ ° 8 8 W
Eliminationthm = im (M (a—m, .o ’awn)) c £ !

Do all behaviors of linear constant coefficient PDE’s admit an
image representation???

B ¢ £ admits an image representation iff it is ‘controllable’.
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Controllability

Def’n in pictures:
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Controllability

Def’n in pictures:

w ‘patches’ wq, ws € B.

d w €WV V wi,we € °B: Controllability :< ‘patchability’.
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Controllability

Theorem: The following are equivalent:

1. B € £ is controllable

2. B admits an image representation
3. ...
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Are Maxwell’s equations controllable ?
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Are Maxwell’s equations controllable ?

The following equations
in the scalar potential ¢ : R x R®> — R and

the vector potential A:R xR — R3
generate exactly the solutions to Maxwell’s equations:

— 3 -
5t OB
B = VX A’,
3 = so@A—soczva-l-eOCzV (V-A) +eoaV¢,
o -
= —e0—V.A—ggV3?p.
p €05 eoVp

Proves controllability. Illustrates the interesting connection

controllability < 3 potential!
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Observability

Observability of the image representation

w:M(a i a)e

8221 ’° ? 3iBn
is defined as: / can be deduced from w,

i.e. M (i cee, 2 ) should be injective.
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Observability

Observability of the image representation

w:M(a i a)e

3221 ’° ? 3iBn
is defined as: / can be deduced from w,

i.e. M (i cee, 2 ) should be injective.

Not all controllable systems admit an observable im. repr’n.
For n = 1, they do. For n > 1, exceptionally so.

The latent variable 7 in an im. repr’n may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation with an observable potential.
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Dissipative distributed systems
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Notation

Multi-index notation:

w:(wlwﬂawn)?k:(klwﬂakn)?e:(elwﬂven)a
§= (&1, &), ¢ =(C15-++5Ca) >N = (M5 -+ 7m)

da _ (0 9\ dt _ [ 9= §kn
de = \Ox1?°°°?° Ox, ) ? dxk — 8;13"’1"”’8:13511 ”

dxr = dxidxs...dx,,

1

fw:M(%>£ for wZM(a?:l"" ,a%)e,

R(dd>w_0 for R( --,ain>w:O,

etc.
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Notation

. 0 o
V. T Bwl_l_'”_l_awn'

For simplicity of notation, and for concreteness, we often take
n = 4, independent variables, ¢, time, and x, y, z, space.

\AREE aay | E?az’ ‘spatial flux’
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QDF’s

The quadratic map acting on w : R* — R" and its
derivatives, defined by

-
d* d*
— — P —
W Dk (dwk w) o (dw£w>
is called quadratic differential form (QDF) on €°° (R, R").
(I)k,g - RWXW; WLOG: (I)k,g = (I)Zk.
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QDF’s

The quadratic map acting on w : R* — R" and its
derivatives, defined by

-
d* d*
— — P —
W Dk (dwk w) o (dw‘fﬂ))
is called quadratic differential form (QDF) on €°° (R, R").
(I)k,g - RWXW; WLOG: (I)k,g = (I)Zk.

Introduce the 2n-variable polynomial matrix ¢
®(¢,m) =) Preln’.
k.l

Denote the QDF as Q3. QDF’s are parametrized by R [, 7] .
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Dissipative distributed systems

We henceforth consider only controllable linear differential
systems and QDE’s for supply rates.
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Dissipative distributed systems

We henceforth consider only controllable linear differential
systems and QDE’s for supply rates.

Definition: B € £7, controllable, is said to be

(a QDF) if

fRn Q‘I’ (’UJ) dx Z 0

for all w € *B of compact support, i.e., for all w € B N D.

? := ¢ and ‘compact support’.
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Dissipative distributed systems

Assume n — 4:
independent variables x, y, z; 7 : space and time.

Idea: Qs (w) (x,y, z;t) dxdydz dt:

‘energy’ supplied to the system

in the space-cube [z, + dz| X |y,y + dy| X [z, z + dz]
during the time-interval [, ¢ + dt].

Dissipativity : <

Ie s Qo (w) (2,9, 2, t) dedydz] dt > 0| Vw € BND.

A dissipative system absorbs net energy.
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Example: EM fields

Maxwell’s eq’ns define a dissipative (in fact, a conservative)
system w.r.t. the QDF —E. 5

Indeed, if FE, ; are of compact support and satisfy

o - -
'V-E+v-; = o,

&‘oat + J
82E+ 2y x V X E + 0 - 0
E0—= £oC —3 = 0,

0512 0 ot’

then
fR [fR?’ (‘E . 3) dwdydz] dt =0.
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The storage and the flux
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Local dissipation law

Dissipativity : &

[o [fos Qs (w) dedydz] dt >0 forallw € BN D.
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Local dissipation law

Dissipativity : &
Jr [fRs Qs (w) dwdydz] dt >0 forallw € B N3D.

Can this be reinterpreted as:

As the system evolves, some of the energy supplied is locally
stored, some locally dissipated, and some redistributed over
space?
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Local dissipation law

!! Invent storage and flux, locally defined in time and space,
such that in every spatial domain there holds:

SUPPLY

il

% Storage + Spatial flux < Supply.
%. FLUX

7/

STORAGE

Yyy

DISSIPATION

Supply = partly stored + partly radiated + partly dissipated.
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MAIN RESULT (stated for n = 4)

Thm: n =4 :x,y, z;t : space/time; B € £}, controllable.

Then [, |[ps Qs (w) dzdydz| dt >0 forallw € BND

)
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MAIN RESULT (stated for n = 4)

Thm: n =4 :x,y, z;t : space/time; B € £}, controllable.

Then [, |[ps Qs (w) dzdydz| dt >0 forallw € BND
()
danim. repr. w = M (aam’ Bay’ 8‘1, aat) ¢ of B,

— p.34/50



MAIN RESULT (stated for n = 4)

Thm: n =4 :x,y, z;t : space/time; B € £}, controllable.

Then [, |[ps Qs (w) dzdydz| dt >0 forallw € BND
r
danim. repr. w = M (8‘1, Bay’ 8‘1, gt) ¢ of B, and

QDF’s S, the storage, and F,, F, F., the flux,
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MAIN RESULT (stated for n = 4)

Thm: n =4 :x,y, z;t : space/time; B € £}, controllable.

Then [, |[ps Qs (w) dzdydz| dt >0 forallw € BND
r
danim. repr. w = M (8‘1, Bay’ 8‘1, gt) ¢ of B, and

QDF’s S, the storage, and F,, F, F., the flux,
such that the local dissipation law

515 (O) + 55 Fx (0) + g, Fy () + 52 F: (¢) < Qs (w)

holds for all (w, £) that satisfy w = M (8‘1, 88y7 8‘1, gt> l.



Hidden variables

The local law involves
possibly unobservable, - i.e., hidden!
latent variables (the £’s).

This gives physical notions as stored energy, entropy, etc., an
enigmatic physical flavor.
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Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative)
with respectto — E . f, the rate of energy supplied.

— p.36/50



Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative)
with respectto — E . f, the rate of energy supplied.

Introduce the stored energy density, S, and
the energy flux density (the Poynting vector), F,

S(E’,B’)::—E.E: B. B,
2 2

F (E, B’) := eoc’E X B.

LLocal conservation law for Maxwell’s equations:

—

25(8,8)+v-F(E,B)=—B-j.

Involves B, unobservablefrom F and j. a5



The proof



Outline of the proof

Using controllability and image representations, we may
assume, WLOG: 2B = € (R*, R")

To be shown

Global dissipation : <

Qs (w) >O0forallw € ®
Rn

(r
F¥: V-Qu(w) <Qs (w) forallw € €°°

&: Local dissipation
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Qs (w) >0forallw € ®
Rn
{ (Parseval)

® (—tw,tw) > 0forallw € R*
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Qs (w) >0forallw € ®
Rn

{ (Parseval)

® (—tw,tw) > 0forallw € R*

() (Factorization equation)

ID: ®(=¢(€)=D" (=€) D ()
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/ Qs (w) >0forallw € ®
Rn

{ (Parseval)

® (—tw,tw) > 0forallw € R*

() (Factorization equation)

ID: ®(=¢(€)=D" (=€) D ()
§ (easy)

&+n)' ¥ =8 (n) —D(¢)D(n)
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/ Qs (w) >0forallw € ®
Rn

{ (Parseval)

® (—tw,tw) > 0forallw € R*

() (Factorization equation)

ID: ®(—¢€)=D' (=€) D(¢)
T (easy)
3¥: (C+n) T =2(n) —D' () D(n)

$ (clearly)

FT: V:Qu(w) <Qsp(w) forallw € €
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Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : <

Qs (w) >0forallw € ®
Rn

()
F¥: V-.-Qu(w) <Qs (w) forallw € €°°

&: Local dissipation

— p.40/50



Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : <

Qs (w) >0forallw € ®
Rn

()
F¥: V-.-Qu(w) <Qs (w) forallw € €°°

&: Local dissipation

However, ... this argument is valid only for n = 1...
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The factorization equation (FE)

— p.41/50



The factorization equation

Consider

X' (€)X (&) =Y (¢ (FE)

with Y € R®***[£] given, and X the unknown. Solvable??
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The factorization equation

Consider

X' (-6 X (& =Y (& (FE

with Y € R®***[£] given, and X the unknown. Solvable??

12

X' (&)X (&)=Y

with Y € R®***[£] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?
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The factorization equation

Consider

X' (-6 X (& =Y (& (FE

with Y € R®***[£] given, and X the unknown. Solvable??

12

X' (&)X (&)=Y

with Y € R®***[£] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?

Scalar case: write the real polynomial Y as a sum of squares

Y:w%—l—mg—l—---—l—mf{.
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X' ()X (&)=Y (§ (FE

Y is a given polynomial matrix; X is the unknown.

For n = 1 and Y € R [£], solvable (with X € R?[£]) iff

Y (o) >0 for all o € R.
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X' ()X (&)=Y (§ (FE

Y is a given polynomial matrix; X is the unknown.

For n = 1 and Y € R [£], solvable (with X € R?[£]) iff

Y (o) >0 for all o € R.

For n =1 andY € R®**°®[£], it is well-known (but
non-trivial) that (FE) is solvable (with X < R®*°® [£]!) iff

Y(a)=Y'"'(a) >0 foralla € R.
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X' ()X (&)=Y (§ (FE

Y is a given polynomial matrix; X is the unknown.

For n =1 and Y € R®**°[£], it is well-known (but
non-trivial) that (FE) is solvable (with X < R®*°® [£]!) iff

Y(a)=Y' (a) >0 for all o € R.
For n > 1 and under the symmetry and positivity condition
Y(a)=Y'(a) >0 foralla e R®,

this equation can nevertheless in general not be solved over
the polynomial matrices, for X € R®*®[£],

— p.43/50



X' ()X (&)=Y (§ (FE

Y is a given polynomial matrix; X is the unknown.

For n =1 and Y € R®**°[£], it is well-known (but
non-trivial) that (FE) is solvable (with X < R®*°® [£]!) iff

Y(a)=Y' (a) >0 for all o € R.
For n > 1 and under the symmetry and positivity condition
Y(a)=Y'(a) >0 foralla e R®,

this equation can nevertheless in general not be solved over
the polynomial matrices, for X € R®**®[£],

but it can be solved over the matrices of rational functions,
i.e., for X € R**® (¢).
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

' Solve p =pf +p3+---+ p?, pgiven
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

' Solve p =pf +p3+---+ p?, pgiven

A polynomial S IR[517 tUe 7€n]9 Withp (ala cey an) 2 0
for all (a1,...,a,) € R" can in general not be expressed as a
SOS of polynomials, with the p;’s € R[&, -, &
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

' Solve p =pf +p3+---+ p?, pgiven

A polynomial S R[fla tUe 7€n]9 Withp (ala cey an) 2 0
for all (a1,...,a,) € R" can in general not be expressed as a
SOS of polynomials, with the p;’s € R[&, -, &

But a rational function (and hence a polynomial)

D E R(ﬁl, 9€n) 9With p(a17°°°7an) Z 0, for all
(a1,...,0q,) € R®, can be expressed as a SOS of (x = 27)
rational functions, with the p;’s € R (&1,:-- ,&,).

— p.44/50



Outline of the proof

= solvability of the factorization eq’n

$ (—tw,tw) > 0forallw € R*

{ | (Factorization equation)

ID: ®(=¢(€)=D" (=€) D ()

over the rational functions, i.e., with D a matrix with
elementsin R (£1,--- ,&,) .
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Outline of the proof

= solvability of the factorization eq’n

$ (—tw,tw) > 0forallw € R*

{ | (Factorization equation)

ID: ®(=¢(€)=D" (=€) D ()

over the rational functions, i.e., with D a matrix with
elementsin R (£1,--- ,&,) .

The need to introduce rational functions in this factorization
equation and an image representation of 25 (to reduce the

pbm to €°°) are the causes of the unavoidable presence of
(possibly unobservable, i.e., ‘hidden’) latent variables in the
local dissipation law.  pasiso



Uniqueness
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable £ in various
(non-observable) image representations of 5.

2. of D in the factorization equation
3. (in the case n > 1) of the solution ¥ of

&+n)" T(¢n)=@(n) — DT () D (n)
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable £ in various
(non-observable) image representations of 5.

2. of D in the factorization equation
3. (in the case n > 1) of the solution ¥ of

&+n)" T(¢n)=@(n) — DT () D (n)

For conservative systems, ® (—&, &) = 0, whence D = 0,
but, when n > 1, the third source of non-uniqueness remains.
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Uniqueness

The non-uniqueness is very real, even for EM fields.
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Uniqueness

The non-uniqueness is very real, even for EM fields. Cir.

The ambiguity of the field energy

... There are, in fact, an infinite number of different possibilities
for u [the internal energy] and S [the flux] ... It is sometimes
claimed that this problem can be resolved using the theory of
gravitation ... as yet nobody has done such a delicate
experiment ... So we will follow the rest of the world - besides,
we believe that it [our choice] is probably perfectly right.

The Feynman Lectures on Physics,
Volume II, page 27-6.
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® The theory of dissipative systems centers around the
construction of the storage function
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SUMMARY
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construction of the storage function

global dissipation < 3 local dissipation law

Involves possibly hidden latent variables
(e.g. B in Maxwell’s eq’ns)
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L I

SUMMARY

The theory of dissipative systems centers around the
construction of the storage function

global dissipation < 3 local dissipation law

Involves possibly hidden latent variables

(e.g. B in Maxwell’s eq’ns)

The proof = Hilbert’s 17-th problem

Neither controllability nor observability are good generic

system theoretic assumptions for physical models
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Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems
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Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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